工业机器人离线编程与仿真(基于KUKA) 外部传感器

工业机器人技术与应用

外部传感器

项目五工业机器人概述

任务二

导入

●你知道工业机器人的外部传感器的用途是什么?

●工业机器人的外部传感器是如何工作的呢?

目录

学习目标

知识准备

任务实施

主题讨论

1

2

学习目标

了解工业机器人外部传感器的分类

了解工业机器人常用外部传感器的工作原理

知识目标

工业机器人外部传感器的工作原理

外部传感器用于机器人对周围环境、目标物的状态特征获取信息,使机器人和环境发生交互作用,采集机器人与外部环境以及工作对象之间相互作用的信息,从而使机器人对环境有自校正和自适应能力。工业机器人

的外部传感器有视觉、触觉、力觉、距离等传感器。

一、外部传感器概述

轮辐拉压力传感器

触觉传感器应用案例

一、外部传感器概述

二、触觉传感器

触觉是人与外界环境直接接触时的重要感觉功能,研制满足要求的触觉传感器是机器人发展中的关键技术之一。随着微电子技术的发展和各种有机材料的出现,业内已经提出了多种多样的触觉传感器的研制方案。但是,目前大都属于实验室阶段,达到产品化的不多。触觉传感器按功能大致可分为接触觉传感器、力-力矩觉传感器、压觉传感器和滑觉传感器等。

二、触觉传感器

接触觉传感器是用于判断机器人(主要指四肢)是否接触到外界物体或测量被接触物体特征的传感器,接触觉传感器类型如表所示。

接触觉传感器

微动开关式视频

导电橡胶式视频

含碳海绵式视频

碳素纤维式

气动复位式等

二、触觉传感器

碳素纤维式

如图所示:以碳素纤维为上表层,下表层为基板,中间装以氨基甲酸酯和金属电极。接触外

界物体时,碳素纤维受压与电极接触导电。它的

特点是柔性好,可装于机械手臂面处,但滞后较

大。

气动复位式

它有柔性绝缘表面,受压时变形,脱离接触时

则由压缩空气作为复位的动力。与外界物体接触

时,其内部的弹性圆泡(铍铜箔)与下部触点接

触而导电。它的特点是柔性好,可靠性高,但需

要压缩空气源。下图是气动传感器的一种---

气囊

传感器:

三、应力传感器

最简单的应力应变传感器就是电阻应变片,直接贴装在被测物体表面就可以,应力是通过标定转换应变来的。应力应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器。

三、应力传感器

应力传感器视频

四、接近度传感器

接近度传感器是检测物体接近程度的传感器。接近度可表示物体的来

临、靠近或出现、离去或失踪等。它除可用于检测计数外,可与继电器或

其他执行元件组成接近开关,以实现设备的自动控制和操作人员的安全保

护,特别是工业机器人在发现前方有障碍物时,可限制机器人的运动范围,

以避免与障碍物发生碰撞等。

接近度传感器的制造方法有多种,可分为:

磁感应器式

接近开关振荡器式

四、接近度传感器

1.磁感应器式接近度传感器

按构成原理不同,磁感应器式接近度传感器又可分为线圈磁铁式、

电涡流式和霍耳式。

(1)线圈磁铁式:它由装在壳体内的一块小永磁铁和绕在磁铁上的线圈

磁感应器式接近度传感器构成。当被测物体进入永磁铁的磁场时,就在线圈里感应出电压信号。

(2)电涡流式:它由线圈、激励电路和测量电路组成。它的线圈受激励

而产生交变磁场,当金属物体接近时就会由于电涡流效应而输出电信号。

(3)霍耳式:它由霍耳元件或磁敏二极管、晶体管构成,当磁敏元件进

入磁场时就产生霍耳电动势,从而能检测出引起磁场变化的物体的接近。

霍尔式接近开关传感器

四、接近度传感器

2.振荡器式接近度传感器

振荡器式接近度传感器有两种形式:

(1)利用组成振荡器的线圈作为敏感部分,进入线圈磁场的物体会吸收磁

场能量而使振荡器停振,从而改变晶体管集电极电流来推动继电器或其他控制装

置工作。

(2)采用一块与振荡回路接通的金属板作为敏感部分,当物体(例如人)

