硝酸铁冷冻结晶分离技术方案

硝酸铁冷冻结晶分离技术方案
硝酸铁冷冻结晶分离技术方案

佛山南海罗村志力化工有限公司硝酸铁冷冻结晶分离

技术方案

南京泰特化工机械有限公司

硝酸铁冷冻结晶分离技术方案

一,1)处理量要求:

1.1物料名称:硝酸铁反应液(液体硝酸铁)

1.2物料化学成分:硝酸铁(以铁计):铁离子含量:185~200g/L,硝酸含量(以滴定至PH为7做终点计):9.93~10.74mol/L

1.3物料物理数据:溶液比重:1.6±0.02

1.4反应完成后出料至结晶釜之前时温度:80℃

1.5物料黏度数据:NDJ-5S仪器,4号转子,转数60转/min,张角百分比12%,测得黏度,250mPa?s

2),其他要求:

2.1新厂华希盛化工设计硝酸铁为1万吨/年,其中固体产能为6000吨/年。

2.2因市场变化需在此基础上在扩建2倍,则固体产能为12000吨/年,即每天固体产能为40吨/天。按50吨/天设计。

2.3颗粒要求:10-20目,颗粒均匀。

说明:第一套装置以一半的产量设计。

二,设计和验收依据

执行相关的国家、行业现行有效的设计、施工标准和规范,采用最新有效版本。

压力容器执行相关的国家、行业现行有效的设计、施工标准和规范,采用最新有效版本。

包括但不限于如下标准:

《压力容器安全技术监察规程》国家质量技术监督局1999年

《钢制压力容器》GB150

《钢制压力容器-分析设计标准》JB4732

《压力容器法兰》JB4700~4707

《衬里钢壳设计技术规定》HG/T 20678

《钢制管法兰、垫片、紧固件》HG20592~20635

《钢制人孔和手孔》HG/T21514~21535

《钢制压力容器用封头》JB/T4746

《钢制压力容器焊接规程》JB/T4709

《钢制压力容器焊接工艺评定》JB4708

《钢制压力容器产品焊接试板的力学性能检验》JB4744

《承压设备无损检测》JB/T4730.1~.6

《鞍式支座》JB/T 4712

《腿式支座》JB/T 4713

《支承式支座》JB/T 4724

《耳式支座》JB/T 4725

《钢制压力容器焊接规程》JB/T4709

《压力容器涂敷与运输包装》JB/T4711

《压力容器安全技术监察规程》(劳锅字(1990)8号)

《压力容器设计单位资格管理与监督规则》(劳锅字(1992)12号)

《压力容器无损检验》JB4730

《压力容器油漆、包装、运输》JB2532

《钢制化工容器制造技术要求》HG20584

《板式换热器》GB1649

《换热器学会标准—蒸汽表面冷凝器标准》HEI

《管式换热器制造商学会标准》TEMA

《管式换热器》GB151

三,方案选择:

1,本系统的工艺流程如下:

硝酸铁溶液→原料泵→预冷器→结晶冷凝器→结晶器→离心机→排出

2,采用DTB结晶设备,工艺流程见附图。

3,硝酸铁溶液通过进料泵经流量计后先和离心机的分离液换热,然后进入结晶器,通过结晶冷凝器的冷却,在结晶器内,同时由于结晶器内搅拌器的作用,形成的结晶颗粒比较均匀一致。在结晶器的下部,达到一定的固液比后出料,通过离心机分离出含结晶水的硫酸钠。

溢流液和分离液返回前面的处理系统。

四,设备材料的选择:

设备材料304不锈钢材料。

1)、冷凝器、预冷器:

冷凝器为列管式冷凝器。换热管规格为φ38,冷凝器管程及管板材质采用选用304不锈钢材料,冷凝器壳程材质:304不锈钢材料。

2)、结晶器:结晶器采用304不锈钢材料制作。设有搅拌、导流,溢流,人孔、视孔、温度计、真空表等装置。

3)、进料泵:采用材质为304不锈钢材料材料的泵为进料泵。

4)、循环泵:

循环泵要求密封良好,能使高浓度物料或结晶物料连续出料工作,材质为304不锈钢材料。

5)、工艺配件:工艺管道采用304不锈钢材料。

6)、仪表:所有压力、温度、真空用传感器检测,数字现场显示。

7)、分离设备说明:

采用双级活塞推料型离心机,实行连续进出料操作。同时也减轻工人劳动强度。

五,设备价格

设备名称规格材料数量单价总价备注

原料罐50M3304 1 自备

进料泵IH50 304 2 一开一备

流量计Q-10 304 1

预冷器30㎡304 1 4.2 4.2 壳程304

DTB结晶器30000L 304 1 23.4 23.4

冷凝器200㎡304 1 26.0 26.0 壳程304

管道循环泵IS80 304 1 冷冻水循环

循环泵SPP200 304 1 3.2 3.2 物料循环

离心机HR400 304 1 提供参数

管道法兰304 提供参数

阀门304 提供参数

仪表提供参数

电控柜提供参数

自控部分提供要求

操作平台提供图纸

安装费指导安装

设备保温提供要求

技术服务费 5.0

运费 1.2

总价63.0

六,技术服务:

积极履行自己对买方的各项承诺。保证与买方做最积极友好的配合,现场服从买方的指令。

工程竣工以后,我方会安排专业人员与买方保持长期、良好的技术交流和协作关系,每6个月派工程师上门进行回访1次,并设质量保修服务电话,在接到电话后,保证于48小时内派人到达现场。

