我国无机非线性光学晶体的发展历程讲课稿

我国无机非线性光学晶体的发展历程讲课稿
我国无机非线性光学晶体的发展历程讲课稿

我国无机非线性光学晶体的发展历程

我国无机非线性光学晶体的发展历程

作者:沈德忠院士

材料是人类社会生产力发展程度的重要标志。我们用“旧石器时代”、“新石器时代”、“铁器时代”等等来划分不同生产力发展阶段的历史时期。人工晶体也能起到划分时代的作用:水晶及其压电元件的研制成功,将人类带入无线电通讯的新时代;单晶硅及其集成电路的普及,标志着电子时代的到来;红宝石及其激光器的研制成功,预示着人类进入光电子时代。

水晶、单晶硅、红宝石都是人工晶体材料,这些人工晶体材料都已经产业化,在全世界大量生产。当然,这三种材料也只分别是压电材料、半导体材料、激光材料的代表。随着科技的不断发展,各领域的新材料不断涌现。例如激光材料,继首次实现激光输出的红宝石之后,又出现了激光性能更好的钇铝石榴石、钆镓石榴石、钒酸钇等激光晶体。但是,尽管新型激光晶体不断被研制出来,所输出的激光波长并没有覆盖从紫外到红外的整个光谱范围,而是多半集中在1064nm附近,这就大大制约了激光的应用。于是人们进一步研究、寻找具有改变激光频率特性的材料——非线性光学晶体,利用这类晶体进行倍频、和频、参量震荡等光学变换来获得从紫外到红外的激光输出。信息来自:https://www.360docs.net/doc/7316706501.html,

上世纪七、八十年代,能用作激光变频的无机非线性光学晶体只有石英、磷酸二氢钾、铌酸锂、以及铌酸钡钠等几种,这些晶体都有缺点。石英的有效非线性光学系数太小,频率转换效率极低;磷酸二氢钾不但非线性系数小,而且在空气中还易潮解;铌酸锂的非线性系数虽然比较大,但抗激光的损伤阈值很低,很容易被打坏,且透过波段在325-5500 nm范围,不能用紫外倍频;铌酸钡钠晶体十分难长,很难制备出高光学均匀性的单晶。所以在激光发明十多年后,其频率转换工作仍没有取得明显进展。

上世纪七十年代末,中科院物质结构研究所研制出新型非线性光学晶体——低温相硼酸钡(β-BaB2O4,简称β-BBO)[图1],该晶体有适中的非线性光学系数,不潮解、抗激光损伤能力强。透过波段较宽(190nm-3500nm),对1064nm激光可进行四、五倍频获得266nm、213nm的紫外激光输出。

图1、中科院物构所研制的β-BBO晶体

此后,南开大学与西南技术物理所合作,在铌酸锂晶体中掺入一定量的氧化镁,生长出掺镁铌酸锂晶体(Mg:LiNbO3,简称Mg:LN)[图2],将纯LN晶体的抗激光损伤阈值提高了两个数量级,拓宽了该晶体的应用领域。信息来自:https://www.360docs.net/doc/7316706501.html,

图2、南开大学研制的Mg:LN晶体

原建材部人工晶体研究所在上世纪七十年代进行了非线性光学晶体铌酸钾(KN bO3,简称KN)的研究。该晶体有较大的非线性系数,特别适用于半导体激光器输出的弱激光(毫瓦级)的变频。尽管该晶体十分难于生长,八十年代初,人工晶体所仍长出了尺寸为52×40×20mm3的多畴原晶[图3],极化后获得最大尺寸为32×18×11 mm3的单畴晶体。1990年美国 IBM公司的研究人员将KN用作半导体激光器输出的101毫瓦,波长为858nm的激光进行倍频,获39毫瓦的429nm蓝光输出,转换频率39% [图4] 。如果将KN用于新近出现的垂直腔面发射半导体激光器的变频,将会有更佳的效果。

图3、人工晶体研究所研制的KN晶体

图4、 IBM公司用KN进行半导体激光倍频(图中未展示出激光器) 我国这些非线性光学晶体的研制成功和突出的应用效果,在国际上引起很大的反响。1986年4月,美国48位材料科学家在马里兰州的安纳波利斯市召开了一个关于非线性光学材料的讨论会,在会上,与会专家首先对非线性光学晶体的重要性作了阐述,然后对当时能够接触到的较出色的激光频率转换材料进行了评估,认为中国研制的β-BBO是一种很有前途的新型非线性光学晶体,可是美国那时还没有可供使用的

β-BBO晶体;中国的掺镁铌酸锂基本上解决了抗激光损伤阈值低的问题,而当时美国还没有供利用的商品Mg:LN晶体;KN是一种可用于半导体二极管激光倍频的材料,但当时美国没有这种材料,并指出KN单晶的制备技术难度大,不易长出10×10×10 mm3的晶体。在此次会议上还对一种名为磷酸氧钛钾(KTiPO4,简KTP)的非线性光学晶体进行了评论,认为该晶体产生频率转化的阈值低,温度带宽大,对中功率激光的变频非常有前途,而那时美国能买到的KTP变频器的尺寸只有5×5×5 mm3,且价格昂贵。与会专家感到在非线性光学晶体领域,美国已经落在中国的后面。最后大会通过建议,呼吁美国政府制订有关发展非线性光学晶体的一揽子计划,加强研究队伍,在最初的十年内投资2-5千万美元,优先研制包括β-BBO、KN、KTP在内的五种非线性光学晶体(五种晶体中还有一种是山东大学研制成功的L-精氨酸盐,属有机非线性晶体)[1]下文拟对上面提到的那种适于中功率变频应用的优秀非线性光学晶体KTP做一些较详细的介绍。

磷酸氧钛钾(KTiPO4,简称KTP)晶体,是1971年法国R.Masse等人首先合成出来的。他们测试了KTP晶体的结构,指出该晶体中钛氧八面体畸变很大。以J.D. Bierlein为首的一批美国杜邦公司的科学家在这种背景下,选择了KTP来进行研究。信息来自:输配电设备网

在空气中KTP于1172℃分解,不能一致熔融,故不能用通常的晶体生长方法,如提拉法、坩埚下降法等方法来生长。只能将KTP熔于某种熔剂中产生过饱和,或是用助熔剂降低体系熔点来生长KTP单晶。Bierlein和Gier1976年获得的有关KTP 晶体的专利就使用水热法(将KTP在3000大气压,800℃下溶于KOH的水溶液中)来生长KTP。由于生长条件十分苛刻,用作生长容器的高压釜不可能做大(内径只有Φ9. 525mm,长152.4mm),长出的晶体宽度不可能大于9mm,中间还有籽晶。后来经过多年的改进,高压釜内径也未超过Φ40mm,考虑到生成态晶体存在包裹体、生长条纹等缺陷,晶体中间有籽晶,倍频器还要求固定的切向,故切出的器件尺寸仍然偏小。KTP在常压下的居里点是936℃,但在高压下,尽管生长温度低于800℃,长出的KTP仍然是多畴晶体,需要极化为单畴才能使用。信息来自:输配电设备网鉴于水热法生长KTP的诸多缺点,人们又尝试了熔剂法。杜邦公司的Gier,1 980年还获得了一份用熔剂法生长KTP的美国专利。用熔剂法生长KTP的困难在于熔体液面会产生自发结晶,这些自发结晶随着熔体的流动会粘到正在生长的晶体上,致使长出的KTP晶体是一簇多晶。Gier在那份专利中列举的效果最好的实施例也只长出

