万转开关

万转开关
万转开关

万能转换开关(百科)

概述

常用产品

简介

万能转换开关单层结构示意图

万能转换开关,是一种多档位、多段式、控制多回路的主令电器,当操作手柄转动时,带动开关内部的凸轮转动,从而使触点按规定顺序闭合或断开。

结构组成

万能转换开关是由多组相同结构的触点组件叠装而成的多回路控制电器。它由操作机构、定位装置和触点等三部分组成。

触点为双断点桥式结构,动触点设计成自动调整式以保证同短时的同步性。静触点装在触点座内。

主要用途

万能转换开关主要用于各种控制线路的转换、电压表、电流表的换相测量控制、配电装置线路的转换和遥控等。万能转换开关还可以用于直接控制小容量电动机的起动、调速和换向。

编辑本段常用产品

图2:某LW5万能转换开关的使用说明

常用产品有LW5和LW6系列。LW5系列可控制5.5kW及以下的小容量电动机;LW6系列只能控制2.2kW及以下的小容量电动机。用于可逆运行控制时,只有在电动机停车后才允许反向起动。LW5系列万能转换开关按手柄的操作方式可分为自复式和自定位式两种。所谓自复式是指用手拨动手柄于某一档位时,手松开后,手柄自动返回原位;定位式则是指手柄被置于某档位时,不能自动返回原位而停在该档位。

万能转换开关的手柄操作位置是以角度表示的。不同型号的万能转换开关的手柄有不同万能转换开关的触点,电路图中的图形符号如图2所示。但由于其触点的分合状态与操作手柄的位置有关,所以,除在电路图中画出触点图形符号外,还应画出操作手柄与触点分合状态的关系。图中当万能转换开关打向左45°时,触点1-2、3-4、5-6闭合,触点7-8打开;打向0°时,只有触点5-6闭合,右45°时,触点7-8闭合,其余打开。

万能转换开关的选型

1.LW5系列万能转换开关本系列转换开关适用于直流、交流50Hz、电压500V及以下的电路,作主电路或电气测量仪表的转换开关及配电设备的遥控开关;也可作为伺服电动机及容量5.5kW及以下三相交流电动机的起动、换向或变速开关。该系列转换开关按接触装置的档数有1~16和18、21、24、27、30等21种,其中16档及以下为单列转换开关;18档及以上为三列转换开关。按防护形式有开启式和防护式两种。按手柄类型有旋钮、普通、机床和枪形四种。按手柄操作方式分为自复式和定位式两种。所谓自复式是指手搬动手柄于某一位置后,当手松开手柄时,手柄自动返回原位。而定位式是指用手扳动手柄至某一位壁后,当手松开后手柄仍停留在该位置上。万能转换开关的操作位置是以角度来表示的,它们将在万能转换开关的“定位特征表”上表示出来。

型号含义:

2.LW5型5.5kW手动转换开关此开关为LW5系列万能转换开关的派生产品,可代替HZ3型转换开关。该型转换开关适用于交流50~60Hz、电压500V及以下的电力线路,供功率为5.5kW及以下的电动机作为直接起动开关、可逆转换开关或双速电动机的变速开关用。

LW5型5.5kW手动转换开关用途见表1-72。

LW5型5.5kW手动转换开关通断能力见表1-73。

3.LW6系列万能转换开关

型号含义:

本系列转换开关适用于交流50Hz,电压380V及以下或直流220V及以下、电流5A及以下的交直流电路,作电气控制线路的转换、电气测量仪表的转换以及配电设备的遥控开关用,也可用于不频繁起停的380V、2.2kW以下的小容量三相感应电动机的控制。

4.LWl2-16系列小型万能转换开关本开关适用于交流50(或60)Hz、电压至380V和直流电压至220V的电路中作主令控制用开关或直接控制5.5kW及以下功率的三相笼型感应电动机用。

直接控制5.5kW及以下电动机时的型号含义:

LW5系列万能转换开关的电气符号及其工作原理

2011-02-11 13:30:55 发表: dzbzw

万能转换开关是一种具有多个操作位置,能够换接多个电路的一种手动电器(图1.14)。

万能转换开关由凸轮机构、触头系统和定位装置等部分组成。依靠操作手柄带动转轴和凸轮转动,使触头动作或复位,从而按所需要的规律接通或断开电路,同时由定位装置确保其动作的准确可靠。

常用的万能转换开关有LW5、LW6、LW8等系列。其中LW6系列还可装配成双列形式,列与列之间用齿轮啮合,并由公共手柄进行操作,因此装入的触头最多可达60对。

万能转换开关常用于需要控制多回路的场合。在操作不太频繁的情况下,也可用于小容量电动机的启动、换速或换向。

万能转换开关的符号如图1.15所示。

LW5系列万能转换开关

用途

LW5系列万能转换开关适用于交流50Hz,额定工作电压500V及以下,直流电压至440V的电路中转换电气控制线路(电磁线圈、电气测量仪表和伺服电动机等),也可直接控制5.5kW三相鼠笼型异步电动机的起动、可逆转换、变速等。产品符合标准GB 14048.5.

产品型号及其含义

用途代号:

Q1、Q2-直接起动

N-可逆转换

S-双速电动机变速

SN-双速电动机变速可逆

LW5系列万能转换开关

分类

一、按用途分

1、主换控制用转换天关、

2、直接控制5.5KW电动机用转换开关

二、按操作方式分

1、定位型

2、自复型

三、按操动器外形分

1、旋钮式

2、球形捏手式

四、按操作方式与操动器位置组合如表所示

操作方式特征代号操动器位置

自复型 A 0° 45°

B 45° 0° 45°

定位型 C 0° 45°

D 45° 0° 45°

E 45° 0° 45° 90°

F 90° 45° 0° 45° 90°

G 90° 45° 0° 45° 90° 135°

H 135° 90° 45° 0° 45° 90° 135°

I 135° 90° 45° 0° 45° 90° 135° 180°

J 120° 90° 60° 30° 0° 30° 60° 90° 120°

K 120° 90° 60° 30° 0° 30° 60° 90° 120° 150°

L 150° 120° 90° 60° 30° 0° 30° 60° 90° 120° 150°

M 150° 120° 90° 60° 30° 0° 30° 60° 90° 120° 150° 180°

N 45° 45°

P 90° 0° 90°

主要技术参数

机械寿命和电寿命

机械寿命:100×10 次,操作频率为300次/小时,AC-4时操作频率为120次/小时。

电寿命:AC-15、DC-13时为20×10 ,操作频率为300次/小时。

AC-3时为19.5×10 次,操作频率为300次/小时。

AC-4时为0.5×10 次,操作频率为120次/小时。

LW5系列万能转换开关

分类

一、按用途分

1、主换控制用转换天关、

2、直接控制5.5KW电动机用转换开关

二、按操作方式分

1、定位型

2、自复型

三、按操动器外形分

1、旋钮式

2、球形捏手式

四、按操作方式与操动器位置组合如表所示

操作方式特征代号操动器位置

自复型 A 0° 45°

B 45° 0° 45°

定位型 C 0° 45°

D 45° 0° 45°

E 45° 0° 45° 90°

F 90° 45° 0° 45° 90°

G 90° 45° 0° 45° 90° 135°

H 135° 90° 45° 0° 45° 90° 135°

I 135° 90° 45° 0° 45° 90° 135° 180°

J 120° 90° 60° 30° 0° 30° 60° 90° 120°

K 120° 90° 60° 30° 0° 30° 60° 90° 120° 150°

L 150° 120° 90° 60° 30° 0° 30° 60° 90° 120° 150°

M 150° 120° 90° 60° 30° 0° 30° 60° 90° 120° 150° 180°

N 45° 45°

P 90° 0° 90°

主要技术参数

机械寿命和电寿命

机械寿命:100×10 次,操作频率为300次/小时,AC-4时操作频率为120次/小时。

电寿命:AC-15、DC-13时为20×10 ,操作频率为300次/小时。

AC-3时为19.5×10 次,操作频率为300次/小时。

AC-4时为0.5×10 次,操作频率为120次/小时。

外形尺寸和安装尺寸

外形尺寸

万能转换开关系列

◆DEW19系列万能转换开关

◆LW12系列万能转换开关

◆LW15系列万能转换开关

◆LW2系列万能转换开关

◆LW5系列万能转换开关

◆ LW6系列万能转换开关

◆ LW8系列万能转换开关

LW2系列万能转换开关

用途

LW2系列万能转换开关适用于交流50Hz ,额定工作电压至220V 及直流电压220V 的电路中作为转换各种控制线路,也可作为各种电气测量仪表及伺服电动机的转换之用。产品符合标准GB: 14048.5。

限位装置:×表示有限信装置,、无限信装置定位不表示

定位角度:8表示45°定位,90°定位不表示

旋钮类型:1带指示灯型,4定位型,6自复型,7钥匙型,8定位自复型

面板形状:F表示方形,O表示圆形

触头型式:有1、1a、2、4、5、6、6a、7、8、10、20、40型,可任意组合

结构型式:定位型不表示,W自复型,Z定位自复型,Y手柄带指示灯定位型,YZ手柄带指示灯定位自处长型,H带可取出钥匙手枘定位型

分类

一、按操作方式分

1、定位型

2、自复型

3、定位自复型

二、按接触系统分

有1-8节,共8种

三、按操作角度分

45°和90°两种

技术参数

机械寿命和电寿命

机械寿命:20000次,操作频率为120次/小时。

电寿命:AC-15时为10000次,操作频率为120次/小时。

DC-13时为6050次,操作频率为120次/小时。

外形尺寸和安装尺寸

外形尺寸

自复型:Lmax=130+18n(为接触系统节数)

其它型:Lmax=141+18n(为接触系统节数)安装尺寸

LW5系列万能转换开关

用途

LW5系列万能转换开关适用于交流50Hz,额定工作电压500V及以下,直流电压至440V的电路中转换电气控制线路(电磁线圈、电气测量仪表和伺服电动机等),也可直接控制5.5kW三相鼠笼型异步电动机的起动、可逆转换、变速等。产品符合标准GB 14048.5.

产品型号及其含义

用途代号:

Q1、Q2-直接起动

N-可逆转换

S-双速电动机变速

SN-双速电动机变速可逆

LW5系列万能转换开关

分类

一、按用途分

1、主换控制用转换天关、2、直接控制5.5KW电动机用转换开关

二、按操作方式分

1、定位型2、自复型

三、按操动器外形分

1、旋钮式2、球形捏手式

四、按操作方式与操动器位置组合如表所示

主要技术参数

机械寿命和电寿命

机械寿命:100×10 次,操作频率为300次/小时,AC-4时操作频率为120次/小时。

电寿命:AC-15、DC-13时为20×10 ,操作频率为300次/小时。

AC-3时为19.5×10 次,操作频率为300次/小时。

AC-4时为0.5×10 次,操作频率为120次/小时。

外形尺寸和安装尺寸

外形尺寸

LW8系列万能转换开关

用途

LW8系列万能转换开关主要适用于交流50Hz,额定工作电压380V及以下,直流电压至220V及以下的电路中转换电气控制线路和电气测量仪表,也可直接控制小容量三相交流鼠笼型异步电动机(2.2kW及5.kW)。

产品符合标准GB14048.5。

产品型号及其含义

用途代号:Q-直接起动,N-可逆转换,S-双速电动机转换

分类

一、按用途分

主令控制用转换开关

直接控制电动机用转换开关

二、按操作方式分

定位型

自复型

三、按接触系统分

主令控制用转换开关定位型有1-10节,自复型有1-3节

直接控制电动机用转换开关定位型有2、3、4节

四、按面板形状分

方形面板

图形面板

机械寿命和电寿命

机械寿命:30×次,操作频率为120次/小时

电寿命:AC-15时为10×,操作频率为120次/小时。

DC-13时为5×次,操作频率为120次/小时。

外形及安装尺寸

外形尺寸

万能转换开关原理图

万能转换开关的工作原理及符号表示 教程来源:本站原创作者:未知点击:2301 更新时间:2009-3-4 16:14:36 万能转换开关是一种多档式、控制多回路的主令电器。万能转换开关主要用于各种控制线路的转换、电压表、电流表的换相测量控制、配电装置线路的转换和遥控等。万能转换开关还可以用于直接控制小容量电动机的起动、调速和换向。 如图1所示为万能转换开关单层的结构示意图。 常用产品有LW5和LW6系列。LW5系列可控制5.5kW及以下的小容量电动机;LW6系列只能控制2.2kW 及以下的小容量电动机。用于可逆运行控制时,只有在电动机停车后才允许反向起动。LW5系列万能转换开关按手柄的操作方式可分为自复式和自定位式两种。所谓自复式是指用手拨动手柄于某一档位时,手松开后,手柄自动返回原位;定位式则是指手柄被置于某档位时,不能自动返回原位而停在该档位。 万能转换开关的手柄操作位置是以角度表示的。不同型号的万能转换开关的手柄有不同万能转换开关的触点,电路图中的图形符号如图2所示。但由于其触点的分合状态与操作手柄的位置有关,所以,除在电路图中画出触点图形符号外,还应画出操作手柄与触点分合状态的关系。图中当万能转换开关打向左45°时,触点1-2、3-4、5-6闭合,触点7-8打开;打向0°时,只有触点5-6闭合,右45°时,触点7-8闭合,其余打开。