七、交货期:合同生效后45天交货,设备安装结束后,设备调试10天。

八,付款方式:合同签定后预付合同的40%,发货时付至90%,项目施工完毕且调试达到合同的要求并正常运行时付至合同总价的95%,留5%为质保金,一年内无工艺、设备及施工质量问题,甲方一次性付清余款。

九,服务承诺:设备质量保修期一年,期内三包,设备终身优惠供应配件。

南京泰特化工机械有限公司

结晶分离技术

结晶分离技术新进展 【摘要】:概述了结晶分离理论和模拟优化的发展,综述了冷却剂直接接触冷却结晶、反应结晶、蒸馏2结晶耦合、氧化还原2结晶液膜、萃取结晶、磁处理结晶等结晶分离方法。合理设计结晶器及结晶工艺是实现结晶分离工业化的可靠保证,对降膜结晶装置、Bremband 结晶工艺和板式结晶器进行评价。指出今后需深入进行新型结晶分离装置与工艺、工艺的工业化、结晶过程传热传质机理方面的研究。 关键词:结晶;分离;结晶器;工艺 【摘要】:概述了结晶分离理论和模拟优化的发展 ,综述了冷却剂直接接触冷却结晶、反应结晶、蒸馏结晶耦合、氧化还原结晶液膜、萃取结晶、磁处理结晶等结晶分离方法。合理设计结晶器及结晶工艺是实现结晶分离工业化的可靠保证 ,对降膜结晶装置、Bremband结晶工艺和板式结晶器进行评价。指出今后需深入进行新型结晶分离装置与工艺、工艺的工业化、结晶过程传热传质机理方面的研究。 溶液结晶在物质分离纯化过程中有着重要的作用,随着工业的发展,高效低耗的结晶分离技术在石油、化工、生物技术及环境保护等领域的应用越来越广泛,工业结晶技术及其相关理论的研究亦被推向新的阶段,国内外新型结晶技术及新型结晶器的开发设计工作取得了较大进展。 1 结晶理论的发展 结晶分离过程为一同时进行的多相非均相传热与传质的复杂过程。多年来,众多研究者在结晶热力学、结晶成核、晶体生长动力学、结晶习性、晶体形态及杂质对结晶过程的影响等方面进行了大量基础性研究并提出了描述结晶过程的理论[1 ] ,例如,粒数衡算理论及其相关理论、评价熔融结晶过程以及熔化过程的一些关系式的提出等; Kirwan 和Pigford 基于活化状态模型发展了熔融液中晶体生长的界面动力学绝对速度理论[2 ] ;将计算流体力学的方法与粒数衡算理论相结合,通过模拟的方法揭示沉析动力学和流体力学之间的相互作用等。结晶是一个重要的化工过程,溶质从溶液中结晶出来要经历两个步骤:晶核生成和晶体生长。晶核生成是在过饱和溶液中生成一定数量的晶核;而在晶核的基础上成长为晶体,则为晶体生长。影响整个结晶过程的因素很多,如溶液的过饱和度、杂质的存在、搅拌速度以及各种物理场等。例如声场对结晶动力学的影响,张喜梅等[3 ]就系统地研究了声场对溶液成核、溶液稳定性及晶体生长的影响,并深入探讨了其影响机理,为创造一种靠外力场强化工业结晶过程新单元操作提供了理论依据,将促进溶液结晶理论的发展。在过饱和溶液中附加声场,会产生空化气泡,气泡的

硫酸钠性质及制备方法

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/7318014491.html,)硫酸钠性质及制备方法 硫酸钠是硫酸根与钠离子化合生成的盐,硫酸钠溶于水且其水溶液呈弱碱性,溶于甘油而不溶于乙醇。下面简单介绍一下硫酸钠性质及制备方法。 物理性质 外观与性状:单斜晶系,晶体短柱状,集合体呈致密块状或皮壳状等,无色透明,有时带浅黄或绿色,易溶于水。白色、无臭、有苦味的结晶或粉末,有吸湿性。外形为无色、透明、大的结晶或颗粒性小结晶。硫酸钠是含氧酸的强酸强碱盐。 结构:单斜、斜方或六方晶系。 溶液:硫酸钠溶液为无色溶液。 熔点:884℃(七水合物于24.4℃转无水,十水合物为32.38℃,于100℃失10H 2O) 沸点:1404℃相对密度: 2.68g/cm 3 热力学函数(298.15K,100kPa): 标准摩尔生成热ΔfHmθ(kJ·mol):-1387.1 标准摩尔生成吉布斯自由能ΔfGmθ(kJ·mol^-1):-1270.2 标准熵Smθ(J·mol^-1·K^-1):149.6 溶解性:不溶于乙醇,溶于水,溶于甘油。

溶解度: 温度 ℃ 1 ℃ 2 ℃ 3 ℃ 4 ℃ 5 ℃ 6 ℃ 7 ℃ 8 ℃ 9 ℃ 1 ℃ 溶解度 4 . 9 9 .1 1 9. 5 4 0. 8 4 8. 8 4 6. 2 4 5. 3 4 4. 3 4 3. 7 4 2. 7 4 2 . 5 结晶水:24℃以下:7H 2O 32.4℃以下:10H 2O 无水硫酸钠或1H 2O 化学性质 水解:SO 4 2-+H +=HSO 4 - Na 2SO 4+H 2O=NaHSO 4+NaOH 水解过程吸热,因此有凉感;水解生成OH -,因此溶液呈弱碱性并有苦涩味。复分解反应:BaCl 2+Na 2SO 4=BaSO 4↓+2NaCl;