一簇多晶,其中最大的一颗晶粒尺寸为15×8×2 mm3,也没有多大的用处。[2]

除杜邦公司外,美国菲利浦公司的J.C.Jacco、G.M.Loiacono等人也用除水热法外的多种方法生长过KTP,但效果都不好。他们用顶部籽晶熔剂法生长KTP的结果是:“在所有情况下,都只得到由很小的平行取向的斜方形晶粒组成的多重结晶”。[3] 1982年6月,天津大学姚建铨教授在美国作了两年的访问学者后回到北京,趁下飞机转乘火车回天津作短暂停留之际,会见了人工晶体所有关研制非线性晶体的人员,介绍了他在美国期间,使用了一种名为KTP的非线性光学晶体,倍频转换效率比铌酸锂高得多,特别是光损伤阈值比铌酸锂高两个数量级,性能非常好。价格也相当贵:一块3×3×5mm3的KTP倍频器售价2750美元,对中国还实行禁运。他把在美期间的积蓄都凑上,想买一块带回国来,人家不卖。有一天,姚教授的老板作实验,不小心把一块KTP倍频器掉在实验台上打碎了。姚教授一看机会来了,便向他老板说:“你瞧,这块KTP已经摔碎了,给我一块碎片拿回去作作实验吧。”他的老板回答说:“不行。KTP是美国军方资助的项目,对共产党国家禁运。碎片也不许带出实验

室!”因此姚教授迫切希望人工晶体所能进行KTP晶体的生长。

晶体所的同志们被姚教授的爱国热情深深感动!对美国的禁运政策十分愤慨!便着手在他们生长铌酸钾的顶部籽晶熔剂法的工艺基础上进行革新,创造性地设计出一种特殊的、能够控制熔体液面自发结晶的顶部籽晶熔剂法。在研究组同志们的共同努力下,不到半年时间,就长出了尺寸达25×15×10mm3的高光学质量的KTP单晶。根据现在查到的有关KTP的文献和了解到的情况可知,这是国际上第一次用熔剂法长出可用于实际倍频的KTP单晶。此后山东大学用籽晶浸没法(即把籽晶插入熔体中进行晶体生长)也长出了KTP晶体。

人工所用特殊的顶部籽晶熔剂法生长的KTP晶体,籽晶在生成态晶体的外部,长出的是单晶,故利用率高。这种方法生长的KTP晶体Z向截面比较大,有利于波导的制备和电光应用[图5]。1987年,杜邦公司那位首获KTP专利的J.D.Bierlein,为开发KTP的波导应用,又苦于水热法生长的KTP晶体尺寸太小,特别是不能得到大Z截面的KTP晶片,于是向全世界寻求,挑来挑去,最后选中了人工所的KTP,并签订了购货合同。人工所每年向杜邦公司提供十万美元的Z切KTP片。当然,在合同敲定之前,我们打报告请示了当时的国家科委:美国此前对我国实行KTP禁运,现在他们反过来要购买我们的KTP晶体,我们能不能卖给美国?经过科委仔细研究后,由当时的汪宗荣司长代表科委作了答复:同意出售。这笔生意一直做到1996年J.D.Bierl

光学显微镜的发展历程

光学显微镜的发展历程 光学显微镜(简称显微镜),顾名思义是一种通过光学放大成像,显示物体微观结构的一种光学仪器,它由一个或多个透镜通过组合构成。显微镜成像是一种光的艺术,在配合各种不同的光源时,可形成各自不同类型的影像,演变形成了各种类型的显微镜。 1.单目生物显微镜(光学显微镜发展的初期阶段1.0) 显微镜发展初期,光学技术不发达,当时制成的显微镜为单光路直筒设计,只能使用一只目镜进行观察,因此常被称作单目显微镜。单目显微镜受当时的电子、机械、信息等技术的局限,通常具有以下几种特点:①采用反光镜反射自然光提供照明;②粗、细准焦螺旋采用分离式手轮;③载物台为单层结构,且不可移动。 早期影像技术还未起步,使得显微镜下的微观世界只能即时观察,若想把看到的微观世界呈现出来,与他人进行沟通交流,就需通过笔、纸把观察到的影像,以临摹的方式画出来,因此生物绘画就成了当时生物学工作者的一项必备技能。生物绘画要求观察者左眼进行观察,右眼辅助绘画,难度较高,绘画结果精度较低,且容易受到人为主观因素的影响而失真。 综上所述,在当时使用显微镜观察被认为是一项十分复杂的科学实验操作过程,操作人员需进行训练才能熟练使用显微镜,并获得较理想的结果。尽管如此,显微镜的出现,大幅拓宽了人类的观察范围,也使得微生物学、医学等学科取得了前所未有的进步。 2.双目生物显微镜(显微镜发展的第二阶段2.0)

由于使用单目生物显微镜时需将一只眼对准目镜,长时间观察极易疲劳。电灯的出现使得显微镜的照明得到大幅度改善,特别是光源的亮度充足且亮度还可不断提高,从而促使人们能够利用分光棱镜将物镜传上来的光信号一分为二,便于使用者通过两只眼睛进行观察,这样便大幅减轻眼睛负担,提高使用的舒适度,因此这种显微镜也被称作双目生物显微镜(图1-2)。双目生物显微镜除了具备双目观察筒外,得益于当时光学、电子技术、机械技术的发展,使得显微镜整体上有了较大的改进。 显微镜发展至这一阶段,是光学技术的快速发展时期,尤其是可控的电灯取代自然光使得显微镜的使用不再受自然环境以及地理位置的影响。另外由于电灯的多样化,以及各种滤光镜的运用,光学技术的进步,促使荧光显微镜、金相显微镜、偏光显微镜,倒置显微镜等多种类型显微镜得以面世。 3.三目生物显微镜(显微镜发展的第三阶段3.0) 光学成像效果取得重大进展之后,人们将显微镜改善的重点放在了显微图像的获取技术上。人们在双目光路信号进行再次分光,形成三目观察筒,然后将摄像采集器安装于三目观察筒上以获得显微图像。此后显微影像逐渐成为人们记录原始信息的重要手段。相比之前提及的显微绘画,这种获取显微画面的方式更精准、更高效,更先进。 4.数码液晶显微镜(显微镜发展的第四阶段4.0) 数码显微镜凭其能够实时显示及图像处理等优点,获得了广泛的应用,显微观察不再拘泥于传统双目观察筒。上一代显微镜要获得显

光学显微镜的发展历史

光学显微镜的发展历史、现状与趋势 杨拓拓 (苏州大学现代光学技术研究所,江苏苏州215000) 1基本原理 显微镜成像原理及视角放大率 显微镜由物镜和目镜组成。物体AB 在物镜前焦面稍前处,经物镜成放大、倒立的实像A'B',它位于目镜前焦面或稍后处,经目镜成放大的虚像,该像位于无穷远或明视距离处。 图1-1显微镜系统光路图 牛顿放大率公式: f f x x ''= 'x 是像点到像方焦点的距离,x 是物点到物方焦点的距离。 根据牛顿放大率公式可得物镜的垂轴放大率为 '1'1'11--f f x ?== β 目镜的视觉放大率为: '22250 f =Γ 组合系统的放大率为 '1f