正泰万能转换开关接点图编码规则 技术交流2010-01-14 20:51:56 阅读1518 评论5 字号:大中小订阅 万能转换开关是一种手动操作的低压电器产品,它是基于通过凸轮控制各对触头从而实现对各个独立线路进行控制的目的,由于它的控制靠凸轮来实现,因此俗称凸轮开关。凸轮开关根据控制的对象和使用的场合不同,大体可以分为万能转换开 关和组合开关。 凸轮开关大体由操作机构、定位助力机构、接触系统三个部分组成。其中接触系统可以由独立接触单位进行线性叠加,每一个接触单元(一节)有两个独立的接触组(1-2、3-4)组成,那么根据排列组合,一个接触单元(一节)可以由4种情况(1-2通3-4断、1-2断3-4断、1-2通3-4通、1-2断3-4通)那么对于n节产品在某个档位的通断情况有4n情况,假如开关有m档,则这个开关理论上存在着m*4n种通断情况。正因为具有如此其他任何开关都不具备的优势,因此被称为万能转换开关。当然接点通断情况十分的复杂,导致顾客在进行产品选择的时候难以下手,即使技术人员也为难。我们正泰由于顾客特殊定做的产品接点图情况十分的普遍,常常由于我们技术人员没有比较可行的接点编码方法,致使产品无法具备具体的产品规格型号,一则导致最终客户无法接线使用,同时没有具体的规格型号,顾客在下次订货时需要重新提供接点情况,延长了产品交付时间,造成顾客退单甚至投诉。为了更好的管理转换开关同时为以后进行软件自动编码准备,这几天将开关做了整理,并查找一些资料,现将这几天对转换开关的编码规则作一个介绍,供大家参考改进。 接点图按产品结构从上至下排列:手柄代号、面板代号、定位特征代号、接触系统(各对触头编号)。这样的分布符合我们的装配习惯,装配时可以完全按照接点图至下而上(反之亦然)对各个部件进行一一对应安装),极大的提高了装配效率 同时便于装配检验。编码过程如下:

光开关市场

国外光开关技术现状及其市场 无 定购报告: 010---82751808、82751809 ·前言/综述 光纤通讯技术快速发展,它在把人类带入一个全新的信息化时代。在构筑信息社会的过程中,各种信息高速公路一条一条地建立起来,其中各种光网络的建立更是引人注目。在建设各种光网络时,无论是光网络结构、保护、故障后恢复,还是光传输、光交换、自动指配、交叉互联、都需要使用大量的开关控制,光通信需求迫切,光开关潜在应用市场巨大,前景喜人。本文将介绍几种新型的光开关技术及国外厂商的典型产品,同时展望一下光开关技术的发展趋势及市场。 2.最新的光开关技术 在市场上应用的各种光开关中,半导体光开关独树一帜。在半导体光开关领域中,已经有许多新技术问世。这些新技术主要包括微机电开关技术、喷墨汽泡光开关技术、声光效应光开关技术、热光效应光开关技术、液晶光开关技术、全息光开关技术、固体波导、液晶光栅开关及其它光开关技术。 2.1 微机械光开关技术(OMEMS) 微机械光开关采用微电子机械系统(MEMS)技术制作,MEMS是80年代初发展起来的一门高新技术。用该技术制作的光开关器件具有体积小、重量轻、功耗低、精度高、测量速度快、易大规模集成、低插入损耗、低偏振敏感性和高消光比、成本低及制造简便等一系列优点。是目前光网络中光开关的最佳选择器件。开发具有逻辑功能的光开关集成更是智能化光信息系统入网与交换的需要。微机电光开关由于其与光信号的格式、波长、协议、调制方式、偏振、传输方向等均无关,而且在损耗、扩展性上都要优于其他类型,与未来光网络发展所要求的透明性和可扩展等趋势相符合,有可能成为核心光交换器件中的主流技术。 2.2 固体波导光开关技术(Waveguide and Solid State) 固体波导光开关主要是利用波导的热光、磁光效应来改变波导性质,从而实现开关动作。目前最具代表性的是硅基热光开关、高速二氧化硅波导光开关及其阵列、密集波导光栅阵列A WG、有机聚合物波导光开关等。 2.3 液晶光开关技术(Liquid crystal) 液晶光开关是根据其偏振特性来完成交换的。它包括有源部分和无源部分。液晶光开关理论上的网络重构性比较好,被认为更适合用于较小的交换系统中,目前最大端口数为80,消光比为40~50dB。许多厂商在研发基于液晶的可调光衰减器和制作偏振模色散(PMD)补偿器。

液晶电光效应

实验仪器: 本实验所用仪器为液晶光开关电光特性综合实验仪,其外部结构如图6所示。下面简单介绍仪器各个按钮的功能。 模式转换开关:切换液晶的静态和动态(图像显示)Array两种工作模式。在静态时,所有的液晶单元所加电压相同, 在(动态)图像显示时,每个单元所加的电压由开关矩阵 控制。同时,当开关处于静态时打开发射器,当开关处于 动态时关闭发射器; 静态闪烁/动态清屏切换开关: 时候, 作在动态的时候,此开关可以清除液晶屏幕因按动开关矩 阵而产生的斑点; 供电电压显示:显示加在液晶板上的电压,范围在 0.00V~7.60V之间; 供电电压调节按键:改变加在液晶板上的电压,调节范围在0V~7.6V之间。其中单击+按键(或-按键)可以增大(或减小)0.01V。一直按住+按键(或-按键)2秒以上可以快速增大(或减小)供电电压,但当电压大于或小于一定范围时需要单击按键才可以改变电压; 透过率显示:显示光透过液晶板后光强的相对百分比; 透过率校准按键:在接收器处于最大接收状态的时候(即供电电压为0V时),如果显示值大于“250”,则按住该键3秒可以将透过率校准为100%;如果供电电压不为0,或显示小于“250”,则该按键无效,不能校准透过率。 液晶驱动输出:接存储示波器,显示液晶的驱动电压; 光功率输出:接存储示波器,显示液晶的时间响应曲线,可以根据此曲线来得到液晶响应时间的上升时间和下降时间; 发射器:为仪器提供较强的光源; 液晶板:本实验仪器的测量样品; 接收器:将透过液晶板的光强信号转换为电压输入到透过率显示表; 开关矩阵:此为16×16的按键矩阵,用于液晶的显示功能实验; 液晶转盘:承载液晶板一起转动,用于液晶的视角特性实验; 电源开关:仪器的总电源开关。