结晶原理

结晶原理 溶质从溶液中析出的过程,可分为晶核生成(成核)和晶体生长两个阶段,两个阶段的推动力都是溶液的过饱和度( 结晶 溶液中溶质的浓度超过其饱和溶解度之值)。晶核的生成有三种形式:即初级均相成核、初级非均相成核及二次成核。在高过饱和度下,溶液自发地生成晶核的过程,称为初级均相成核;溶液在外来物(如大气中的微尘)的诱导下生成晶核的过程,称为初级非均相成核;而在含有溶质晶体的溶液中的成核过程,称为二次成核。二次成核也属于非均相成核过程,它是在晶体之间或晶体与其他固体(器壁、搅拌器等)碰撞时所产生的微小晶粒的诱导下发生的。对结晶操作的要求是制取纯净而又有一定粒度分布的晶体。晶体产品的粒度及其分布,主要取决于晶核生成速率(单位时间内单位体积溶液中产生的晶核数)、晶体生长速率(单位时间内晶体某线性尺寸的增加量)及晶体在结晶器中的平均停留时间。溶液的过饱和度,与晶核生成速率和晶体生长速率都有关系,因而对结晶产品的粒度及其分布有重要影响。在低过饱和度的溶液中,晶体生长速率与晶核生成速率之比值较大(见图),因而所得晶体较大,晶形也较完整,但结晶速率很慢。在工业结晶器内,过饱和度通常控制在介稳区内,此时结晶器具有较高的生产能力,又可得到一定大小的晶体产品。晶 导流筒结晶设备 体在一定条件下所形成的特定晶形,称为晶习。向溶液添加或自溶液中除去某种物质(称为晶习改变剂)可以改变晶习,使所得晶体具有另一种形状。这对工业结晶有一定的意义。晶习改变剂通常是一些表面活性物质以及金属或非金属离子。晶体在溶液中形成的过程称为结晶。结晶的方法一般有2种:一种是蒸发溶剂法,它适用于温度对溶解度影响不大的物质。沿海地区“晒盐”就是利用的这种方法。另一种是冷却热饱和溶液法[2]。此法适用于温

结晶分离技术在制药工业中的应用

《结晶分离技术在制药工业中的应用》 学院:化学化工学院 专业:制药工程 班级:121班 姓名:陈子阳 学号:20120934105 日期:2014年12月10日

摘要:结晶分离技术在制药工业中的应用非常广泛,为数众多的原料药及医药中间体的最终分离或提纯都是应用结晶方法进行,并且形成晶态物质的最终产品,所以,结晶过程又是直接影响产品质量的重要环节之一。目前制药工业由于其产量小、间歇操作等特点,其实用的结晶器多数属于比较落后的老设备。 关键词:结晶结晶过程结晶分离结晶器 一、结晶的基本原理 结晶是固体物质以晶体状态从蒸气、溶液或熔融物中析出的过程。结晶是对固体物料进行分 离、纯化的单元操作过程,显然固体物质(溶质) 在溶剂中的溶解度直接影响到结晶过程。而溶液 的过饱和度则是工业结晶工程进行的主要推动力。

能够与固相处于平衡的溶液就称为该固体的饱和溶液,而此时的溶解度则是该溶质的饱和溶解度。我们通过溶解度平衡曲线来表现不同温度下溶质在同一溶剂的溶解度是不同的。若将过饱和溶液继续冷却,那么澄清的溶液中就会开始析出晶核,这种不稳定的状态区称为不稳区。标志溶液过饱和而欲自发地产生晶核的极限浓度曲线称为超溶解度曲线,它与溶解度平衡曲线之间的区域称为结晶的介稳区。 在工业结晶过程中只有尽量控制在介稳区才能避免自发成核以得到平均粒度较大的晶体。溶液的过饱和是发生晶析过程的必要条件。 二、结晶的过程 在结晶的实践中可以观察到推动力越大,结晶

速率愈大的现象,而且在这种情况下往往获得的结晶颗粒数且颗粒细微;相反则会获得较少的颗粒数和较大的晶粒。将析出结晶的细微颗粒连同母液一起放置,结果是颗粒数减少而颗粒增大。因此在结晶析出的过程中存在着晶核的生成和晶体的成长两个并存的过程。 在工业结晶过程中首先要力图避免发生初级成核,以防止由于晶核的过多而造成晶体无法继续成长。结晶时间的延长有利于晶体的成长。同时为了达到较高的纯度,往往需要对晶体进行重结晶操作。 三、结晶分离技术的发展与研究 结晶分离技术近年来发展很快,除了传统的冷却结晶、蒸发结晶、真空结晶等进一步得到发 展与完善外,新型结晶技术如等电点结晶,加压结 晶、萃取结晶等也都在工业上得已应用或正在推