振荡器式接近度传感器靠近金属板时便形成耦合“电容器",从而改变振荡条件,导致振荡器停振,这

种传感器又称为电容式继电器,

五、力觉传感器

1.金属电阻型力觉传感器

如果将已知应变系数为C值的金属导线

(电阻丝)固定在物体表面上,那么当物体发生

形变时,该电阻丝也会相应产生伸缩现象。因此,

测定电阻丝的阻值变化,就可知道物体的形变量,

进而求出外作用力。

将电阻体做成薄膜型,并贴在绝缘膜上使

用。这样,可使测量部件小型化,并能大批生产

质量相同的产品。

称重传感器

五、力觉传感器

2.半导体型力觉传感器

在半导体晶体上施加压力,那么晶体的对称性将发生变化,

即导电机理发生变化,从而使电阻值也发生变化,这种作用称为压

阻效应。半导体的应变系数可达100到200,如果适当选择半导体材

料,则可获得正的或负的应变系数值。

此外,还研制出压阻膜片的应变仪,它不必贴在测定点上即可

进行力的测量。

也可以采用在玻璃、石英和云母片上蒸发半导体的办法制作压

敏电子元件。其电阻温度比金属电阻型的要大但其结构比较简单,

尺寸小,灵敏度高,而可靠性很高。

半导体型力觉传感器

五、力觉传感器

3.其他力觉传感器

除了金属电阻型和半导体型力觉传感器外,还有磁性、压电式和利用弦振动原理制作的力觉传感器等。

磁致伸缩工作原理压电效应

五、力觉传感器

4.转矩传感器

传动装置驱动轴转速n、功率P及转矩T之间的关系为:

如果转轴加上负载,那么就会产生扭力。测量这一扭力,就能测出转矩。

工业机器人的传感器

工业机器人的传感器 一.工业机器人的感觉系统 工业机器人的传感器主要分为:1.工业机器人的感觉系统2 .工业机器人内部传感器3 .工业机器人外部传感器4 .工业机器人传感器应用 其中工业机器人的感觉系统的基本组成为:视觉、听觉、触觉、嗅觉、味觉、平衡感觉和其他,而工业机器人传感器按用途可分为内部传感器和外部传感器。其中内部传感器装在操作机上,包括位移、速度、加速度传感器,是为了检测机器人操作机内部状态,在伺服控制系统中作为反馈信号。外部传感器,如视觉、触觉、力觉距离等传感器,是为了检测作业对象及环境与机器人的联系。工业机器人传感器的一般要求有精度高、重复性好,稳定性和可靠性好,抗干扰能力强,质量轻、体积小、安装方便。其特定要求有适应加工任务要求,满足机器人控制的要求,满足安全性要求以及其它辅助工作的要求。 二.工业机器人内部传感器在工业机器人内部传感器中,位置传感器和速度传感器,是当今机器人反馈控制中不可缺少的元件。现已有多种传感器大量生产,但倾斜角传感器、方位角传感器及振动传感器等用作机器人内部传感器的时间不长,其性能尚需进一步改进。内部传感器功能分类有:

1)规定位置、规定角度的检测 检测预先规定的位置或角度,可以用开/关两个状态值,用于检测机器人的起始原点、越限位置或确定位置。 微型开关:规定的位移或力作用到微型开关的可动部分(称为执行器)时,开关的电气触点断开或接通。限位开关通常装在盒里,以防外力的作用和水、油、尘埃的侵蚀。 光电开关:光电开关是由LED光源和光敏二极管或光敏晶体管等光敏元件组成,相隔一定距离而构成的透光式开关。当光由基准位置的遮光片通过光源和光敏元件的缝隙时,光射不到光敏元件上,而起到开关的作用 2)位置、角度测量 测量机器人关节线位移和角位移的传感器是机器人位置反馈控制中必不可少的元件。 a)电位器 b)旋转变压器 c)编码器 3)速度、角速度测量 速度、角速度测量是驱动器反馈控制必不可少的环节。有时也利用测位移传感器测量速度及检测单位采样时间位移量,但这种方法有其局限性:低速时测量不稳定的危险;高速时,只能获得较低的测量精度。 最通用的速度、角速度传感器是测速发电机或成为转速表的

机器人传感器的类别及应用原理

机器人传感器的类别及应用原理 一般机器人系统由机械手、环境、任务和控制器四个互相作用的部分组成。我们称一般安装在机器人机械手上的传感器为内传感器(Inner Sensons),而称作为环境的一部分的传感器为外传感器(External Sensons)。下面将以此为主,结合机器人传感器其它分类方法进行阐述。 机器人产业近年来发展很快,2012年全球产量为16万台,欧、美、日等工业发达国家机器人市场已比较成熟,已处于平增长阶段。其机器人密度(万名员工使用机器人台数)韩国为347台,日本为339台,法国为261台,而我国为10台(有统计数据称为21台,仅供参考)。而我国机器人市场也发展很快,工业机器人每年装机量增长速度均超过20%,2010年装机量为52290台,2011年上涨到74317台,实现了42%的增长率。在2012年,我国出台了《智能制造科技发展十二五专项规划》,2013年4月21日还成立了中国机器人产业联盟,这些均证明了我国机器人产业将会有更大的发展。 机器人产品目前分类为工业机器人和服务机器人两大类。国内也有分为工业机器人和特种机器人两大类的;或分为一般机器人和智能机器人两大类;或分为一般机器人和移动机器人两类;或分为一般机器人和拟人机器人两类等。目前工业机器人多用于搬运、分拣、上下料、包装、码垛、焊接、喷涂、打磨、抛光、切割、摆放、装配等方面。 随着智能化的程度提高,机器人传感器应用越来越多。智能机器人主要有交互机器人、传感机器人和自主机器人3种。从拟人功能出发,视觉、力觉、触觉最为重要,早已进入实用阶段,听觉也有较大进展,其它还有嗅觉、味觉、滑觉等,对应有多种传感器,所以机器人传感产业也形成了生产和科研力量。 机器人的控制系统相当于人类大脑,执行机构相当于人类四肢,传感器相当于人类的五官。因此,要让机器人像人一样接收和处理外界信息,机器人传感器技术是机器人智能化的重要体现。 传感器是机器人完成感觉的必要手段,通过传感器的感觉作用,将机器人自身的相关特性或相关物体的特性转化为机器人执行某项功能时所需要的信息。根据传感器在机器人上应