'2'121250f f ? -=Γ=Γβ 显微镜系统的像方焦距 ?-=/'2'1'f f f '250 f = Γ 显微镜系统成倒像轴向放大率 '2'1'2'1/f f x x =β 若物点A 沿光轴移动很小的距离,则通过显微镜系统的像点'2A 将移动很大的距离,且移动 方向相同。 显微系统的角放大率 '2'1'2'1/x x f f =γ 即入射于物镜为大孔径光束,而由目镜射出为小孔径光束。 显微镜的孔径光阑 单组低倍显微物镜,镜框是孔径光阑。 复杂物镜一般以最后一组透镜的镜框作为孔径光阑。 对于测量显微镜,孔阑在物镜的象方焦面上,构成物方远心光路。 显微镜的视场光阑和视场 在显微物镜的象平面上设置了视场光阑来限制视场。由于显微物镜的视场很小,而且要求象面上有均匀的照度,故不设渐晕光阑。 显微镜是小视场大孔径成像,为获得大孔径并保证轴上点成像质量,显微镜线视场不超过物镜的1/20,线视场要求: 1'120202β?=≤f y

光学发展简史

课程名称:光学主讲教师:王丹专业班级: 14光电 学号 201430320311 姓名谢宇成绩: 光学发展简史 摘要:光学是一门古老的科学,从远古时期就已经开始有人研究光的学问;光学也是一门实用的科学,我们日常生活中的许多设备,技术都离不开光学的应用。回顾光学的发展史,更有利于学习和把握光学这门有趣的科学。 关键词:光学科学学习发展史 光学的发展,大体上可以分为五个时期——萌芽时期,几何光学时期,波动光学时期,量子光学时期和现代光学时期。 在萌芽时期,主要进行简单光学元件的制造和基础光学原理的研究。在此时期,先秦典籍已经记载了影的定义和生成,光的直线传播性和针孔成像等光学原理[1];这之后,西方的欧几里得研究了光的反射,叙述了光的反射角等于入射角。在11世纪,阿拉伯学者伊本·海赛木首次提出视觉是由物体发生的光辐射线引起的[2]。14世纪,波特研究了成像暗箱,即小孔成像原理。从15世纪末到16世纪初,凹面镜、凸面镜、眼镜、透镜以及暗箱和幻灯等光学元件相继出现,对光学的研究即将到达一个峰点——几何光学。 紧接着的几何光学时期,是光学真正成为一门科学的时期。从公元1590年到十七世纪初,詹森和李普希同时独立发明了显微镜。在1608年,荷兰的李普塞发明了第一架望远镜。光学仪器的相继问世,给光学的研究插上了助推器。17世纪初,开普勒创设大气折射理论,提出天体望远镜原理。从15世纪中叶到17世纪,斯涅耳和笛卡尔、费马等经过一系列研究总结出的光的反射定律和折射定律,基本奠定了几何光学的基础。此后,在十七世纪中后叶,牛顿发现太阳光折射光谱和“牛顿环”,创立了光的“微粒说”[3]。但从17世纪开始,光的直线传播原理已经不能解释一些实验现象:意大利人格里马首先观察到了光的衍射现象,接着,胡克和波意耳独立地研究了薄膜所产生的彩色条纹干涉。自此,光学

非线性光学晶体的研究现状

非线性光学晶体的研究现状 摘要 本文论述了近几年的非线性光学晶体的研究现状,重点介绍了非线性光学晶体中的两大类:无机非线性晶体和有机非线性晶体的研究现状。 关键字:非线性光学晶体;无机;有机;现状; 1.引言 1961年, Franken首次发现了水晶激光倍频现象。这一现象的发现,不仅标志着非线性光学的诞生, 而且强有力地促进了非线性光学晶体材料的迅速发展。 随着非线性光学的深入研究和新型材料的不断发展, 使得非线性光学晶体材料在信息通讯、激光二极管、图像处理、光信号处理及光计算等众多领域都具有极为重要的作用和巨大的潜在应用,这些研究与应用对非线性光学晶体又提出了更多更高的物理化学性能要求, 同时许多应用也还在层出不穷地发展中,正是由于非线性光学晶体有着如此广阔的应用前景以及这些应用可能带来的光电子技术领域的重大突破,所以寻找与合成性能优异的新型非线性光学晶体一直是一个非常重要的课题,成为该领域人们关注的热点之一。 2.无机非线性光学晶体 无机非线性光学晶体是人们研究得较早的非线性光学材料, 大致可分为:(1)无机盐类晶体,包括硼酸盐、磷酸盐、碘酸盐、铌酸盐、钛酸盐等盐类晶体;(2)半导体型非线性光学晶体, 如Te、Se、GaAs、ZnSe、CdGeAs2 和CdGe(As1-xP)2等。随着激光科学与技术的不断发展,在频率转换方面,无机非线性光学晶体材料起着越来越重要的作用,下面我简单介绍几种。 (1)Cr : KTP晶体 晶体磷酸钦氧钾(KITOPO4,KTP )是一种具有优良性能的非线性光学晶体,具有非线性光学系数大, 透光波段宽,化学性能稳定,耐高温等特性.现已广泛地被用于激光频率转换领域.近些年来,随着光电子技术的发展,人们对掺杂KTP型晶体进行了多方面的研究,已形成了一系列KTP晶体家族.掺入有价值的稀土离子并使其符合发光要求,可获得激光自倍频晶体.1990年,LinJT首次简单地报道了Cr: KTP晶体实现激光自倍频运转情况. Cr : K T P 晶体的荧光发射波段为8 00-8 50n m, 可望在自倍频后转换成波长为400-425nm的蓝色激光输出.但Cr: K T P晶体对蓝光有较强的吸收, 可采用晶体的定向生长方法来加以弥补.波长800-850nm 的基频光, 远小于KTP晶体的n类位相匹配的截止波长(1000nm左右), 因此, 当Cr :KTP晶体自倍频时, 只能使用I类位相匹配,而I类相匹配的有效非线性光学数相当小.但随着对KTP晶体应用研究的深入,特别是它在光波导领域中的应用,人们已成功地研制出多种新的位相匹配技术,如准位相匹配技术,实现了高效率I类倍频转换,输出波长范围为380-480nm,效率已超过50 % /w·cm2, 这些新的应用技术的发明,为进一步研究Cr:KTP晶体的激光自倍频效应展示出广阔的应用前景。 (2)AgGaS2 和AgGaSe2 晶体 AgGaS2 属于黄铜矿结构的晶体,点群42m。其透过范围从0.53 ~12μm。尽管它是以上提到的所有红外晶体中非线性光学参数最小的,但由于它达到550 nm的超短波透明性, 可用在Nd:YAG激光器泵浦的OPO中以及使用二氧化碳、Ti:蓝宝石、Nd:YAG与IR 染料,波长范围3-12μm的激光器的各种不同混频试验中。它还应用于直接对抗红外系统和CO2激光器的SHG。 AgGaSe2 也属于黄铜矿结构。具有0.73 ~18μm的透过波段范围。它的有效传输范围是0.9 ~16 μm,当使用各种现行常用的激光器泵浦时,其相位匹配范围大的特点使其应用到OPO中具有很大潜力;当使用波长2.05μm的Ho:YLF激光器泵浦时, 波长在 2.5 ~