熔融结晶技术

熔融结晶技术 摘要: 关键字: 一、前言 结晶作为一种典型的化工单元操作,在产品的分离精制过程中有着重要的作用。结晶是固体物质以晶体状态从蒸汽、溶液或熔融物中析出的过程[20]。众多的化工产品及中间体产品等晶态物质都是应用结晶方法分离或提纯而形成的。按大化学工程产品品种计,约有2/3 的品种是固体产品;在制药行业中也有85%的产品是固体形态[21]。在食品、化肥、冶金、医药、染料、材料等工业中,结晶都是关键的单元操作[22]。工业结晶一般可以分为溶液结晶、熔融结晶、升华结晶和沉淀结晶四大类,其中,熔融结晶技术是一种高效低能耗的有机物分离提纯方法,是上世纪六十年代开发、七十年代发展起来的一种新型分离技术,现在正逐渐受到国内外科学界与工业界的关注[23]。这主要有两方面的原因:一是由于社会环保型生产技术的要求。熔融结晶不需要溶剂,因而除去了溶剂回收工序,减少了污染。二是由于工业生产上对有机物纯度的要求越来越高[21]。比如在医药工业中[24],药物的应用达不到应有的效果常常是由于其提炼不纯、微量毒副作用物质的存在引起的,而熔融结晶分离出的产品的纯度很容易达到ppm 级的要求。相对于常规的分离方法,如精馏等,熔融结晶分离有机物需要的操作温度较低,物质的结晶潜热远低于汽化潜热,因此能耗低,而且还很容易制备高纯或超纯产品。因为对于很多同分异构体的有机物,其沸点相差很小,精馏法往往不能适用,然而它们的熔点通常相差都比较大,利用熔融结晶的方法可以将其分离开来;精馏法也不能用于一些热敏性有机物的分离,因为这些有机物容易在高温下发生分解或聚合,但是熔融结晶分离过程的操作温度通常比精馏低,因而能够很好地将这些物质分离提纯。 二、熔融结晶的基本概念 2、1熔融结晶 熔融结晶是一种新型的分离技术,它是根据待分离物质之间凝固点的不同,通过逐步降低初始液态混合物进料的温度达到部分结晶来实现的,结晶析出的固体相具有与残液不同的化学组成,从而达到分离提纯的目的[19](硕士论文和树宝)2、2熔融结晶原理 熔融结晶过程的推动力是熔融液中某组分的过饱和度或者过冷度,其过程分为结晶和发汗两个过程。结晶过程是熔融液的温度在逐渐下降的过程中,某组分在熔融液中处于过饱和状态,开始成核,并逐渐增长为晶体;晶体在增长过程中,不可避免的会将母液的杂质包藏到粗晶体中,所以粗晶体要经过发汗过程来提纯。下面简要介绍一下结晶、发汗的机理和晶层杂质的包藏。熔融结晶过程可分为结晶和发汗两个过程。 2、2、1结晶机理

结晶分离技术

结晶分离技术 摘要:概述了结晶分离技术的原理, 综述了冷却剂直接触冷却结晶、反应结晶、蒸馏结晶耦合、氧化还原结晶液膜、萃取结晶、磁处理结晶等结晶分离方法。并且介绍了结晶分离新技术在一些领域的应用。 关键词:结晶;分离;应用; 溶液结晶在物质分离纯化过程中有着重要的作用, 随着工业的发展, 高效低耗的结晶分离技术在石油、化工、生物技术及环境保护等领域的应用越来越广泛, 工业结晶技术及其相关理论的研究亦被推向新的阶段, 国内外新型结晶技术及新型结晶器的开发设计工作取得了较大进展。 结晶理论的发展 结晶分离过程为一同时进行的多相非均相传热与传质的复杂过程。多年来,众多研究者在结晶热力学、结晶成核、晶体生长动力学、结晶习性、晶体形态及杂质对结晶过程的影响等方面进行了大量基础性研究并提出了描述结晶过程的理论[1 ] ,例如,粒数衡算理论及其相关理论、评价熔融结晶过程以及熔化过程的一些关系式的提出等; Kirwan 和Pigford 基于活化状态模型发展了熔融液中晶体生长的界面动力学绝对速度理论[2 ] ;将计算流体力学的方法与粒数衡算理论相结合,通过模拟的方法揭示沉析动力学和流体力学之间的相互作用等。结晶是一个重要的化工过程,溶质从溶液中结晶出来要经历两个步骤:晶核生成和晶体生长。晶核生成是在过饱和溶液中生成一定数量的晶核;而在晶核的基础上成长为晶体,则为晶体生长。影响整个结晶过程的因素很多,如溶液的过饱和度、杂质的存在、搅拌速度以及各种物理场等。例如声场对结晶动力学的影响,张喜梅等[3 ]就系统地研究了声场对溶液成核、溶液稳定性及晶体生长的影响,并深入探讨了其影响机理,为创造一种靠外力场强化工业结晶过程新单元操作提供了理论依据,将促进溶液结晶理论的发展。在过饱和溶液中附加声场,会产生空化气泡,气泡的非线性振动以及气泡破灭时产生的压力,使体系各点的能量发生变化。体系的能量起伏很大,使分子间作用力减弱,溶液粘度下降,增加了溶质分子间的碰撞机会而易于成核,且气泡破灭时除产生的压力外,会产生云雾状气泡,这有助于降低界面能,使具有新生表面的晶核质点变得较为稳定,得以继续长大为晶核。这些都丰富了结晶理论,为结晶理论的进一步发展开辟了新领域。结晶过程所形成的组织结构主要由结晶过程固液界面的形态、晶体生长特征所决定。近年来,国际上越来越多的研究者认识到,开展对结晶过程晶体形貌结构特征的研究,对控制晶体的微观结构并获得所期望的材料性能具有重要意义。 1.结晶分离技术的研究进展 结晶分离技术近年来发展很快,传统结晶法进一步得到发展与完善,新型结晶技术也正在工业上得到应用或推广。随着国际化工市场的竞争日趋激烈,要求化工产品的质量不断提高而成本则不断降低,因此,人们在研究开发新的结晶技术过程中更加重视结晶方法的选择、新型结晶器的开发及结晶工艺的设计。 2.结晶分离技术的分类 结晶分离技术近年来发展很快, 传统结晶法进一步得到发展与完善, 新型结晶技术也正在工业上得到应用或推广。随着国际化工市场的竞争日趋激烈, 要求化工产品的质量不断提高而成本则不断降低, 因此, 人们在研究开发新的结晶技术过程中更加重视结晶方法的选择、