传感器在工业机器人中的应用

传感器在工业机器人中的应用 工业机器人的准确操作取决于对其自身状态、操作对象及作业环境的限确队识。这种准 确认识沟通过传感器的感觉功能实现。 机器人自身状态信息酌获取项过其内部信息传感25(位置、速度、加速度等)获取并为机 器人控制反馈信息。希迪电子操作刘象钟L部环境的队识通道外部传感器得到。 一、零位和极限位互的检测 答你的检测精度皇接影响—[业机器人的重复定位精度和轨迹精度,极限位置的检洲则起 保护机器人和安全动作曲作用。 工业机器人常川的位置传感器有接触式微动开关、精密电位计或非接触式光电外关、电讽 流传感器。通常在机器人的每个共计上各安装种接触式传感器或非接触式传感器及与其对 /匝的死挡块。在接近极限位置g1.传感器先产土限位停止信号,如果限位停止信号发出之后还 未停J:,则油死挡块强制停[L。肖无法确定机器人某关节的学位时.司“出位移传感器的输出信 号确定。利用微动开关、光电开关、电涡流等传感器确定零位的特点是零位的固定性。当传感器 位置调好后,此关哨的零位就确定丁,若要改变,则必须重新调整传感器的价黄。而用电位11或位移仕感器确定零位时.不需要至斯调理其位置.只要在LI宾机软件中修改车位参数他即可。 =、位移量的检测 位移传感器一股都安装在机器人各关节上,用于检测机器人各关节的位移量,提供机器人

的位置控制信息。选用时府考虑到女装传感器结构的*IJ行件以及传感器本身的精度、分辨率 及灵敏度等。机器人上常用的位移传感器打旋转变比2E、起动变压器、感应同步器、电位汁、光 栅、磁枷、光电编码器辞。 关啊型机器人大多采用光电编码器,Au采用光电增量码盘。经过处理后酌佰号是勺关节 转角角度成一定关系式的脉冲数.计算机在确定零位和正、负方向后.只要计脉冲数就可以得 到关节转角酌角位移值。如果将七安装在关节的木端转驯L:川lJ可以形成该关节的闭环控制。 理论—懒可以获得较高的控制精度。但这样对传感甜的分辨率要求高。 在机器人中使用速度传感器是为实现机器人番关节的速度闭环控制。在用应流、交流伺 服电动机作为工业机器人驱动元件时.钽电容一般采用测速发电机作为速度酌检测器。它勺电动机 同轴,电动机转速不同时,输出的电压位也不问、将其电压侦输入到速度控训罚环反馈回路中, 以提高机器人的动态性能。 加直度传感器被用于机器人中关节的加速度控制。钉时为了抑制振动而在关节上进行检 测,将测到的振动频率、幅值和相位输入计算机。然后在控制环节中叠An一个勺此频率相向、 幅值相等而相位相反的控制信号用于抑制振动。 四、外部信息传感器在电弧焊机器人中的应用 闭门—2为其应用之一。在垂直于坡u楷面的上方安装一窄缝光发射器.在抖L方用视

传感器在工业机器人中应用

传感器在工业机器人中应用 工业机器人是面向工业领域的多关节机械手或多自由度的机器人。工业机器人是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。 在工业自动化领域,机器需要传感器提供必要的信息,以正确执行相关的操作。机器人已经开始应用大量的传感器以提高适应能力。绝大多数智能机器人的外部传感器,可以大致分为触觉传感器,接近传感器、力学传感器,以及视觉、滑觉、热觉等多种类型的传感器。例如有很多的协作机器人集成了力矩传感器和摄像机,以确保在操作中拥有更好的视角,同时保证工作区域的安全等。 用于避障的传感器 避障可以说是各种机器人最基本的功能,不然机器人一走动就碰到花花草草就不好了。机器人并不一定要通过视觉感知自己前方是否有障碍物,它们也可以通过触觉或像蝙蝠那样通过声波感知。因此,检测机器人前方是否存在障碍物的传感器,可以分为接触式和非接触式的。 最典型的接触式测障传感器便是碰撞开关(图1)。碰撞开关的工作原理非常简单,完全依靠内部的机械结构来完成电路的导通和中断。 图1 碰撞开关 在机器人上的用法多数是将探测臂加长,扩大探测范围和灵敏度。当机器人撞到前面的障碍物,碰撞开关的信号端便可返回一个高电平,控制芯片由此可以知道小车面前存在着障碍物。 非接触式测障开关一般的工作原理与声纳和雷达相似,发射声波或某种射线,遇到