光学发展史

光学发展史 光科1001班曲东雪 10272017 摘要:光学的主要光学(optics)是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。光学的起源在西方很早就有光学知识的记载,但是光学真正形成一门科学,应该从建立反射定律和折射定律的时代算起。其发展主要经历了萌芽时期,几何光学时期,波动光学时期和量子光学时期四个阶段。人们通常把光学分成几何光学、物理光学和量子光学来研究。 关键词:光学的定义;光学的历史发展;光学研究内容 Optical Development History Abstract: optical main optical ( Optics ) is the study of light ( electromagnetic waves) behavior and properties, as well as the interaction of light with matter of physics. Optics origin in the West have long optical knowledge records, but the optical true to form a science, should from build reflection law and refraction law era. Its development mainly experienced budding period, geometrical optics, wave optics and quantum optics in four stages: the period of. People usually put on optical geometric optics, physical optics and quantum optics research. Key words: optical definition; optical historical development; optical research content 光学定义 光学(optics),是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。光学既是物理学中最古老的一个基础学科,有事当前科学研究中最活跃的前沿阵地,具有强大的生命力和不可估量的前途。光学的发展过程是人类认识客观世界的进程中一个重要的组成部分,是不断揭露矛盾和克服矛盾、从不完全和不确切的认识总部走向较完善和较确切认识的过程。它的不少规律和理论是直接从欧美和生产实践中总结出来的,也有相当多的发现来自长期的系统的科学实验。光学的发展为生产技术提供了许多精密、快速、的衡东的实验手段和重要的理论依据;而圣餐技术的发展,又反过来不断向光学提出许多要求解决的新课题,并为进一步深入研究光学准备了物质条件。 光学的起源在西方很早就有光学知识的记载,欧几里得(Euclid,公元

非线性光学材料小结

非线性光学材料 一、概述 20 世纪60 年代, Franken 等人用红宝石激光束通过石英晶体,首次观察到倍频效应,从而宣告了非线性光学的诞生,非线性光学材料也随之产生。 定义:可以产生非线性光学效应的介质 (一)、非线性光学效应 当激光这样的强光在介质传播时,出现光的相位、频率、强度、或是其他一些传播特性都发生变化,而且这些变化与入射光的强度相关。 物质在电磁场的作用下,原子的正、负电荷中心会发生迁移,即发生极化,产生一诱导偶极矩p 。在光强度不是很高时,分子的诱导偶极矩p 线性正比于光的电场强度E。然而,当光强足够大如激光时,会产生非经典光学的频率、相位、偏振和其它传输性质变化的新电磁场。分子诱导偶极矩p 就变成电场强度E 的非线性函数,如下表示: p = α E + β E2 + γ E3 + ?? 式中α为分子的微观线性极化率;β为一阶分子超极化率(二阶效应) ,γ为二阶分子超极化率(三阶效应) 。即基于电场强度E 的n 次幂所诱导的电极化效应就称之为n 阶非线性光学效应。 对宏观介质来说, p = x (1) E + x(2) E2 + x (3)E3 + ?? 其中x (1) 、x(2) 、x(3) ??类似于α、β、γ??,表示介质的一阶、二阶、三阶等n 阶非线性系数。因此,一种好的非线性光学材料应是易极化的、具有非对称的电荷分布的、具有大的π电子共轭体系的、非中心对称的分子构成的材料。另外,在工作波长可实现相位匹配,有较高的功率破环阈值,宽的透过能力,材料的光学完整性、均匀性、硬度及化学稳定性好,易于进行各种机械、光学加工也是必需的。易于生产、价格便宜等也是应当考虑的因素。 目前研究较多的是二阶和三阶非线性光学效应。 常见非线性光学现象有: ①光学整流。E2项的存在将引起介质的恒定极化项,产生恒定的极化电荷和相应的电势差,电势差与光强成正比而与频率无关,类似于交流电经整流管整流后得到直流电压。 ②产生高次谐波。弱光进入介质后频率保持不变。强光进入介质后,由于介质的非线性效应,除原来的频率ω外,还将出现2ω、3ω、……等的高次谐波。1961年美国的P.A.弗兰肯和他的同事们首次在实验上观察到二次谐波。他们把红宝石激光器发出的3千瓦红色(6943埃)激光脉冲聚焦到石英晶片上,观察到了波长为3471.5埃的紫外二次谐波。若把一块铌酸钡钠晶体放在1瓦、1.06微米波长的激光器腔内,可得到连续的1瓦二次谐波激光,波长为5323埃。非线性介质的这种倍频效应在激光技术中有重要应用。 ③光学混频。当两束频率为ω1和ω2(ω1>ω2)的激光同时射入介质时,如果只考虑极化强度P的二次项,将产生频率为ω1+ω2的和频项和频率为ω1-ω2的差频项。利用光学混频效应可制作光学参量振荡器,这是一种可在很宽范围内调谐的类似激光器的光源,可发射从红外到紫外的相干辐射。 ④受激拉曼散射。普通光源产生的拉曼散射是自发拉曼散射,散射光是不相干的。当入射光采用很强的激光时,由于激光辐射与物质分子的强烈作用,使散射过程具有受激辐射的性质,称受激拉曼散射。所产生的拉曼散射光具有很高的相干性,其强度也比自发拉曼散射光强得多。利用受激拉曼散射可获得多种新波长的相干辐射,并为深入研究强光与