(完整版)硫酸钠三效结晶蒸发器介绍及调试

硫酸钠三效结晶蒸发器介绍及调试: 一、原理: 蒸发器是通过加热使溶液浓缩或从溶液中析出晶粒的设备。主要由加热室和蒸发室两部分组成。加热室向液体提供蒸发所需要的热量,促使液体沸腾汽化。蒸发室使气液两相完全分离。加热室中产生的蒸汽带有大量液沫,到了较大空间的蒸发室后,这些液体借自身凝聚或除沫器等的作用得以与蒸汽分离。 二、调试: 正常开车程序: 1.打开效间浓缩液管阀门,开原水泵加水至各效蒸发室上部视镜后停原水泵,关效间浓缩液管阀门,各效间闪蒸罐下部阀门开1/3,上部阀门关闭。如果安装有换热室不冷凝气排出口,同时关闭不冷凝气阀门。真空泵开前控制阀门关闭2/3左右,确保真空泵不过载。开启循环冷却水阀门及循环冷却水水泵。 2.依次打开各效强制循环泵,出盐泵,真空泵(如果真空度过高,真空泵震动且噪音增大,可适当开启真空泵的气蚀阀门,适当吸气真空度调至-0.08左右)。 3.等一、二效蒸发室蒸发后缓慢调整闪蒸罐下部阀门,以抽出大量冷凝水,微量蒸汽为准,末效蒸发室开始蒸发后,调整真空度-0.08左右。 4.时刻观察二次蒸汽压力表,防止压力到达正压(此时说明换热器有存水,此时开大闪蒸罐下部阀门)。同时查看冷凝器与真空泵前的视盅,看蒸发水量。5.一效蒸发室液位下降至中部视镜后,开原水泵进水,维持液位稳定,待各效蒸发室蒸发后,打开效间浓缩液管阀门调整各效液位平衡。 6.整个系统运行稳定后,可根据出水量提高蒸汽温度、压力、原水进水量达到设计要求。 7.随时观察收晶罐是否有盐析出,部分关闭盐分离器上部清液回流阀,使整个盐分离器及收晶罐处于正压状态,便于盐分的排出;勤于观察,做到随时排盐防止堵塞。 8.三效硫酸钠晶体浓度达到15%以后,开启离心机,分离的硫酸钠固体排至储料池,滤液回到滤水罐。滤水罐满后自动开启抽液泵,将滤水罐内的液体送至