障碍物,声波或射线被反射回来,并被传感器接收,这时传感器就认为发现了障碍物。我们最常用的便是发射和接收红外线的传感器(图3,图4)。 图3 红外发射管 图4 红外接收管 红外测障传感器成本较低(当然比碰撞开关还是要高一点),电路简单,检测范围大。如果在电路中加上一个电位器,就可以随时调节传感器的检测范围。这种检测方式为非接触式,控制起来更加方便、灵活。但这种测障方式也有缺点,多个红外传感器之间容易互相干扰,因此在传感器的布局上需要多花心思,安装位置也要尽可能地避免红外信号的碰撞。 用于测距的传感器 机器人光知道哪个方向有障碍物并不够,还必须知道障碍物距离自己具体有多远,才好判断下一步的行动。这时我们就需要测距传感器。 测距传感器大多为非接触式的,目前在个人机器人制作领域用得比较多的是红外和超声波测距传感器两种。 提到红外测距传感器,就不能不提夏普的GP2D12红外测距传感器(图5)。GP2D12几乎可以说是机器人爱好者的必备传感器,在我们平时常看到的一些个人机器人作品中,绝大多数都可以看到它的身影。

工业机器人种类介绍

工业机器人种类介绍 关键词:机器人,种类介绍移动机器人 (AGV) 移动机器人(AGV)是工业机器人的一种类型,它由计算机控制,具有移动、自动导航、多传感器控制、网络交互等功能,它可广泛应用于机械、电子、纺织、卷烟、医疗、食品、造纸等行业的柔性搬运、传输等功能,也用于自动化立体仓库、柔性加工系统、柔性装配系统(以AGV作为活动装配平台);同时可在车站、机场、邮局的物品分捡中作为运输工具。 国际物流技术发展的新趋势之一,而移动机器人是其中的核心技术和设备,是用现代物流技术配合、支撑、改造、提升传统生产线,实现点对点自动存取的高架箱储、作业和搬运相结合,实现精细化、柔性化、信息化,缩短物流流程,降低物料损耗,减少占地面积,降低建设投资等的高新技术和装备。 点焊机器人 焊接机器人具有性能稳定、工作空间大、运动速度快和负荷能力强等 焊接机器人 特点,焊接质量明显优于人工焊接,大大提高了点焊作业的生产率。 点焊机器人主要用于汽车整车的焊接工作,生产过程由各大汽车主机厂负责完成。国际工业机器人企业凭借与各大汽车企业的长期合作关系,向各大型汽车生产企业提供各类点焊机器人单元产品并以焊接机器人与整车生产线配套形式进入中国,在该领域占据市场主导地位。 随着汽车工业的发展,焊接生产线要求焊钳一体化,重量越来越大,165公斤点焊机器人是当前汽车焊接中最常用的一种机器人。2008年9月,机器人研究所研制完成国内首台165公斤级点焊机器人,并成功应用于奇瑞汽车焊接车间。2009年9月,经过优化和性能提升的第二台机器人完成并顺利通过验收,该机器人整体技术指标已经达到国外同类机器人水平。 弧焊机器人 弧焊机器人主要应用于各类汽车零部件的焊接生产。在该领域,国际大 弧焊机器人 型工业机器人生产企业主要以向成套装备供应商提供单元产品为主。 关键技术包括:

解析工业机器人常用的传感器

解析工业机器人常用的传感器 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 在工业自动化领域,机器需要传感器提供必要的信息,以正确执行相关的操作。机器人已经开始应用大量的传感器以提高适应能力。例如有很多的协作机器人集成了力矩传感器和摄像机,以确保在操作中拥有更好的视角,同时保证工作区域的安全等。在此枚举一些常用的可以集成到机器人单元里的各种传感器,供诸君参考。 二维视觉传感器 二维视觉基本上就是一个可以执行多种任务的摄像头。从检测运动物体到传输带上的零件定位等等。二维视觉在市场上已经出现了很长一段时间,并且占据了一定的份额。许多智能相机都可以检测零件并协助机器人确定零件的位置,机器人就可以根据接收到的信息适当调整其动作。 三维视觉传感器 与二维视觉相比,三维视觉是最近才出现的一种技术。三维视觉系统必须具备两个不同角度的摄像机或使用激光扫描器。通过这种方式检测对象的第三维度。同样,现在也有许多的应用使用了三维视觉技术。例如零件取放,利用三维视觉技术检测物体并创建三维图像,分析并选择最好的拾取方式。