非线性光学晶体现状及发展趋势

非线性光学晶体现状及发展趋势作者:赵斌 沈德忠、王晓洋、陈建荣 (中材人工晶体研究院) 前言 非线性光学晶体是重要的光电信息功能材料之一,是光电子技术特别是激光技术的重要物质基础,其发展程度与激光技术的发展密切相关。 非线性光学晶体材料可以用来进行激光频率转换,扩展激光的波长;用来调制激光的强度、相位;实现激光信号的全息存储、消除波前畴变的自泵浦相位共轭等等。所以,非线性光学晶体是高新技术和现代军事技术中不可缺少的关键材料,各发达国家都将其放在优先发展的位置,并作为一项重要战略措施列入各自的高技术发展计划中,给予高度重视和支持。 伴随着激光技术从上世纪六十年代发展至今,非线性光学晶体也得到长足的发展,从最初的石英倍频晶体开始,不断涌现出铌酸锂(LiNbO3—LN)、磷酸二氢钾(KH2PO4—KDP)、磷酸二氘钾(KD2PO4—DKDP)、碘酸锂(LiIO3—LI)、磷酸氧钛钾(KTiOPO4—KTP)、偏硼酸钡(-BaB2O4—BBO)、三硼酸锂(LiB3O5—LBO)、铌酸钾(KNbO3—KN)、硼酸铯(CSB3O5—CBO)、硼酸铯锂(LiCSB6O10—CLBO)、氟硼酸钾铍(KBe2BO3F2—KBBF)以及硫银镓(AgGaS2—AGS)、砷镉锗(CdGeAs—CGA)、磷锗锌(ZnGeP2—ZGP)等非线性光学晶体,广泛应用于激光倍频、和频、差频、光参量放大以及电光调制、电光偏转等。比较有代表的例子是:用LN制作的光波导器件及调制器件,已广泛应用于光通讯;利用KTP晶体的商业内腔倍频YAG激光器,其绿光输出可达几百瓦;用CBO和频的YAG三倍频激光器,355nm输出已达17.7瓦;用CLBO四倍频的YAG激光器,266nm紫外光输出已达42瓦;用KBBF直接六倍频已获177.3nm的深紫外激光;使用KTP、BBO、LBO的光参量振荡器,其调谐范围覆盖了可见光到4.5m波段,并实现单纵模运转。 就非线性光学晶体、器件及应用整个领域的科技水平来看,发达国家如美国、英国等居于世界前列,从最初的原理提出、新材料的探索、器件的开发,他们都作出了重要的贡献。在非线性晶体材料的生产上,日本、中国、和前苏联的一些国家如俄罗斯、乌克兰、立陶宛等,占有重要的地位,而美国和欧洲一些国家则主要侧重于非线性晶体器件及设备的制造。我国在非线性光学晶体领域占有重要的地位。 一、中国在本领域的世界地位 我国无论在非线性光学晶体的学术研究还是产业化方面,都在国际上有着重要的影响,特别是在可见、紫外波段非线性晶体的研究方面一直处于领先水平,受到世界瞩目。我国在非线性晶体领域最主要的成就是(1)发明了掺镁LiNbO3晶体,通过掺杂使得LiNbO3的抗损伤阈值提高了两个数量级以上,大大开拓了铌酸锂晶体的应用领域;(2)在硼酸盐系列中发现并研制出- BBO、LBO、CBO、KBBF等一系列性能优异的紫外非线性光学晶体,开创了紫外激光倍频的新纪元,使得人类不断向固体紫外激光的极限推进;(3)首次在国际上用溶剂法生长出可实际应用的KTP大单晶,并实现产业化,使KTP晶体在全世界得到普遍的应用,促进了激光技术的发展。(4)主导了周期、准周期极化人工微结构非线性光学晶体材料的研究和实验验证,开拓了非线性光学晶体的新领域。 我国多种非线性光学晶体的生长技术居国际先进水平,国外已有的所有晶体生长方法我国都有,几乎所有重要的非线性光学晶体都已生长出来,一些重要晶体满足了国内重大工程需求,一批高技术晶体已成为商品,在国际上享有盛誉。

现代光学的发展历程

现代光学的发展 众所周知,因为有了光,人们才能看见这个色彩斑斓的世界,才能在这世界上生存。因此在我们的生活中有许许多多的光现象及其应用的产生。无论是建造艺术,还是雕塑、绘画及舞蹈艺术等众多领域都离不开光的存在,也因为有了光的存在,使其更加的炫目夺人。 那么,光在于现代是如何发挥它对人类的作用的呢?而光又是如何发展成 为现代光学呢? 20世纪中叶随着新技术的出现,新的理论也不断发展,由于光学的应用十 分广泛,已逐步形成了许多新的分支学科或边缘学科。几何光学本来就是为设 计各种光学仪器而发展起来的专门学科,随着科学技术的进步,物理光学也越 来越显示出它的威力,例如光的干涉目前仍是精密测量中无可替代的手段,衍 射光栅则是重要的分光仪器,光谱在人类认识物质的微观结构(如原子结构、分 子结构等)方面曾起了关键性的作用,人们把数学、信息论与光的衍射结合起来, 发展起一门新的学科——傅里叶光学把它应用到信息处理、像质评价、光学计 算等技术中去。特别是激光的发明,可以说是光学发展史上的一个革命性的里 程碑,由于激光具有强度大、单色性好、方向性强等一系列独特的性能,自从 它问世以来,很快被运用到材料加工、精密测量、通讯、测距、全息检测、医 疗、农业等极为广泛的技术领域,取得了优异的成绩。此外,激光还为同位素 分离、储化,信息处理、受控核聚变、以及军事上的应用,展现了光辉的前景。 光学是物理学的一个分支, 是一门古老的自然学科, 已经有数千年发展历 史。在十七世纪前后, 光学已初步形成了一门独立的学科。以牛顿为代表的微 粒说和与之相应的几何光学;以及以惠更斯为代表的波动说和与之相应的波动 光学构成了光学理论的两大支柱。到十九世纪末, 麦克斯韦天才地总结和扩充 了当时已知的电磁学知识, 提出了麦克斯韦方程组, 把波动光学推到了一个更 高的阶段。然而, 人们对光的更进一步的认识是与量子力学和相对论的建立分 不开的。一方面, 十九世纪及其以前的光学为这两个划时代的物理理论的建立 提供了依据。另一方面, 这两个理论的建立, 更加深了人类对光学有关现象的 深入了解。从十七世纪到现在,光学的发展经历了萌芽时期、几何光学时期、 波动光学时期、量子光学时期、现代光学时期等五大历史时期。