液晶电光效应实验实验报告

液晶电光效应实验实验报告 【实验目的】 1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。 3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。 4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。 【实验仪器】 液晶电光效应实验仪一台,液晶片一块 【实验原理】 1.液晶光开关的工作原理 液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。 TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。 理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。 取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。 在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。这时光的偏振面与P2的透光轴平行,因而有光通过。 在施加足够电压情况下(一般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。于是原来的扭曲结构被破坏,成了均匀结构。从P1 透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。这时光的偏振方向与P2正交,因而光被关断。 由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。若P1和P2的透光轴相互平行,则构成常黑模式。 液晶可分为热致液晶与溶致液晶。热致液晶在一定的温度范围内呈现液晶的光学各向异性,溶致液晶是溶质溶于溶剂中形成的液晶。目前用于显示器件的都是热致液晶,它的特性随温度的改变而有一定变化。 2.液晶光开关的电光特性

液晶的电光特性实验报告含思考题

西安交通大学实验报告 第1页(共9页)课程:_______近代物理实验_______ 实验日期:年月日 专业班号______组别_______交报告日期:年月日 姓名__Bigger__学号__报告退发:(订正、重做) 同组者__________教师审批签字: 实验名称:液晶的电光特性 一、实验目的 1)了解液晶的特性和基本工作原理; 2)掌握一些特性的常用测试方法; 3)了解液晶的应用和局限。 二、实验仪器 激光器,偏振片,液晶屏,光电转换器,光具座等。 三、实验原理 液晶分子的形状如同火柴一样,为棍状,长度在十几埃,直径为4~6埃, 液晶层厚度一般为5-8微米。排列方式和天然胆甾相液晶的主要区别是:扭曲向 列的扭曲角是人为可控的,且“螺距”与两个基片的间距和扭曲角有关。而天然胆 甾相液晶的螺距一般不足1um,不能人为控制。扭曲向列排列的液晶对入射光会 有一个重要的作用,他会使入射的线偏振光的偏振方向顺着分子的扭曲方向旋转,类似于物质的旋光效应。在一般条件下旋转的角度(扭曲角)等于两基片之间的取 向夹角。 对于介电各向异性的液晶当垂直于螺旋轴的方向对胆甾相液晶施加一电场时,会发现随着电场的增大,螺距也同时增大,当电场达到某一阈值时,螺距趋 于无穷大,胆甾相在电场的作用下转变成了向列相。这也称为退螺旋效应。由于 液晶分子的结构特性,其极化率和电导率等都具有各向异性的特点,当大量液晶 分子有规律的排列时,其总体的电学和光学特性,如介电常数、折射率也将呈现出 各向异性的特点。如果我们对液晶物质施加电场,就可能改变分子排列的规律。

从而使液晶材料的光学特性发生改变,1963年有人发现了这种现象。这就是液晶的的电光效应。 为了对液晶施加电场,我们在两个玻璃基片的内侧镀了一层透明电极。将这个由基片电极、取向膜、液晶和密封结构组成的结构叫做液晶盒。根据液晶分子的结构特点,假定液晶分子没有固定的电极,但可被外电场极化形成一种感生电极矩。这个感生电极矩也会有一个自己的方向,当这个方向以外电场的方向不同时,外电场就会使液晶分子发生转动,直到各种互相作用力达到平衡。液晶分子在外电场作用下的变化,也将引起液晶合中液晶分子的总体排列规律发生变化。当外电场足够强时,两电极之间的液晶分子将会变成如图1中的排列形式。这时,液晶分子对偏振光的旋光作用将会减弱或消失。通过检偏器,我们可以清晰地观察到偏振态的变化。大多数液晶器件都是这样工作的。 图1液晶分子的扭曲排列变化 若将液晶盒放在两片平行偏振片之间,其偏振方向与上表面液晶分子取向相同。不加电压时,入射光通过起偏器形成的线偏振光,经过液晶盒后偏振方向随液晶分子轴旋转90°,不能通过检偏器;施加电压后,透过检偏器的光强与施加在液晶盒上电压大小的关系见图2;其中纵坐标为透光强度,横坐标为外加电压。最大透光强度的10%所对应的外加电压值称为阈值电压(U th),标志了液晶电光效应有可观察反应的开始(或称起辉),阈值电压小,是电光效应好的一个重要指标。最大透光强度的90%对应的外加电压值称为饱和电压(U r),标志了获得最大对比度所需的外加电压数值,U r小则易获得良好的显示效果,且降低显示功耗,对显示寿命有利。对比度D r=I max/I min,其中I max为最大观察(接收)亮度(照度),I min 为最小亮度。陡度β=U r/U th即饱和电压与阈值电压之比。

液晶电光效应实验

图4 液晶板方向 (1)将模式转换开关置于静态模式,液晶转盘的转角置于0度,保持当前转盘状态。在供电电压为0V,透过率显示大于250时,按住“透过率校准”按键3秒以上,将透过率校准为100%。 (2)调节“供电电压调节”按键,按照表4中的数据逐步增大供电电压,记录下每个电压值下对应的透过率值。 (3)将供电电压重新调回0V(此时若透过率不为100%,则需重新校准)。重复步骤2,完成3次测量。 实验所用到表格

仪器用具 (报告):液晶光开关电光特性综合实验仪(ZKY-LCDEO 型) DS-5000型数字式存储示波器 实验目的(预习):1、 在掌握液晶光开关的基本工作原理的 基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阀值电压和关断电压; 2、 观察测量驱动电压周期变化时,液晶光开关的 时间响应曲线,并求出液晶的上升时间和下降时间; 3、 测量液晶显示器的视角特性; 4、 了解液晶光开关构成矩阵式图像显示的原理 实验原理及数据图(预习): 1液晶光开关工作原理 两张偏振片贴于玻璃的两面,上下电极的定向方向相互垂直,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。 在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。这时光的偏振面与P2的透光轴平行,因而有光通过(参照下图) 当施加足够电压时(一般为1~2伏),在静电场的作用下,液晶分子趋于平行于电场方向排列。原来的扭曲结构被破坏,从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。这时光的偏振方向与P2正交,因而光被关断。 由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常白模式。 液晶光开关电光特性曲线