如果说视觉传感器给了机器人眼睛,那么力/力矩传感器则给机器人带去了触觉。机器人利用力/力矩传感器感知末端执行器的力度。多数情况下,力/力矩传感器都位于机器人和夹具之间,这样,所有反馈到夹具上的力就都在机器人的监控之中。 有了力/力矩传感器,像装配,人工引导、示教,力度限制等应用才能得以实现。 碰撞检测传感器 这种传感器有各种不同的形式。这些传感器的主要应用是为作业人员提供一个安全的工作环境,协作机器人最有必要使用它们。一些传感器可以是某种触觉识别系统,通过柔软的表面感知压力,如果感知到压力,将给机器人发送信号,限制或停止机器人的运动。 有些传感器还可以直接内置在机器人中。有些公司利用加速度计反馈,还有些则使用电流反馈。在这两种情况下,当机器人感知到异常的力度时,触发紧急停止,从而确保安全。但是在机器人停止之前,你还是会被它撞到。因此最安全的环境是完全没有碰撞风险的环境,这就是接下来这个传感器的使命。 要想让工业机器人与人进行协作,首先要找出可以保证作业人员安全的方法。这些传感器有各种形式,从摄像头到激光等,目的只有一个,就是告诉机器人周围的状况。有些安全系统可以设置成当有人出现在特定的区域/空间时,机器人会自动减速运行,如果人员继续靠近,机器人则会停止工作。 最简单的例子就是电梯门上的激光安全传感器。当激光检测障碍物时,门会立即停止并倒退,以避免碰撞。在机器人行业里的大多数安全传感器也差不多是这样。 零件检测传感器 在零件拾取应用中,(假设没有视觉系统),你无法知道机器人抓手是否正确抓取了零件。而零件检测应用可以为你提供抓手位置的反馈。例如,如果抓手漏掉了一个零件,系统会检测到这个错误,并重复操作一次,以确保零件被正确抓取。

工业机器人复习重点(第二版)

机器人三大特征:1.拟人功能,机器人是模仿人或动物肢体动作的机器,能像人那样使用工具,因此数控机床和汽车不属于机器人;2.可编程,一般的电动玩具没有智力或具有感觉和识别能力,不能再编程,因此不能称为真正的机器人。3.通用性一般机器人在执行不同作业任务时,具有较好的通用性。比如,通过更换机器人末端操作器(手爪工具等)便可执行不同的任务。 机器人一词是1920年由捷克作家卡雷尔·恰佩克在他的讽刺剧《罗莎姆的万能机器人》中首先提出的。剧中描述了一个与人类相似,但能不知疲倦工作的机器人奴仆Robot。从那时起,robot一词就被沿用下来,中文翻译成机器人。 机器人按控制方式分类:1.操作机器人 2.程序机器人3.示教-再现机器人 4.数控机器人 5智能机器人。 按机器人关节连接布置形式分类:分为串联机器人和并联机器人。 五种坐标形式的机器人:1.直角坐标型机器人2.圆柱坐标型机器人3.球(极)坐标型机器人4.关节坐标型机器人5.SCARA型机器人。 工业机器人系统的组成:1.机械系统:工业机器人的机械系统包括机身,臂部,手腕。末端操作器和行走机构等部分,每一部分都有若干个自由度,构成一个多自由度的机械系统。2.驱动系统:主要是指机械系统动作的驱动装置。3控制系统:任务是根据机器人的作业指令程序及从传感器反馈回来的信号,控制机器人的执行机构,使其完成规定的任务和功能。4.感知系统:由内部传感器和外部传感器组成,其作用是获取机器人内部和外部环境信息,并把这些信息反馈给控制系统。 工业机器的技术参数:1自由度:是指机器人所具有的独立坐标轴运动的数目,不包括末端操作器的开合自由度。一般为3~6个。2.定位精度和重复定位精度:是机器人的两个精度指标。3.作业范围:机器人运动时手臂末端或手腕中心所能到达的所有点的集合,也称为工作区域。4最大工作速度。5.承载能力:指机器人在作业范围内的任何位姿上所能承受的最大质量。 逆运动学的特性:1.解可能不存在 2.解的多重性 3.求解方法的多样性。 工业机器人编程方式:1.机器人语言编程 2.示教编程 3.离线编程 机器人语言分为三级:1.动作级语言 MOVE TP 代表是VAL语言 2.对象级语言3.任务级语言焊接机器人种类:1焊接机器人 2.弧焊机器人3.点焊机器人:由机器人本体,焊钳,点焊控制箱,水(气)管路,焊钳修磨器夹具,循环水冷箱及相关电缆等组成。 驱动方式:液压驱动方式,气压驱动方式,电器驱动。 谐波齿轮传动的特点:(1)结构简单,体积小,质量小。(2)传动比范围大,单级谐波减速器传动比可在50—300之间,优选在75—250之间。(3)运动精度高,承受能力大。由于多齿啮合,与相同精度的普通齿轮相比,其运动精度能提高4倍左右,受载能力也大大提高。(4)运动平稳,无冲击,噪声小。(5)齿侧间隙可以调整。 摆线针轮传动减速器特点(RV):(1)如果传动机构置于行星架的主支承轴承内,那么,这种传动的轴尺寸将大大缩小。(2)采用二级减速机构时,处于低速的针摆动更加平稳。同时,转臂轴承因个数增多且内、外相对转速下降,其寿命可大大提高。(3)只要设计合理,就可获得很高的运动精度和很小的回差。(4)摆线针轮传动的输出机构是采用两端支承的尽可能大的刚性圆盘输出结构,比一般半仙减速器的输出机构具有更大的刚度,且坑冲性能也有很大提高。(5)传动比范围大。i=31—171.(6)传动效率高,η=0.85—0.92。 设计机身时要注意的问题:(1)机身要有足够的刚度、强度和稳定性。(2)运动要灵活,用于实现升降运动的导向套长度不宜过短,以避免发生卡死现象。(3)驱动方式要适宜。(4)结构布置要合理。 臂部实际得基本要求:(1)手臂应具有足够的承受能力和刚度。(2)导向性要好。(3)重量和转动惯量要小。(4)运动要平稳、定位精度要高。 手腕的分类:按自由度数目分类分单自由度手腕、二自由度手腕、三自由度手腕。 按驱动分类分直接驱动手腕、远距离传动手腕。 RPY:把手腕的回转成为Roll,俯仰称为Pitch,偏转称为Yaw。 手部定义:工业机器人的手部是装在工业机器人手腕上直接抓握工件或执行作业的部件。 手部特点:(1)手部与手腕相连处可拆卸。(2)手部是工业机器人的末端操作器。(3)手部的通用性比较差。(4)手部是一个独立的部件,假如把手腕归属于臂部,那么,工业机器人机械系统的三大件就是机身、臂部和手部。 手部分类:机械钳爪式手部结构(1)齿轮齿条移动式手爪(2)重力式钳爪(3)平行连杆式钳爪(4)拨杆杠杆式钳爪(5)自动调整式钳爪(6)特殊形式手指。 机器人控制方式:1.点位控制与连续轨迹控制2.力(力矩)控制方式3.智能控制方式4.示教-再现控制。5.2 单关节控制问题:由于机器人是耦合的非线性动力学系统,严格来说,各关节的控制必须考虑各关节之间的耦合作用,但对于工业机器人,通常还是按照独立关节来考虑。这是因为工业机器人运动速度不高(通常小于1.5m/s),由速度项引起的非线性作用可以忽略。另外,工业机器人常用直流伺服电动机作为关节驱动