我国光学加工技术的发展历史

我国光学加工技术的发展历史 发布日期:2008-03-05 我也要投稿!作者:网络阅读:[ 字体选择:大中 小 ] 我国光学仪器的加工技术,虽然有较长历史但形成批量生产并具有完整的工艺是在新中国成立后。光学冷加工工艺在解放前虽然已有所采用,但缺乏完整性。解放后经过光学行业各方面人士及职工的努力,方逐步形成了较完善的加工方法。 五十年代初期,光学行业的设备陈旧,工艺落后。进入第一个五年计划后,加工工艺主要是采用“苏联”的工艺,设备也是由苏联引的和按“苏联”图纸制造的专用设备,二十世纪六十年代初期,国内个别厂家由德国引进了先进设备(如铣磨机和光学对中心磨边机),受到这些设备的启示,国内在六十年代中期开始工艺科研和研制新设备。首先进行的是研究粗磨机机械化和设计粗磨机,由于设备和工艺的改进,加工效率有很大的提高,但是后来受政治形势的影响,光学工艺的革新受到冲击,刚见成效的工艺革新,就此停止。 二十世纪七十年代中期,对光学冷加工技术改造和技术革新提出了“四化”目标,即毛坯型料化、粗磨机械化、精磨高速化、定心磨边自动化。经过努力,这些目标全部在二十世纪八十年代初基本实现了。 光学工业实现了光学冷加工“四化”,为军转民生产光学仪器奠定了有力基础。二十世纪八十年代针对当时民用光学仪器生产,又提出了光学零件制造的新四化,即抛光高速化,清洗超声化,辅助工序机械化和辅料商品化。“新四化”,虽然受到了管理体制改变的影响,在研制设备和进行工艺科研的时间和深度不够理想,但全部实现了。二十世纪八十年代重点是对光学加工机理和工艺因素的研究和探讨,通过科研人员和课题组的努力,均取得了理想的科研成果。在光学零件的定摆磨削和光学零件加工中不同牌号玻璃与不同结合剂的丸片之间的合理匹配都在光学加工方面有了突破,引起光学界的重视。这些科研的成果对光学加工工业起了重要作用,为了我们进一步提高光学加工的科研水平,奠定了雄厚的基础,为新的创新开辟了道路。 二十世纪八十年代是我们光学技术和工艺科研硕果累累的时期。不但在光学加工的基础理论方面,而在加工设备,加工工艺,加工模具,以及辅料等方面都取得了可喜成果。如光学加工机理,光学零件加工工艺因素,光敏胶,PH值稳定剂,光学导电膜,易腐蚀玻璃保护膜;PJM-320平面精磨机,QJM220球面精磨机,QJP-100与QJP-40光学中球面与小球面精磨抛光机;光学零件复制法;光学零件超声清洗代替清擦,光学零件真空吹塑包装以及自聚焦透镜制造等等,真是不胜枚举。这些科研成果,不但通过了部级鉴定,而且均获得子部级奖励或国家发明将。进入九十年代后,在中国光学行业有了更大的进展,这是由于光学产品出口,光学工艺也随着有了更大的改变和进展。我们采用了几十年的成盘加工工艺受到了冲击,而单件光学加工在光学批量生产中占据了统治地位。 本世纪初,我国光学制造业已取得了辉煌的成果,进入了发展的高峰,已形成了很强的生产能力。据有数字统计的资料,我国光学制造能力已超过了五亿件/年,当然这不包括,一些小型民办企业的生产能力。在亚洲也好,在世界上也好,中国光学冷加工的能力应当是名列前茅的,但我们的技术水平却是比较落后。主要是表现在不能大批量生产高精度元器件,大部分企业不能长期稳定生产,不能制造高精度的特种光学零件。造成此种现象的原因:a.执行工艺规程不够b.没有专门工艺研究和工艺设备的研究开发单位c.没有行业法规d.没有软件贸易企业,没有“光学工程”的承包单位。 光学加工设备和光学工艺的发展是分不开的。孔夫子说过“工欲善其事,必先利其器”。

现代光学的基础

费马原理是一个描述光线传播行为的原理:光线沿光程为平稳值的路径传播。即: ? -P Q ds r n 平均值)( 数学表达式:? ==P Q l L ds r n QP L )()()( 0)(L 0)(==?l ds r m P Q δ或 2. 光程性原理求由聚光纤维薄片制成的微透镜焦距公式 利用物像等光程性有 ()(' ' QOQ L QMQ L = 2 2' 2 2 ' ' ')()()(h x n h s n MQ n QM n QMQ L +?-++?+=+= x n ns QOQ L ' ' )(+= 由于是薄片微透镜,所以x r s ,,<

??? ?? ????? ???=??=????-=??=??t E H H t H E E 0 00 0εεμμ 平面波 )cos(),(0?ω-?-=r k t A t r U )0设(),(0~ =?=?-??t k i r k i e Ae t r U 复振幅 ) cos cos (cos ) (~ ,U z y x ik z k y k x k i r k i Ae Ae Ae t r z y x γβα++++?===)( 球面波 )cos(),(01?ω-?-= r k t r a t r U )0(),(01~ =?= -??ω设t i r k i e e r a t r U 复振幅2 222 2 2 1 1~ )(z y x k i r ik e z y x a e r a P U ++??++= = )(发散球面波 2 221~ )(z y x r e r a P U r ik ++== ?-, )(汇聚球面波 2 02 02 01 ~ )()()()(z z y y x x r e a P U r ik -+-+-= = ?±,(轴外源点) 平面波 波前函数 ((z=0)平面上)x ik Ae y x U θsin ~ ),(= 球面波 波前函数 ①2 221~ ),(r y x r e r a y x U r ik ++== ?,(发散球面波) ②2 2 2 1~ r ),(++= = ?-y x r e r a y x U r ik ,(汇聚球面波) 例题:已知一列波长为λ的光波在(x ,y )接受面上的波前函数为 fx i Ae y x U π2~ ),(-=其中常量f 的单位为1 -mm ,试分析与波前函数相 联系的波的类型与特征。 解:由上式可见该波前因子是一个线性相因子,故可断定它代表了一列平面波,为了进 一步确定该平面波的传播方向,现将波前函数改写为含波数k 的形式

现代科学革命的发展历程

现代科学革命的发展历程 现代科学技术革命不仅极大地推动了人类社会经济、政治领域的变革,也影响了人类生活方式、思维方式的发展。 一、现代科学革命的产生 (一)科学革命的含义 科学的任务是不断探求和系统总结关于客观世界的知识。科学的发展表现为渐进与飞跃两种基本形式的辩证统一。科学发展的渐进形式是科学进化,即人类对客观世界规律性的认识没有突破原有科学的规范和框架。如某些新规律的发现,原有理论的局部修正或者拓宽和深化。科学发展的飞跃形式是科学革命。科学革命是指人类对客观世界规律性的认识发生具有划朝代意义的飞跃,从而引起科学观念、科学研究模式以及科学研究活动方式的根本变革。 科学革命这一概念是由英国剑桥大学教授H·巴特菲尔德在《近代科学的起源》一书中第一次在一般性意义上加以使用的。(H·巴特菲尔德,张丽萍等译。《近代科学的起源》华夏出版社,1988年,第157~159页。)他把“科学革命“看作是比文艺复兴和宗教改革更为重要的决定近代特征的划时代事件。从这以后,无论是科学家还是哲学家,都很重视从理论上来研究科学革命及其在历史上的作用。

对于自然科学,人们可以理解为关于自然的系统知识,也可以理解为探索自然的方法,还可以理解为人类社会活动的一个特定领域。就科学作为系统知识来说,任何一门学科的概念、结构、范式的变化都可以视为该学科的一场革命;就科学作为人类活动来说,任何研究活动组织方式的变革也都可以看作是科学革命。因此,由于角度的不同,人们对自然科学史上所发生的科学革命有二次说、三次说、四次说和多次说等不同认识,以主张三次说的较为普遍。实际上,科学革命的实质,是指包括科学事实、科学理论、科学观念三个基本要素组成的科学知识结构体系的根本变革,其中作为体系硬核的科学观念居于最高层次,它代表着一个时代科学思想的精华,为科学理论活动和实践活动提供基本准则和框架。因此,只有相对稳定的科学观念发生根本变革,并在科学共同体中得到确认,才能构成科学革命。著名科学史和科学学家J·D·贝尔纳认为:“许多科学观念的改变就总合成为一场科学革命。”(贝尔纳。《历史上的科学》,科学出版社,1981年,第210页。) 从科学发展史来看,科学革命的发生往往从个别学科首先突破,产生新的、能更全面更正确地说明自然界规律性的、反传统的科学观念。它一旦成立,便迅速向其他科学知识体系全面渗透,使旧的知识体系被逐步改造而向新的知识体系过渡,最后的科学共同体中得到确认。因此,具有崭新科学观念的理论的提出并被科学共同体所容纳是科学革命发生的标志。