添加剂对硫酸钠晶体粒度的影响

添加剂对硫酸钠晶体粒度的影响 唐 娜,白丽荣,沙作良,王学魁,韩焱熙(天津科技大学海洋科学与工程学院,天津 300457) 摘 要: 溶液结晶过程中,添加剂的加入对晶体的结晶动力学和热力学特征将产生一 定的影响。文章研究了十二烷基苯磺酸钠和重铬酸钾作为添加剂对无水硫酸钠晶体粒度的影响。研究结果表明:十二烷基苯磺酸钠的加入增大了硫酸钠结晶过程的界面能,从而抑制自发成核过程的发生,促进晶体的生长,改善晶体的粒度。分别以十二烷基苯磺酸钠和重铬酸钾作为添加剂,在有效添加剂量为40m g /k g 时,0.177m m 以上硫酸钠筛上物分别为67.18%和51.12%。搅拌速度对硫酸钠晶体粒度有重要影响,正交实验确定的最佳结晶控制条件为:添加剂加入量40m g /k g 、搅拌速度240r /m i n 、晶种量40g 、停留时间40m i n 。 关键词: 添加剂;硫酸钠;结晶;晶体粒度 中图分类号:T Q 131.1 文献标识码:A 文章编号:1673-6850(2007)06-0001-03 T h e E f f e c t o f A d d i t i v e s o n C r y s t a l S i z e o f S o d i u mS u l p h a t e T A N GN a ,B A I L i r o n g ,S H AZ u o l i a n g ,WA N GX u e k u i ,H A NY a n x i (C o l l e g e o f M a r i n e S c i e n c e a n d E n g i n e e r i n g ,T i a n j i n U n i v e r s i t y o f S c i e n c e & T e c h n o l o g y ,T i a n j i n 300457,C h i n a ) A b s t r a c t : T h e a d d i t i v e s w i l l e f f e c t t h e c h a r a c t e r i s t i c s o f c r y s t a l d y n a m i c s a n d c r y s t a l t h e r m o -d y n a m i c s i n a a q u e o u s s o l u t i o n c r y s t a l l i z a t i o n p r o c e s s .T h e e f f e c t o f a d d i t i v e s o nt h e c o n t r o l o f c r y s -t a l s i z e f o r s o d i u m s u l p h a t e i s d i s c u s s e d i n t h e p a p e r .T h e a d d i t i v e s c h o s e n a r e t h e s o d i u m d o d e c y l b e n z e n es u l f o n a t e a n dp o t a s s i u mb i c h r o m a t e r e s p e c t i v e l y .T h e r e s u l t s s h o w s t h a t t h e c r y s t a l l i z a t i o n i n t e r f a c i a l e n e r g y o f s o d i u m s u l p h a t ei s i n c r e a s e dw i t hs o d i u m d o d e c y l b e n z e n es u l f o n a t ea s a d d i -t i v e ,t h e nt h e c r y s t a l n u c l e u s f o r m a t i o ni s i n h i b i t e d c r y s t a l g r o w t h i s p r o m o t e d a n d c r y s t a l s i z e i s i m -p r o v e d .U s i n gt h es o d i u m d o d e c y l b e n z e n es u l f o n a t ea n dp o t a s s i u m b i c h r o m a t ea sa d d i t i v e s ,t h e c r y s t a l s i z e s w h i c h a r e b i g g e r t h a n 0.177m m a r e 67.18%a n d 51.12%r e s p e c t i v e l y ,t h e c o n c e n t r a -t i o n o f b o t h a d d i t i v e s a r e 40m g /k g .T h eo p t i m u mt e c h n o l o g yw a s s t u d i e du s i n go r t h o g o n a l t e s t d e -s i g n :t h e c o n c e n t r a t i o n o f a d d i t i v e i s 40m g /k g ,t h e s t i r r i n g r a t e i s 240r /m i n ,t h e w e i g h t o f c r y s t a l s e e di s 40g ,a n dt h e r e t e n t i o nt i m e i s 40m i n ,t h e m i x i n g s p e e di s t h e m o s t i m p o r t a n t f a c t o r w h i c h e f f e c t t h e c r y s t a l s i z e o f s o d i u m s u l p h a t e . K e yw o r d s : a d d i t i v e ;s o d i u ms u l p h a t e ;c r y s t a l l i z a t i o n ;c r y s t a l s i z e 收稿日期:2007-04-19作者简介:唐娜(1972-),女,汉族,辽宁海城人,博士,副教授,主要研究方向:海卤水资源综合利用、膜分离、海水淡化。 1 前言 无水硫酸钠是日常生活和工业经济中不可缺少 的商品和原料,主要产于美国、加拿大、日本等国家。近几年我国无水硫酸钠市场中一般粒度的无水硫酸 钠的供给已远大于需求[1] ,而大颗粒无水硫酸钠以其纯度高、质量好、外形美观、容易与母液分离、易电解、溶解度小、洗涤方便等优点而畅销[2] 。目前,国内生产大颗粒无水硫酸钠的工艺条件还处于探索阶 段,市售的无水硫酸钠产品粒度都比较小。在盐类溶液结晶过程中,晶体的粒度与粒度分布与晶体的成核速率和生长速率、晶体在结晶器内 停留时间关系密切[3] 。微量的表面活性剂在无机盐饱和液中具有降低表面张力和增大溶液表面活性的作用,使溶液的结晶速率发生变化,从而可以控制晶体产品的粒度[4] 。添加剂的存在可以促进成核,也可减慢晶核的形成速率,或抑制晶核生长,但对不 1  第36卷第6期 盐业与化工

冷冻结晶技术+膜过滤组合工艺处理硫酸钠废水的优越性

冷冻结晶技术+膜过滤组合工艺处理硫酸钠废水的优越 性 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

冷冻结晶技术+膜过滤组合工艺处理硫酸钠废水的优越性 在化工企业中,有许多废水是含较高浓度的硫酸钠废水,因含盐量较高无法直接进行生化处理,因此一般采用多效蒸发结晶技术,得到无水硫酸钠固废,冷凝水回用或进一步处理;近些年随着MVR热泵蒸发器的兴起,因其较低的处理能耗得到较多推崇,但是由于压缩风机均为进口设备,投资较高。那么,究竟有没有一个投资相对更小、处理能耗更低的工艺路线呢。 针对硫酸钠的物料特性,其既可以通过蒸发得到无水硫酸钠结晶,又可以通过冷冻得到含十个结晶水的芒硝(即十水硫酸钠);同时,随着膜浓缩技术的进步,通过膜浓缩可以将原料液及结晶母液浓度提升至15%左右,因此我们独辟蹊径,采用膜浓缩及冷冻结晶脱硝组合工艺,得到芒硝晶体及膜过滤得到的洁净水。 那么,这种组合结晶的工艺和多效蒸发结晶技术、MVR蒸发结晶技术相比,在投资及能耗上究竟有多大优势及合理性呢,就此,我们以日处理200吨含量为18%的硫酸钠废水为例,进行具体比较。 一、设计条件: 每天处理200m3其中含硫酸钠18%,比重为1131kg/m3,按每天运行20小时计。 来料温度200C 二、设备选型 根据硫酸钠的特性及本系统废水中硫酸钠的含量,可选用下列几种处理方式 1)通过冷冻结晶+膜浓缩组合处理工艺得到十水硫酸钠与纯水。 2)通过多效强制循环蒸发工艺得到硫酸钠。 3)通过热泵+多效强制循环蒸发组合处理工艺得到硫酸钠。