工业机器人的传感器

工业机器人的传感器 一.工业机器人的感觉系统 工业机器人的传感器主要分为:1、工业机器人的感觉系统2 、工业机器人内部传感器3 、工业机器人外部传感器4 、工业机器人传感器应用 其中工业机器人的感觉系统的基本组成为:视觉、听觉、触觉、嗅觉、味觉、平衡感觉与其她,而工业机器人传感器按用途可分为内部传感器与外部传感器。其中内部传感器装在操作机上,包括位移、速度、加速度传感器,就是为了检测机器人操作机内部状态,在伺服控制系统中作为反馈信号。外部传感器,如视觉、触觉、力觉距离等传感器,就是为了检测作业对象及环境与机器人的联系。工业机器人传感器的一般要求有精度高、重复性好,稳定性与可靠性好,抗干扰能力强,质量轻、体积小、安装方便。其特定要求有适应加工任务要求,满足机器人控制的要求,满足安全性要求以及其它辅助工作的要求。 二.工业机器人内部传感器 在工业机器人内部传感器中,位置传感器与速度传感器,就是当今机器人反馈控制中不可缺少的元件。现已有多种传感器大量生产,但倾斜角传感器、方位角传感器及振动传感器等用作机器人内部传感器的时间不长,其性能尚需进一步改进。内部传感器功能分类有:

1)规定位置、规定角度的检测 检测预先规定的位置或角度,可以用开/关两个状态值,用于检测机器人的起始原点、越限位置或确定位置。 微型开关:规定的位移或力作用到微型开关的可动部分(称为执行器)时,开关的电气触点断开或接通。限位开关通常装在盒里,以防外力的作用与水、油、尘埃的侵蚀。 光电开关:光电开关就是由LED光源与光敏二极管或光敏晶体管等光敏元件组成,相隔一定距离而构成的透光式开关。当光由基准位置的遮光片通过光源与光敏元件的缝隙时,光射不到光敏元件上,而起到开关的作用 2)位置、角度测量 测量机器人关节线位移与角位移的传感器就是机器人位置反馈控制中必不可少的元件。 a)电位器 b)旋转变压器 c)编码器 3)速度、角速度测量 速度、角速度测量就是驱动器反馈控制必不可少的环节。 有时也利用测位移传感器测量速度及检测单位采样时间位移量,但这种方法有其局限性:低速时测量不稳定的危险;高速时,只能获得较低的测量精度。