光学发展简史

光学发展简史-萌芽时期 中国古代光学萌芽及发展 中国古代对光的认识是和生产、生活实践紧密相连的。它起源于火的获得和光源的利用,以光学器具的发明、制造及应用为前提条件。根据籍记载,中国古代对光的认识大多集中在光的直线传播、光的反射、大气光学、成像理论等多个方面。 光的直线传播 1、对光的直线传播的认识早在春秋战国时 《墨经》已记载了小孔成像的实验:“景,光之人, 煦若射,下者之人也高;高者之人也下,足蔽下光, 故成景于上,首蔽上光,故成景于下……”。指出小 孔成倒像的根本原因是光的“煦若射”,以“射”来 比喻光线径直向、疾速似箭远及他处的特征动而准 确。 宋代,沈括在《梦溪笔谈》中描写了他做过的一个实验,在纸窗上开一个小孔,使窗外的飞鸢和塔的影子成像于室内的纸屏上,他发现:“若鸢飞空中,其影随鸢而移,或中间为窗所束,则影与鸢遂相违,鸢东则影西,鸢西则影东,又如窗隙中楼塔之影,中间为窗所束,亦皆倒垂”。进一步用物动影移说明因光线的直进“为窗所束”而形成倒像。 2、对视觉和颜色的认识对视觉在《墨经》中已有记载:“目以火见”。已明确表示人眼依赖光照才能看见东西。稍后的《吕氏春秋·任数篇》明确地指出:“目之见也借于昭”。《礼记·仲尼燕居》中也记载:“譬如终夜有求于幽室之中,非烛何见?”东汉《潜夫论》中更进一步明确指出:“夫目之视,非能有光也,必因乎日月火炎而后光存焉”。以上记载均明确指出人眼能看到东西的条件必须是光照,尤其值得注意的是认为:光不是从眼睛里发出来的,而是从日、月、火焰等光源产生的。这种对视觉的认识是朴素、明确、比较深刻的。 颜色问题,在中国古代很少从科学角度加以探索,而着重于文化礼节和应用。早在石器时代的彩陶就已有多种颜色工艺。《诗经》里就出现了数十种不同颜色的记载。周代把颜色分为“正色”和“间色”两类,其中“正色”是指“青、赤、黄、白、黑五色”。“间色”则由不同的“正色”以不同的比例混合而成。战国时期《孙子兵法·势篇》更指出:“色不过五,五色之变不可胜观也”。可见这“正色”和“间色”的说法,与现代光学中的“三原色”理论很类似,但缺乏实验基础。清初博明对颜色提出”五色相宣之理,以相反而相成。如白之与黑,朱之与绿,黄之与蓝,乃天地间自然之对,待深则俱深,浅则俱浅。相杂而间,色生矣”(《西斋偶得三种》)。这里孕育了互补色的初步概念,虽未形成一定的颜色理论,但从半经验半思辨的角度看也实在是难能可贵的。 3、光的反射和镜的利用中国古代由于金属冶炼技术的发展,铜镜在公元前2000年夏初的齐家文化时期已经出现。后来随着技术的发展,古镜制作技术逐渐提高,应

光学显微镜的发展历史

杨拓拓 (苏州大学现代光学技术研究所,江苏苏州215000) 1基本原理 显微镜成像原理及视角放大率 显微镜由物镜和目镜组成。物体AB 在物镜前焦面稍前处,经物镜成放大、倒立的实像A'B',它位于目镜前焦面或稍后处,经目镜成放大的虚像,该像位于无穷远或明视距离处。 图1-1显微镜系统光路图 牛顿放大率公式: f f x x ''= 'x 是像点到像方焦点的距离,x 是物点到物方焦点的距离。 根据牛顿放大率公式可得物镜的垂轴放大率为 '1'1'11--f f x ?== β 目镜的视觉放大率为: '22250 f =Γ 组合系统的放大率为 '2'121250f f ? -=Γ=Γβ 显微镜系统的像方焦距 ?-=/'2'1'f f f '250 f = Γ 显微镜系统成倒像轴向放大率 ' 1 f

'2'1'2'1/f f x x =β 若物点A 沿光轴移动很小的距离,则通过显微镜系统的像点'2A 将移动很大的距离,且移动 方向相同。 显微系统的角放大率 '2'1'2'1/x x f f =γ 即入射于物镜为大孔径光束,而由目镜射出为小孔径光束。 显微镜的孔径光阑 单组低倍显微物镜,镜框是孔径光阑。 复杂物镜一般以最后一组透镜的镜框作为孔径光阑。 对于测量显微镜,孔阑在物镜的象方焦面上,构成物方远心光路。 显微镜的视场光阑和视场 在显微物镜的象平面上设置了视场光阑来限制视场。由于显微物镜的视场很小,而且要求象面上有均匀的照度,故不设渐晕光阑。 显微镜是小视场大孔径成像,为获得大孔径并保证轴上点成像质量,显微镜线视场不超过物镜的1/20,线视场要求: 1 '120202β?=≤f y 显微镜的分辨率和有效放大率 光学仪器分辨率 瑞利判据:两个相邻的“点”光源所成的像是两个衍射斑,若两个等光强的非相干点像之间的间隔等于艾里圆的半径,即一个像斑的中心恰好落在另一个像斑的第一暗环处,则这两个点就是可分辨的点。当物面在无穷远时,以两点对光学系统的张角可表示两分辨点的距离,其值为:

现代光学前沿

2015 年 春 季学期研究生课程考核 (读书报告、研究报告) 关于玻色爱因斯坦凝聚的研究综述 1. 概念 设在体积为V 的容器中存在由N 个同种玻色粒子组成的理想气体。理想玻色气体处于热平衡状态时服从玻色—爱因斯坦统计。如果以n (εi) 表示热平衡时处于能级εi 的某一量子态中的平均粒子数,则n (εi ) 可表示为 ()1 (1) i i KT n e εμε-=- 式中μ为粒子的化学势,对于玻色系统它要满足μ≤0; k 为玻耳兹曼常量。系统的总粒子数为 ()() 11i i i i KT N n e εμε-==-∑∑ 用N0表示处于最低能级(ε0 = 0) 的粒子数,用N ′表示处于较高能级中的粒子数,则总粒子数可表为 0N N N =+' 而001KT N G e μ=- 其中G 0 为ε0 = 0 能级的微观态数,可设G 0 = 1。 0()11i i KT N e εμ≠-='-∑ 应对εi ≠0 的所有微观态求和。 利用上式,近似地用积分代替求和,并考虑到函数的单调性可知,在某一特定的温度, N ′有一个上限Nmax ,则 32max 22() 2.612mkT N SV N h π≤?=' 式中S 表示粒子的一个空间运动状态对应S 个不同的自旋态, m 为玻色子的质量,h 为普朗克常量。这个特定的温度称为临界温度,用TC 表示。当T < TC 时,N ’( T) < N ,其余的N – N ’( T)个粒子都进入到最低能级(ε0 = 0) 中去。此时可推得