液晶电光效应

液晶电光效应实验 液晶是介于液体与晶体之间的一种物质状态。一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性,当光通过液晶时,会产生偏振面旋转,双折射等效应。液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶的电光效应。。 一、实验目的 (1)在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性,由光开关的特性曲线,得到液晶的阈值电压和关断电压,上升时间和下降时间。 (2)测量液由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶的工作条件。 (3)了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构文字和图形的的显示模式,从而了解液晶显示器件的工作原理。 二、实验仪器简介 本实验所用仪器为液晶电光效应综合实验仪,其外部结构如图1所示,下面简单介绍仪器各个按钮的功能。 模式转换开关:切换液晶的静态和动态(图像显示)两种工作模式。在静态时,所有的液晶单元所加电压相同,在动态图像显示时,每个单元所加的电压由开关矩阵控制。同时,当开关处于静态时打开发射器,当开关处于动态时关闭发射器; 静态闪烁/动态清屏切换开关:当仪器工作在静态的时候,此开关可以切换到闪烁和静止两种方式;当仪器工作在动态的时候,此开关可以清除液晶屏幕因按动开关矩阵而产生的斑点; 供电电压显示:显示加在液晶板上的电压,范围在0.00V-7.60V之间; 供电电压调节按键:改变加在液晶板上的电压,调节范围在0V-7.6V之间。其中单击“+”按键或“-”按键可以增大或减小0.01V。一直按住“+”按键或“-”按键2秒以上可以快速增大或减小供电电压,但当电压大于或小于一定范围时需要单击按键才可以改变电压; 透过率显示:显示光透过液晶板后光强的相对百分比; 透过率校准按键:在接收器处于最大接收状态的时候(即供电电压为0V时),如果显示值大于“250”,则按住该键3秒可以将透过率校准为100%;如果供电电压不为0,或显示小于“250”,则该按键无效,不能校准透过率; 液晶驱动输出:接存储示波器,显示液晶的驱动电压; 光功率输出:接存储示波器,显示液晶的时间响应曲线,可以根据此曲线来得到液晶响应时间的上升时间和下降时间; 扩展接口:连接LCDEO信号适配器的接口,通过信号适配器可以使用普通示波器观测液晶光开关特性的响应时间曲线,此时用信号适配器的液晶驱动输出和光功率输出接双踪示波器; 发射器:为仪器提供较强的光源; 液晶板:本实验仪器的测量样品; 接收器:将透过液晶板的光强信号转换为电压输入到透过率显示表; 开关矩阵:此为16×16的按键矩阵,用于液晶的显示功能实验; 液晶转盘:承载液晶板一起转动,用于液晶的视角特性实验; 电源开关:仪器的总电源开关。

只要一分钟,教你看懂电气控制电路图!

只要一分钟,教你看懂电气控制电路图! 看电气控制电路图一般方法是先看主电路,再看辅助电路,并用辅助电路的回路去研究主电路的控制程序。电气控制原理图一般是分为主电路和辅助电路两部分。其中的主电路是电气控制线路中大电流流过的部分,包括从电源到电机之间相连的 、“顺 除了合理地选择拖动、控制方案外,在控制线路中还设置了一系列电气保护和必要的电气联锁。在电气控制原理图的分析过程中,电气联锁与电气保护环节是一个重要内容,不能遗漏。 总体检查:经过“化整为零”,逐步分析了每一局部电路的工作原理以及各部分之间的控制关系之后,还必须用“集零为整”的方法检查整个控制线路,看是否有遗漏。

特别要从整体角度去进一步检查和理解各控制环节之间的联系,以达到正确理解原理图中每一个电气元器件的作用。 1、看主电路的步骤 第一步:看清主电路中用电设备。用电设备指消耗电能的用电器具或电气设备,看图首先要看清楚有几个用电器,它们的类别、用途、接线方式及一些不同要求等。 2 则可先排除照明、显示等与控制关系不密切的电路,以便集中精力进行分析。 第一步:看电源。首先看清电源的种类。是交流还是直流。其次。要看清辅助电路的电源是从什么地方接来的,及其电压等级。电源一般是从主电路的两条相线上接来,其电压为380V.也有从主电路的一条相线和一零线上接来,电压为单相220V;此外,也可以从专用隔离电源变压器接来,电压有140、127、36、6.3V等。辅助电

路为直流时,直流电源可从整流器、发电机组或放大器上接来,其电压一般为24、12、6、4.5、3V等。辅助电路中的一切电器元件的线圈额定电压必须与辅助电路电源电压一致。否则,电压低时电路元件不动作;电压高时,则会把电器元件线圈烧坏。 第二步:了解控制电路中所采用的各种继电器、接触器的用途。如采用了一些特殊 而是相互联系、相互制约的。这种互相控制的关系有时表现在一条回路中,有时表现在几条回路中。 第五步:研究其他电气设备和电器元件。如整流设备、照明灯等。 综上所述,电气控制电路图的查线看图法的要点为: (1)分析主电路。从主电路人手,根据每台电动机和执行电器的控制要求去分析各

光开关的工作原理

光开关,光开关的分类,光开关的工作原理是 什么? 2010 年03 月20 日 17:30 www.elecfans.co 作者:佚名用户评论(0) 关键字:光开关(7) 光开关,光开关的分类,光开关的工作原理是什么? 光开关是一种具有一个或多个可选择的传输窗口,可对光传输线路或集成光路中的光信号进行相互转换或逻辑操作的器件。 机械式光开关:插入损耗低;隔离度高;不受偏振和波长影响;开关时间长(ms),重复性较差。 其它光开关:开关时间短(ms);体积小;插入损耗大;隔离度低。 光开关的特性参数 1.插入损耗(Insertion loss) 2.回波损耗(Return loss) 从输入端返回的光功率与输入光功率的比值。

3.隔离度 两个相隔离的输出端口光功率的比值。 4. 串扰 输入光功率与从非导通端口输出的光功率的比值。 5.消光比 两个端口处于导通和非导通状态的插入损耗之差。 ER=IL-IL0 6.开关时间 开关端口从某一初状态转为通或者断所需的时间。从在开关上施加或撤去能量的时刻算起。 光开关的工作原理: 1. 机械式光开关