机器人触觉传感器行业分析

机器人触觉传感器行业 传感器作为一种检测装置,通过接收被测量的信息,按一定规律变换成电信号或其他方式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化;它是实现自动检测和自动控制的首要环节。因为传感器的存在,让物体有了触觉、味觉和嗅觉等器官。随着物联网技术的发展,传感器在物联网发展中所扮演的角色越来越重要,目前传感器产品需求大幅增加,并且重心逐渐转向技术含量较高的MEMS 传感器领域,MEMS 传感器的精确度决定了所收集信息的品质。物联网2017 市场规模为1.16 万亿,同比增长26%;预计物联网的高增长将带来传感器市场的行业景气,2017 年传感器销售额125.71亿元,同比增长16%;预计2018 年传感器销售额将达到133.06 亿元。 触觉传感器的主要功能 检测功能 检测功能包括对操作对象的状态、机械手与操作对象的接触状态、操作对象的物理性质进行检测。 识别功能 识别功能是在检测的基础上提取操作对象的形状、大小、刚度等特征,以进行分类和目标识别。

触觉传感器的发展历程 70 年代国外的机器人研究已成热点,但触觉技术的研究才开始且很少。当时对触觉的研究仅限于与对象的接触与否接触力大小,虽有一些好的设想但研制出的传感器少且简陋。 80 年代是机器人触觉传感技术研究、发展的快速增长期,此期间对传感器设计、原理和方法作了大量研究,主要有电阻、电容、压电、热电磁、磁电、力、光、超声和电阻应变等原理和方法。从总体上看80 年代的研究可分为传感器研制、触觉数据处理、主动触觉感知三部分,其突出特点是以传感器装置研究为中心主要面向工业自动化。 90年代对触觉传感技术的研究继续保持增长并多方向发展。按宽的分类法,有关触觉研究的文献可分为:传感技术与传感器设计、触觉图像处理、形状辨识、主动触觉感知、结构与集成。 2002年,美国科研人员在内窥镜手术的导管顶部安装触觉传感器,可检测疾病组织的刚度,根据组织柔软度施加合适的力度,保证手术操作的安全。 2008年,日本Kazuto T akashima等人设计了压电三维力触觉传感器,将其安装在机器人灵巧手指端,并建立了肝脏模拟界面,外科医生可以通过对机器人灵巧手的控制,感受肝脏病变部位的信息,进行封闭式手术。 2009年,德国菲劳恩霍夫制造技术和应用材料研究院的马库斯-梅瓦尔研制出新型触觉系统的章鱼水下机器人,可精确地感知障碍物状况,可以自动完成海底环境的勘测工作。 触觉传感器分类 机器人感知能力的技术研究中,触觉类传感器极其重要。触觉类的传感器研究有广义和狭义之分。广义的触觉包括触觉、压觉、力觉、滑觉、冷热觉等。狭义的触觉包括机械手与

工业机器人的传感器培训课件

工业机器人的传感器

工业机器人的传感器 一.工业机器人的感觉系统 工业机器人的传感器主要分为:1.工业机器人的感觉系统2 .工业机器人内部传感器3 .工业机器人外部传感器4 .工业机器人传感器应用 其中工业机器人的感觉系统的基本组成为:视觉、听觉、触觉、嗅觉、味觉、平衡感觉和其他,而工业机器人传感器按用途可分为内部传感器和外部传感器。其中内部传感器装在操作机上,包括位移、速度、加速度传感器,是为了检测机器人操作机内部状态,在伺服控制系统中作为反馈信号。外部传感器,如视觉、触觉、力觉距离等传感器,是为了检测作业对象及环境与机器人的联系。工业机器人传感器的一般要求有精度高、重复性好,稳定性和可靠性好,抗干扰能力强,质量轻、体积小、安装方便。其特定要求有适应加工任务要求,满足机器人控制的要求,满足安全性要求以及其它辅助工作的要求。 二.工业机器人内部传感器在工业机器人内部传感器中,位置传感器和速度传感器,是当今机器人反馈控制中不可缺少的元件。现已有多种传感器大量生产,但倾斜角传感器、方位角传感器及振动传感器等用作机器人内部传感器的时间不长,其性能尚需进一步改进。内部传感器功能分类有:

1)规定位置、规定角度的检测 检测预先规定的位置或角度,可以用开/关两个状态值,用于检测机器人的起始原点、越限位置或确定位置。 微型开关:规定的位移或力作用到微型开关的可动部分(称为执行器)时,开关的电气触点断开或接通。限位开关通常装在盒里,以防外力的作用和水、油、尘埃的侵蚀。 光电开关:光电开关是由LED光源和光敏二极管或光敏晶体管等光敏元件组成,相隔一定距离而构成的透光式开关。当光由基准位置的遮光片通过光源和光敏元件的缝隙时,光射不到光敏元件上,而起到开关的作用 2)位置、角度测量 测量机器人关节线位移和角位移的传感器是机器人位置反馈控制中必不可少的元件。 a)电位器 b)旋转变压器 c)编码器 3)速度、角速度测量 速度、角速度测量是驱动器反馈控制必不可少的环节。有时也利用测位移传感器测量速度及检测单位采样时间位移量,但这种方法有其局限性:低速时测量不稳定的危险;高速时,只能获得较低的测量精度。 最通用的速度、角速度传感器是测速发电机或成为转速表