三、各处理工艺介绍 1、冷冻结晶+膜浓缩组合处理工艺 (1)工艺流程 200C的物料溶液通过连续冷冻结晶器通过不断冷却产生过饱和度从而得到十水硫酸钠警惕,出料泵取出的晶浆经稠厚器进一步消除饱和度后进入离心机固液分离后,固体进入下工序,母液进入膜过滤工序进行再浓缩,可将母液浓度提升至15%左右,浓缩后的纯水进入生产工序回用,浓缩液进入结晶器继续参与结晶。 通过结晶得到十水硫酸钠作为固体产品与纯水,母液则通过膜浓缩在体系内循环继续参与结晶。 (2)工艺特点: 1)为了使晶体有更好的生长环境和更高的收率、更低的能耗,采用本方案采用母液预冷+冷冻水冷却结晶。采用预冷换热,可以有效利用能量,运行费用低,操作稳定性好。 2)配大流量、低扬程、低转速的轴流泵作为循环动力,可以使物料均匀冷却,避免产生大量细晶核。并防止了循环晶浆中的晶粒与循环泵的叶轮高速碰撞而出现大量二次成核现象。 3)根据结晶数据曲线及结晶要求,结晶器采用了外冷式的Krystal分级结晶器。 4)本装置可采用人工控制或自动控制,操作简单、稳定。 5)可充分利用冷量,能量消耗低。 (3)工艺能耗 冷冻机组功率消耗:440Kw/h 其他设备功率消耗(不含离心机功率):80Kw/h。 电费按0.6元/kw,则每小时的总能量消耗为:312元/小时,约合处理每立方水的成本为:31.2元。 (4)结晶器设备投资

20XX某化厂硫酸铵浓缩结晶分离干燥技术方案

页眉 某化厂硫酸铵浓缩结晶分离干燥技术方案 一,技术要求: EF项目废水经中和,脱色,硫酸铵浓缩,结晶,干燥得到副产品硫酸铵。 硫酸铵溶液蒸发浓缩,硫酸铵浓度为18.21﹪,每小时处理量为12吨,每小时需蒸发的水量为9.6吨水,并对硫酸铵进行回收。 二,方案选择: 1,采用三效蒸发浓缩设备,工艺流程见附图。 2,硫酸铵溶液通过进料泵经流量计进入预热器后,再进入一效加热器,在一效

蒸发器内进行蒸发,蒸发出的二次蒸汽供二效加热器使用,由于真空作用,一效蒸发器蒸发过的溶液进入二效加热器再次加热并进入二效蒸发器进行蒸发,在二效蒸发过程中,考虑到有部分晶体析出,因此在二效蒸发器下部加装一台强制循环泵,避免结晶的物料粘附到加热管的内壁上。达到一定浓度后的溶液进入三效蒸发器再次蒸发,同样原因三效蒸发器也加装了一台循环泵。过饱和的物料在三效蒸发器的下部完成结晶。结晶完成后进入离心机分离出硫酸铵晶体,分离出的溶液回到蒸发器继续蒸发浓缩,将硫酸铵晶体通过气流干燥达到含水要求后,再用包装机组进行包装,得到每袋50公斤的成品硫酸铵。蒸发出的水和汽通过预热器、冷凝器后进入液封槽,再通过水泵排走。 三,设备材料的选择: 根据以往我们生产过的设备,设备材料选用1Cr18Ni9Ti不锈钢材料。 四,设备说明及价格 页脚 页眉 A:三效浓缩设备设备说明: 1)、加热器: 一、二、三效蒸发器为列管式加热,加热管规格为φ38,加热器管程及管板材质采用选用1Cr18Ni9Ti不锈钢,壳程材质:Q235B/8mm的碳钢材料。 2)、蒸发器:蒸发器采用1Cr18Ni9Ti不锈钢材料。设有人孔、视孔、温度计、真空表等装置。 3)、预热器:预热器为列管式加热,,加热管规格为φ38,预热器管程及管板材质为1Cr18Ni9Ti不锈钢材料,壳程材质:Q235B/6mm的碳钢材料。