移动光纤式光开关 移动反射镜式光开关 以上两种体积大,难实现集成化的开关网络。近年正大力发展一种集成的微机电系统(MEMS)开关,在硅片上用微加工技术做出大量可移动的微型镜片构成的开关阵列。 用16 个移动反射镜光开关构成的两组4 4MEMS开关阵列 2 电光开关

电光开关的原理一般是利用材料的电光效应或电吸收效应,在电场作用下改变材料的折射率和光的相位,再利用光的干涉或偏振等使光强突变或光路转变。 电光开关一般利用泡克耳斯(Pockels) 效应,即折射率 n随光场E而变化的电光效应。 折射率变化与光场的变化关系为: 而光波传输距离L相应的相位变化为: 定向耦合型光开关 定向耦合器中两耦合波导光功率周期性相互转换

转换开关

转换开关 转换开关是一种多档式、控制多回路的主令电器。万能转换开关主要用于各种控制线路的转换、电压表、电流表的换相测量控制、配电装置线路的转换和遥控等。万能转换开关还可以用于直接控制小容量电动机的起动、调速和换向。 一、万能转换开关结构与原理: ?由多组相同结构的开关元件叠装而成,外形及凸轮通断触头情况下图所示 LW5系列万能转换开关外形及触头通断示意图 万能转换开关常用产品有LW5和LW6系列。LW5系列万能转换开关按手柄的操作方式可分为自复式和自定位式两种。所谓自复式是指用手拨动手柄于某一档位时,手松开后,手柄自动返回原位;定位式则是指手柄被置于某档位时,不能自动返回原位而停在该档位。路灯低压开关柜中转换开关常用来转换不同相间的电压指示、控制全夜、半夜灯等。 万能转换开关的手柄操作位置是以角度表示的。不同型号的万能转换开关的手柄有不同万能转换开关的触点,电路图中的图形符号如下图所示。但由于其触点的分合状态与操作手柄的位置有关,所以,除在电路图中画出触点图形符号外,还应画出操作手柄与触点分合状态的关系。图中当万能转换开关打向左45°时,触点1-2、3-4、5-6闭合,触点7-8打开;打向0°时,只有触点5-6闭合,右45°时,触点7-8闭合,其余打开。 ?图中每根竖的点划线表示手柄位置,点划线上的黑点“●”表示手柄在该位置时,上面这一路触头接通。

二、万能转换开关表示方法: ?万能转换开关的型号含义如下: L W 5――□□□/□ L:主令电器 W:万能转换开关 5:设计序号 ?□:额定电流 ?□:定位特征代号 ?□:接线图编号 ?□:数字表示触头系统挡数,字母D-直接起动;N-可逆起动;S-双速电机控制。 ?万能转换开关的选用主要根据用途、所需触头挡数和额定电流来选择。 二、主令开关的结构与原理 三、主令开关表示方法: ?主令控制器的动作原理: ?当转动手柄10使凸轮块7转动时,推压小轮8,使支杆5绕轴6转动,动触头4与静触头3分断,将被操作回路断开。相反,当转动手柄10使小轮8位于凸轮块7的凹槽处,由于弹簧9的作用,使动触头4与静触头3闭合,接通被操作回路。触头闭合与分断的顺序由凸轮块的形状所决定的。 ?常用主令控制器有LK1、LK5、LK6、LK14等系列,其型号的含义如下: ? L K 1――□/□ ?L:主令电器 K:控制器 1:设计序号 ?□:控制回路数 ?□:结构形式代号 ?主令控制器的选用主要根据额定电流和所需控制回路数来选择

液晶电光效应及其应用

液晶光电效应及应用 摘要:文章介绍了液晶的基本原理,着重阐述了液晶光开关的工作原理及其性 质,并根据其性质开展了一系列的实验,如测量液晶光开光的电光特性曲线及响应时间等。 关键词:液晶光开关时间响应视角特性 一、引言 液晶态是一种介于液体和晶体之间的中间态,既有液体的流动性、粘度、形变等机械性质,又有晶体的热、光、电、磁等物理性质。液晶与液体、晶体之间的区别是:液体是各向同性的,分子取向无序;液晶分子取向有序,但位置无序,而晶体二者均有序。液晶分子是在形状、介电常数、折射率及电导率上具有各向异性特性的物质,如果对这样的物质施加电场,随着液晶分子取向结构发生变化,它的光学特性也随之变化,这就是通常说的液晶的电光效应。 二、实验原理 1.液晶光开关的工作原理 液晶作为一种显示器件,其种类很多,下面以常用的TN(扭曲向列)型液晶为例,说明其工作原理。 TN型光开关的结构如图1所示。在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃,直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;使电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。如图1所示。

自动转换开关电器.

在"电力"类别中 ATS全称为"自动转换开关电器",是Automatic transfer switching equipment的缩写。ATS主要用在紧急供电系统,将负载电路从一个电源自动换接至另一个(备用)电源的开关电器,以确保重要负荷连续、可靠运行。因此,ATS常常应用在重要用电场所,其产品可靠性尤为重要。转换一旦失败将会造成以下二种危害之一,其电源间的短路或重要负荷断电(甚至短暂停电),其后果都是严重的,这不仅仅会带来经济损失(使生产停顿、金融瘫痪),也可能造成社会问题(使生命及安全处于危险之中)。因此,工业发达国家都把自动转换开关电器的生产、使用列为重点产品加以限制与规范。互动热备份(ATS)。 ATS又可解释为automatic test system ,即自动测试系统。 自动转换开关电器 自动转换开关电器,即ATSE(Automatic Transfer Switching Equipment)。 主要适用于额定电压交流不超过1000V 或直流不超过1500V 的紧急供电系统,在转换电源期间中断向负载供电。 1.ATSE的定义 1.1 转换开关电器(转换开关)Transfer Switching Device (Transfer Switch) 将一个或几个负载电路从一个电源转换至另一个电源的电器。 1.2 自动转换开关电器(ATSE) Automatic Transfer Switching Equipment (ATSE) 由一个(或几个)转换开关电器和其它必需的电器组成,用于监测电源电路、并将一个或几个负载电路从一个电源自动转换至另一个电源的电器。电气行业中简称为“双电源自动转换开关”或“双电源开关”。