32 ()c T N N T =' 032][1()c T N N T =- 这个结果表明:当系统的温度低于临界T C 时,粒子将迅速在最低能级集结,使N 0 成为与N 可以比拟的量,若T = 0,则N 0 = N ,即全部粒子都转移到最低能级,这个现象就是玻色—爱因斯坦凝聚。 2. 国内外研究动态 早在1924 年,爱因斯坦在理论上就预言,当温度足够低时理想玻色子就会出现玻色—爱因斯坦凝聚现象。此后,许多科学家都想在实验上证实这一预言的存在,但由于当时实验条件和实验技术有限,在爱因斯坦预言后70 年内都无法在实验上证实这一点。到了上世纪80 年代末和90 年代初,美国国家标准与技术研究所的埃里克·康奈尔博士和科罗拉多大学的卡尔·维曼教授带领一批学生和博士后(称为J ILA 小组) 从事玻色—爱因斯坦凝聚研究达6 年之久,终于在1995 年7 月,在原子铷的蒸汽中实现了这种凝聚;同年8 月,美国Rice 大学的Hulet 小组报道了在锂原子中观察到了玻色—爱因斯坦凝聚;11月,美国麻省理工学院的Ketterle 小组又报道了钠原子的玻色—爱因斯坦凝聚结果。这3 个实验可称为玻色—爱因斯坦凝聚研究历史上的重要里程碑。3 个实验各有特点。J ILA 小组的工作最早完成,是首创的。在他们的实验中原子铷首先被激光冷却,然后载入磁陷阱通过强力蒸发被进一步冷却到创记录的低温(170nk) 下,从而获得凝聚物,这正是人们期望已久的新物态—玻色—爱因斯坦凝聚态。Ketterle 小组的特点是快速冷却,能在7s 内使相空间密度增大6 个数量级。他们的凝聚物中包含着更多的原子,密度超过1014/ cm3 。以上两个小组都是在具有正散射长度(α> 0) 的原子气体中实现玻色—爱因斯坦凝聚的,而Rice 大学的Hulet 小组是在具有负散射长度(α< 0) 的锂原子中找到玻色—爱因斯坦凝聚的证据,这是他们的一大特色。 1995 年后,世界上有许多实验室都投入实现玻色—爱因斯坦凝聚的研究。至今已有近30 个研究小组宣称他们实现了玻色—爱因斯坦凝聚(其中包括日本的三个小组) 。其中绝大部分是采用铷原子蒸汽为样品,这是因为铷原子在冷却中涉及的跃迁波长在780mm 附近,可采用半导体激光器作为冷却用的激光,运转稳定,实验周期短。1998 年6 月,美国麻省理工学院小组实现了氢原子的玻色—爱因斯坦凝聚。氢原子曾被认为是实现玻色—爱因斯坦凝聚的最理想材料,50 年代起就有人提出以它首选。因为它较轻,在相同的温度下有较长的热波长,容易达到玻色—爱因斯坦凝聚的要求。但氢原子系统在形成玻色—爱因斯坦凝聚的过程中,由于二体偶极弛豫会随温度的下降而迅速减少系统的原子数,产生一些特殊困难,以致实验上反而落在别的原子系统之后,MIT 小组在氢原子中实

光学发展史

光学发展史 学院:理学院 专业:光电信息科学与工程 姓名:孙岐政 学号:13272034 2015年5月15日

光学的起源和力学等一样,可以追溯到3000年前甚至更早的时期。在中国,墨翟(公元前468—公元前376)及其弟子所著的《墨经》记载了光的直线传播和光在镜面上的反射等现象,并具体分析了物、像的正倒及大小关系。无论从时间还是科学性来讲,《墨经》可以说是世界上较为系统的关于光学知识的最早记录。约100多年后,古希腊数学家欧几里得(Euclid,约公元前330—公元前275)在其著作中研究了平面镜成像问题,提出了光的反射定律,指出反射角等于入射角,但他同时提出了将光当作类似触须的投射学说。 从墨翟开始打2000多年的漫长岁月构成了光学发展的萌芽期,这期间光学发展缓慢,东西方科学发展都收到很大压抑。这期间有克莱门德(Cleomedes,公元50年)和托勒密(C. Ptolemy,公元50年)研究了关的折射现象,最先测定了光通过两种介质分界面时的入射角和折射角。阿拉伯学者阿勒·哈增(Al Hazen,965—1038)写过一本《光学全书》,研究了球面镜和抛物面镜的性质,并对人眼的构造及视觉作用做了详尽的叙述;中国的沈括(1031—1095年)撰写的《梦溪笔谈》对光的直线传播及球面镜成像作了比较深入的研究,并说明了月相的变化规律及月食的成因。法国的培根(R.Bacon,公元1214—1294)提出了用透镜矫正视力和采用透镜组构成望远镜的想法,并描述了透镜焦点的位置。 到17世纪,在经历了文艺复兴的大潮之后,科学在欧洲又进入了一个蓬勃发展的时期,1621年斯涅耳(W. Snell,1591—1626)从实验中发现了折射定律,而笛卡尔(R. Descartes,1596—1619)第一个把它归纳成解析表达式。1657年费马(P. de Fermat,1601—1665)提出了最小时间原理,并说明由此可推出光的反射和折射定律,至此几何光学的基础已基本奠定。 人们对光学真正的深入实验和研究始于17世纪,荷兰的李普塞(H. Lippershey,1587—1619)在1608年发明了第一架望远镜;17世纪初,简森(Z. Janssen,1588—1632)和冯特纳(P. Fontana,1580—1656)最早制作了复合显微镜。1607年,伽利略(G. Galilei,1564—1642)测定光从一个山峰传到另一个山峰所用的时间。他让山顶上的人打开手中所持灯的遮光罩,作为发光的开始。又命令第二个山峰上的人看到对方的灯光后立即打开己方灯的遮光罩。这样测定第一山峰上的人自发出光信号到看到对方的灯光的时间间隔,便得到光在两个山峰间来回一次所需的时间。但是由于人的反应及动作时间远大于光运行所需的时间,伽利略的实验没有成功。1610年伽利略用自制的望远镜观察星体,发现了绕木星运行的卫星,给哥白尼关于地球绕日运动的日心说提供了强有力的证据。关于光的本性的认识,格里马第(F. M. Grinmaldi,1618—1663)首次注意到了衍射现象。他发现光在通过细棒等障碍物时违背了直线传播的规律,在物体阴影的边缘出现了蓝绿色亮、暗交替的或变化的彩色条纹。胡克(R. Hooke,1635—1703)和玻意耳(R. Boyle,1652—1691)各自独立的发现了现在称为牛顿环的在白光下薄膜的彩色干涉图样,胡克还明确主张光由振动组成,每一振动产生一个球面并以高速向外传播,这可以认为是波动学说的发端。到17世纪60世纪末期,丹麦的巴塞林(E. Bartholin,1625—1698)发现了光经过方解石时的双折射现象。17世纪70年代荷兰的惠更斯(C. Huygens,1629—1695)进一步发现了光的偏振性质。1690年惠更斯在其著作《论光》中阐述了光的波动说,并提出了后来以他的名字命名的惠更斯原理。 1672年,牛顿(I. Newton,1643—1727)进行了白光的实验,发现白光通过棱镜时,会在光屏上形成按一定次序排列的彩色光带;于是他认为白光由各种色光复合而成,各色光在玻璃中收到不同程度的折射而被分解成许多组成部分。

相关文档
最新文档