工业机器人的传感器

一.工业机器人的感觉系统 工业机器人的传感器主要分为:1.工业机器人的感觉系统2 .工业机器人内部传感器3 .工业机器人外部传感器4 .工业机器人传感器应用 其中工业机器人的感觉系统的基本组成为:视觉、听觉、触觉、嗅觉、味觉、平衡感觉和其他,而工业机器人传感器按用途可分为内部传感器和外部传感器。其中内部传感器装在操作机上,包括位移、速度、加速度传感器,是为了检测机器人操作机内部状态,在伺服控制系统中作为反馈信号。外部传感器,如视觉、触觉、力觉距离等传感器,是为了检测作业对象及环境与机器人的联系。工业机器人传感器的一般要求有精度高、重复性好,稳定性和可靠性好,抗干扰能力强,质量轻、体积小、安装方便。其特定要求有适应加工任务要求,满足机器人控制的要求,满足安全性要求以及其它辅助工作的要求。 二.工业机器人内部传感器在工业机器人内部传感器中,位置传感器和速度传感器,是当今机器人反馈控制中不可缺少的元件。现已有多种传感器大量生产,但倾斜角传感器、方位角传感器及振动传感器等用作机器人内部传感器的时间不长,其性能尚需进一步改进。内部传感器功能分类有: 1)规定位置、规定角度的检测

检测预先规定的位置或角度,可以用开/关两个状态值,用于检测机器人的起始原点、越限位置或确定位置。 微型开关:规定的位移或力作用到微型开关的可动部分(称为执行器)时,开关的电气触点断开或接通。限位开关通常装在盒里,以防外力的作用和水、油、尘埃的侵蚀。 光电开关:光电开关是由LED光源和光敏二极管或光敏晶体管等光敏元件组成,相隔一定距离而构成的透光式开关。当光由基准位置的遮光片通过光源和光敏元件的缝隙时,光射不到光敏元件上,而起到开关的作用 2)位置、角度测量 测量机器人关节线位移和角位移的传感器是机器人位置反馈控制中必不可少的元件。 a)电位器 b)旋转变压器 c)编码器 3)速度、角速度测量 速度、角速度测量是驱动器反馈控制必不可少的环节。有时也利用测位移传感器测量速度及检测单位采样时间位移量,但这种方法有其局限性:低速时测量不稳定的危险;高速时,只能获得较低的测量精度。 最通用的速度、角速度传感器是测速发电机或成为转速表的传感器、比率发电机。

列举工业机器人单元常用的各种传感器

列举工业机器人单元常用的各种传感器 在工业自动化领域,机器需要传感器提供必要的信息,以正确执行相关的操作。机器人已经开始应用大量的传感器以提高适应能力。例如有很多的协作机器人集成了力矩传感器和摄像机,以确保在操作中拥有更好的视角,同时保证工作区域的安全等。在此枚举一些常用的可以集成到机器人单元里的各种传感器,供诸君参考。 二维视觉传感器 二维视觉基本上就是一个可以执行多种任务的摄像头。从检测运动物体到传输带上的零件定位等等。二维视觉在市场上已经出现了很长一段时间,并且占据了一定的份额。许多智能相机都可以检测零件并协助机器人确定零件的位置,机器人就可以根据接收到的信息适当调整其动作。 三维视觉传感器 与二维视觉相比,三维视觉是最近才出现的一种技术。三维视觉系统必须具备两个不同角度的摄像机或使用激光扫描器。通过这种方式检测对象的第三维度。同样,现在也有许多的应用使用了三维视觉技术。例如零件取放,利用三维视觉技术检测物体并创建三维图像,分析并选择最好的拾取方式。 如果说视觉传感器给了机器人眼睛,那么力/力矩传感器则给机器人带去了触觉。机器人利用力/力矩传感器感知末端执行器的力度。多数情况下,力/力矩传感器都位于机器人和夹具之间,这样,所有反馈到夹具上的力就都在机器人的监控之中。 有了力/力矩传感器,像装配,人工引导、示教,力度限制等应用才能得以实现。 碰撞检测传感器 这种传感器有各种不同的形式。这些传感器的主要应用是为作业人员提供一个安全的工作环境,协作机器人最有必要使用它们。一些传感器可以是某种触觉识别系统,通过柔软的表面感知压力,如果感知到压力,将给机器人发送信号,限制或停止机器人的运动。 有些传感器还可以直接内置在机器人中。有些公司利用加速度计反馈,还有些则使用电流反馈。在这两种情况下,当机器人感知到异常的力度时,触发紧急停止,从而确保安全。

相关文档
最新文档