万能转换开关的工作原理及符号表示

万能转换开关的工作原理及符号表示 一种可供两路或两路以上电源或负载转换用的开关电器。转换开关由接触系统、定位机构、手柄等主要部件组成。这些部件通过螺栓紧固为一个整体。 转换开关又称组合开关,与刀开关的操作不同,它是左右旋转的平面操作。转换开关具有多触点、多 位置、体积小、性能可靠、操作方便、安装灵活等优点,多用于机床电气控制线路中电源的引入开关,起着隔离电源作用,还可作为直接控制小容量异步电动机不频繁起动和停止的控制开关。转换开关同样也有单极、双极和三极。 万能转换开关是一种多档式、控制多回路的主令电器。万能转换开关主要用于各种控制线路的转换、电压表、电流表的换相测量控制、配电装置线路的转换和遥控等。万能转换开关还可以用于直接控制小容量电动机的起动、调速和换向。 如图1所示为万能转换开关单层的结构示意图。 常用产品有LW5和LW6系列。LW5系列可控制5.5kW及以下的小容量电动机;LW6系列只能控制2.2kW 及以下的小容量电动机。用于可逆运行控制时,只有在电动机停车后才允许反向起动。LW5系列万能转换开关按手柄的操作方式可分为自复式和自定位式两种。所谓自复式是指用手拨动手柄于某一档位时,手松开后,手柄自动返回原位;定位式则是指手柄被置于某档位时,不能自动返回原位而停在该档位。 万能转换开关的手柄操作位置是以角度表示的。不同型号的万能转换开关的手柄有不同万能转换开关的触点,电路图中的图形符号如图2所示。但由于其触点的分合状态与操作手柄的位置有关,所以,除在电路图中画出触点图形符号外,还应画出操作手柄与触点分合状态的关系。图中当万能转换开关打向左45°时,触点1-2、3-4、5-6闭合,触点7-8打开;打向0°时,只有触点5-6闭合,右45°时,触点7-8闭合,其余打开。

液晶光电效应综合实验

实验七、液晶光电效应综合实验 薛清峰、周庆杰 【摘要】 本实验主要通过液晶光开关电光特性综合试验仪来进行液晶的电光特性测量实验,测量液晶光开关的电光特性曲线,并由此得到阈值电压和关断电压,并绘制液晶光开关的时间响应曲线得到液晶的上升时间和下降时间,测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。 【关键字】 液晶、光电效应、 【引言】 液晶是介于液体与晶体之间的一种物质状态。一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性。当光通过液晶时,会产生偏振面旋转,双折射等效应。液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶的电光效应。 【实验目的】 1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。 3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。 4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。

【实验仪器】 本实验所用仪器为液晶光开关电光特性综合实验仪,其外部结构如图6 所示。下面简单介绍仪器各个按钮的功能。 模式转换开关:切换液晶的静态和动态(图像显示)两种工作模式。在静态时,所有的液晶单元所加电压相同,在(动态)图像显示时,每个单元所加的电压由开关矩阵控制。同时,当开关处于静态时打开发射器,当开关处于动态时关闭发射器; 静态闪烁/动态清屏切换开关:当仪器工作在静态的时候,此开关可以切换到闪烁和静止两种方式;当仪器工作在动态的时候,此开关可以清除液晶屏幕因按动开关矩阵而产生的斑点; 供电电压显示:显示加在液晶板上的电压,范围在0.00V~7.60V 之间; 供电电压调节按键:改变加在液晶板上的电压,调节范围在0V~7.6V 之间。其中单击+按键(或-按键)可以增大(或减小)0.01V。一直按住+按键(或-按键)2 秒以上可以快速增大(或减小)供电电压,但当电压大于或小于一定范围时需要单击按键才可以改变电压;

双电源自动转换开关的选用

收稿日期:2009-07-17作者简介:刘 庭(1977-),男,安全技术及工程专业硕士,主要从事电源系统设计及安全性研究。 文章编号:1009-3664(2009)06-0057-03技术交流 双电源自动转换开关的选用 刘 庭 (北京中网华通设计咨询有限公司,北京100027) 摘要:双电源系统是重要电力负荷安全运行的有效保障,而电源转换开关是连接两个电源的重要枢纽。由于双电源自动转换开关(A T SE)具有使用安全、转换迅速、无需值守的特点,近年来得到了广泛的应用。新建双电源系统基本都选用A T SE,一些早期的双电源系统也逐步将手动转换开关改造成了A T SE 。因电源系统容量、接地形式的不同,在对A T -SE 选型时也有所不同。文中阐述了A T SE 的概念、分类、性能特点以及为交换局双电源系统选择A T SE 时应考虑的因素,重点分析了三极开关和四极开关的适用范围和选择依据,并通过工程实例予以说明。 关键词:双电源;自动转换开关;三极开关;四极开关;安全中图分类号:T M 930.1文献标识码:A Selection of A utomat ic Transfer Sw itching Equipment for Dual Pow er Supply LI U T ing (Beijing China Co mmunication Design and Consulting Co.,L td.Beijing 100027,China) Abstr act:System of dual pow er supply is the effective guar antee o f safety operatio n fo r some impor tant po wer users.Pow er t ransfer switch is an impor tant co nnecting device betw een tw o po wer supplies.Recently,automatic transfer sw itc -hing equipment (A T SE)is widely a pplied because of its safety ,fast switching and w ithout man on dut y.Selectio n of A T SE is different because t he capacity and g ro unding for m o f po wer supply are different.In this paper,the definitio n,classifica -t ion and characterist ics o f A T SE are descr ibed and factor s influencing it s applicatio n in ex changing bur eaus are consider ed.T he application scope and gist o f three -pole and four -pole sw itch are emphasized with an engineer ing ex ample. Key wo rds:dual po wer supply;A T SE;thr ee -pole swit ch;four -pole sw itch;safety 0 概 述 根据5供配电系统设计规范6(GB 50052-1995)的 有关规定:/电力负荷根据对供电可靠性的要求及中断供电在政治、经济上所造成的损失或影响分为一级、二级和三级0,/一级负荷应由两个电源供电,当一个电源发生故障时,另一个电源应不致同时受到损坏0。根据这一规定,通信交换局的供电负荷属于一级负荷。通信行业标准5通信电源设备安装工程设计规范6(YD/T 5040-2005)4.1.1条也规定/市电发生异常情况时,为保证仍能对通信负荷和重要动力负荷可靠供电,应配置自备发电机组为自备电源。0电源转换开关是连接双电源的纽带,既要保证在双电源之间进行及时、准确地切换,又要防止双电源同时并列运行。5通信电源设备安装工程设计规范63.1.2条规定/低压市电间切换、市电与油机之间的切换应采用具有电气和机械联锁的切换开关。0 目前,各电信运营商早期局房大都配备了手动转换开关。近年来,随着配电自动化水平的提高,部分局房将手动转换开关更换成了自动转换开关,而各地后 期新建的局房(综合楼)也大多采用了自动转换开关,以减少维护工作量,提高供电安全系统。 自动转换开关电器(Auto matic tr ansfer sw itching equipment)简称为AT SE,有时也简称为AT S 。它由一个(或几个)转换开关电器和其它必需的电器(转换控制器)组成,用于检测电源电路,并将一个或多个负载电路从一个电源转换至另一个电源的自动电器。当存在常用电源和备用电源两个电源的情况时,AT SE 应指定一个常用电源位置,其操作程序则由两个自动转换过程组成。如果常用电源被检测到出现偏差时,则自动将负载从常用电源转换至备用电源;如果常用电源恢复正常时,则自动将负载返回换接到常用电源。换接时间可有预定的延时或无延时,并可处于一个断开位置。ATSE 主要适用于交流不超过1000V 的紧急供电系统。 表1 手动转换开关和自动转换开关综合比较表序号比较项目手动转换开关 自动转换开关 1结构简单复杂2可靠性很高较高3反应时间慢极快4自动化水平低高 5价格低较高 6 应用场合 任意 1000V 以下的供电系统 手动转换开关和自动转换开关各有其优缺点,其 # 57#

双电源自动转换开关的选型

双电源自动转换开关的选型 双电源自动转换开关(英文简称为ATSE)在现今的工作中已经发挥着越来越重要的作用,特别是在一些用电场所。通常情况下,双电源自动切换开关通过一个备用电源,来保证在常用电源出问题后,依然你能够正常使用,具有十分好的可靠性和应急性,从而广受欢迎。可是一些客户在选购时存在误差,仅关注其额定电流和级数,而对决定双电源自动转换开关工作特性的关键指标:转换条件、使用类别和转换时间未加注意。所以很有必要介绍下其基本参数,从而帮助选购。要正确选择双电源自动转换开关的首要条件,就必需明确以下几点参数:额定工作电压Ue、额定工作电流Ie、频率、相数、额定限制短路电流、转换条件、使用类别、转换时间等。 额定工作电压、频率、电流和相数 这些参数仅仅表明双电源自动转换开关满足作为“导体”最基本的要求,其必需能够满足所在地的电压、频率、电流和相数要求,一般电气工程师已经很熟悉。注:电压、频率、相数通常由双电源自动转换开关所在位置的相应参数决定。额定电流按照《IEC62091固定式消防泵控制器》标准规定,用于消防泵的ATSE,额定电流不得低于电机额定电流的115%,从安全的角度考虑,建议ATSE的额定电流统一采用负荷电流的125%(新民规也建议为125%)。 转换条件 我们需要ATSE的目的,就是需要在“特定”的条件下ATSE能够

自动可靠的转换。这个“特定条件”就是ATSE的转换条件,或转换前提,是选择ATSE首要考虑要素。 1 、如果常用电源没有故障,双电源自动转换开关就不能够转换。这是许多用户(甚至厂家)都忽视的问题。双电源自动转换开关的控制器必需能够识别各种电压的瞬间波动,包括非电源故障的短时失压。例如,变电室低压配电母联开关切换属于正常的电源中断,不应该将母联开关切换时的断电判定为电源故障,需要能够判定这种“正常”的断电。控制器必须通过EMC试验,不能够在外部电磁干扰下误动作。注:转换条件由控制器的功能决定,对电源故障的判断方式(包括故障类型的识别)是控制器的核心技术,一般产品资料是不会介绍的,完全看制造商的研发水平和行业经验,需要设计师了解产品的判断机理。 2、在电源故障状况下必需转换。 但由于电源故障种类很多(十几种),所以,需要明确那些故障必需转换。因为用户需求的复杂性,一般供应商都提供多种功能的控制器,所以,设计时必需根据负载对电源质量的要求明确注明转换条件,否则,因为双电源自动转换开关市场供应的混乱以及业主对ATSE 了解不多,导致最后使用的产品往往就只能够在完全失电一种条件下才能够转换,而其它电源故障(包括缺相、过欠电压等)不会转换,失去装的意义。注:因为双电源自动转换开关的功能还没有标准化,设计仅标注产品型号,并不能够保证用户了解所选型号的转换条件,导致实际选用的产品与设计要求相差较大,建议设计注明转换条件。

一分钟学会如何看懂电气控制电路图!

一分钟学会如何看懂电气控制电路图! 一分钟学会如何看懂电气控制电路图! 看电气控制电路图一般方法是先看主电路,再看辅助电路,并用辅助电路的回路去研究主电路的控制程序。电气控制原理图一般是分为主电路和辅助电路两部分。 、 分析联锁与保护环节:生产机械对于安全性、可靠性有很高的要求,实现这些要求,除了合理地选择拖动、控制方案外,在控制线路中还设置了一系列电气保护和必要的电气联锁。在电气控制原理图的分析过程中,电气联锁与电气保护环节是一个重要内容,不能遗漏。 总体检查:经过“化整为零”,逐步分析了每一局部电路的工作原理以及各部分

之间的控制关系之后,还必须用“集零为整”的方法检查整个控制线路,看是否有遗漏。特别要从整体角度去进一步检查和理解各控制环节之间的联系,以达到正确理解原理图中每一个电气元器件的作用。 1、看主电路的步骤 第一步:看清主电路中用电设备。用电设备指消耗电能的用电器具或电气设备, 2 路化整为零,按功能不同划分成若干个局部控制线路来进行分析。如果控制线路较复杂,则可先排除照明、显示等与控制关系不密切的电路,以便集中精力进行分析。 第一步:看电源。首先看清电源的种类。是交流还是直流。其次。要看清辅助电路的电源是从什么地方接来的,及其电压等级。电源一般是从主电路的两条相线上接来,其电压为380V.也有从主电路的一条相线和一零线上接来,电压为单相220V;

此外,也可以从专用隔离电源变压器接来,电压有140、127、36、6.3V等。辅助电路为直流时,直流电源可从整流器、发电机组或放大器上接来,其电压一般为24、12、6、4.5、3V等。辅助电路中的一切电器元件的线圈额定电压必须与辅助电路电源电压一致。否则,电压低时电路元件不动作;电压高时,则会把电器元件线圈烧坏。 第四步:研究电器元件之间的相互关系。电路中的一切电器元件都不是孤立存在的而是相互联系、相互制约的。这种互相控制的关系有时表现在一条回路中,有时表现在几条回路中。 第五步:研究其他电气设备和电器元件。如整流设备、照明灯等。 综上所述,电气控制电路图的查线看图法的要点为:

相关文档
最新文档