工业硫酸钠的生产方法

(一) 芒硝类矿产资源的加工 工业无水硫酸钠的制取,大多数都是采用两步法工艺流程。第一步析出芒硝或含有硫酸钠的复盐,第二步将精选后的芒硝加工成成品。 由含Na2SO4 的天然盐(卤)水或人工盐(卤)水制取芒硝的方法有滩田法和工厂法(冷冻法)。 1.滩田法 此法是加工天然盐(卤)水和人工盐(卤)水最经济的方法,它主要是利用太阳能蒸发水分和进行自冷冻。此法适用于气候干燥、有沉积芒硝类矿层、干盐湖或存在地下盐水、晶间卤水地区。 根据生产任务的大小,可以使用一个晒盐池或一套滩田系统。盐水池的数目按照加工工艺而定,盐池的大小则取决于生产季节、加工溶液的总量、气候条件和溶解盐的性质和浓度。盐水的加工可以在静态或动态下进行。静态下加工是利用有冬季结晶出芒硝,例如山西运城盐湖。 2.工厂法 工厂法是冷冻含Na2SO4 的盐水制取芒硝结晶的方法,是用真空结晶或用制冷剂进行热交换的冷却结晶。 结晶方式可根据技术经济效果和母液的用途来选择。采用真空冷却结晶可使被冷却体系的温度达到0~5℃,当母液不作为废液排出时采用此法。采用制冷剂进行热交换的冷却结晶法,是从天然盐水和人工制备的海水型盐水,或从平均气温偏高地区的地下浸取芒硝矿时得到的浸取液制取芒硝时使用。 (二) 工业无水硫酸钠的制取 中国芒硝资源丰富,种类较多,生产工业无水硫酸钠的工艺也不同,目前国内主要的生产方法有: 1.以天然芒硝矿为原料的全溶蒸发脱水法 以天然硝矿为原料生产工业无水硫酸钠,采用的生产方法为全溶蒸发脱水法。在乡镇企业中,将天然硝矿全部溶解生产30°~31°Be的饱和溶液,经澄清后,除去固体杂质,再经蒸发,离心脱水,干燥后即可制得成品。该生产工艺的蒸发脱水主要有平锅法和火塔法。平锅法现在江苏省洪泽县西顺河矿区和四川眉山、丹棱、雅安、新津一带约300余家乡镇企业采用。该方法的优点是:设备简单,工艺简单,投资小,收效快;缺点是:能耗高,产量小,产品质量差,环境污染严重。 火塔法是使芒硝溶液和烟道气在钢板制的塔中进行直接逆流换热的一种方法。蒸发的蒸汽和烟气从塔顶由引风机抽走,含无水硫酸钠结晶的悬浮液从塔底引出,经离心机甩干即制得含Na2SO4 85%的产品。该法的优点是操作简便,耗煤低。缺点是设备腐蚀严重,环境污染严重,劳动强度大,产品质量差等。 2.以盐湖卤水为原料制取工业无水硫酸钠 以盐湖卤水为原料,经滩晒、自然冷冻制得粗芒硝。因自然冷冻芒硝中带入部分泥沙等固体杂质,故盐池芒硝(水硝)也采用全溶蒸发脱水制取无水硫酸钠。其生产过程与以矿硝为原料的生产方法一致。 1982年,山西运城盐化局首创四效真空蒸发末效二次蒸汽余热化硝生产方法,这种新工艺至今还在该局发挥着重要作用,由于生产技术管理的不断完善,生产工艺日臻成熟。四效蒸发工艺明显的优势是节能,从而节约了投资。这种工艺广泛地应用于以十水芒硝为原料

各种结晶过程分析

编号:AQ-JS-05574 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 各种结晶过程分析 Analysis of various crystallization processes

各种结晶过程分析 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 一、冷却结晶 冷却结晶法基本上不去除溶剂,溶液的过饱和度系借助冷却获得,故适用于溶解度随温度降低而显著下降的物系,如KNOs、NaNOs、MgSO‘等。 冷却的方法可分为自然冷却、间壁冷却或直接接触冷却3种。自然冷却是使溶液在大气中冷却而结晶,其设备构造及操作均较简单,但由于冷却缓慢,生产能力低,不易控制产品质量,在较大规模的生产中已不被采用。间壁冷却是广泛应用的工业结晶方法,与其他结晶方法相比所消耗的能量较少,但由于冷却传热面上常有晶体析出(晶垢),使传热系数下降,冷却传热速率较低,甚至影响生产的正常进行,故一般多用在产量较小的场合,或生产规模虽较大但用其他结晶方法不经济的场合。直接接触冷却法是以空气或与溶液不互溶的碳氢化合物或专用的液态物质为冷却剂与溶液直接接触而

冷却,冷却剂在冷却过程中则被汽化的方法。直接接触冷却法有效地克服了间壁冷却的缺点,传热效率高,没有晶垢问题,但设备体积较大。 二、蒸发结晶 蒸发结晶是使溶液在常压(沸点温度下)或减压(低于正常沸点)下蒸发,部分溶剂汽化,从而获得过饱和溶液。此法主要适用于溶解度随温度的降低而变化不大的物系或具有逆溶解度变化的物系,如NaCl及无水硫酸钠等。蒸发结晶法消耗的热能最多,加热面的结垢问题也会使操作遇到困难,故除了对以上两类物系外,其他场合一般不采用。 三、真空冷却结晶 真空冷却结晶是使溶液在较高真空度下绝热蒸发,一部分溶剂被除去,溶液则因为溶剂汽化带走了一部分潜热而降低了温度。此法实质上是冷却与蒸发两种效应联合来产生过饱和度,适用于具有中等溶解度物系的结晶,如KCl、MgBr2等。该法所用的主体设备较简单,操作稳定。最突出之处是器内无换热面,因而不存在晶垢

冷冻脱硝工艺简介

1、技术原理 冷冻法是物理方法,将含硫酸根的盐水冷冻降温,硫酸根将以芒硝的形式结晶析出。当盐水中硫酸根质量浓度小于25g/L时,该法受到成本限制。硝分离单元是通过冷冻结晶使富硝盐水中的硫酸根以芒硝(Na2SO4·10H2O)的形式从淡盐水中分离出来。 利用冷冻法将富硝盐水中的硫酸根结晶分离是目前国内较为先进的脱硝方法,但该法的应用逐渐暴露出冷冻设备易堵塞等问题。我公司针对上述问题进行了一系列的自主研发和工艺改进,已研发出一套新型脱硝技术方案,并已向国家专利局提出了国家发明专利申请。 2、工艺流程简介 图冷冻脱硝工艺流程框图 富硝盐水首先进入预冷换热器进行预冷,预冷后温度可降至15~20℃。预冷后的富硝盐水进入兑卤槽,与兑卤槽循环液均匀混合,稳定降温至-5℃左右。兑卤槽循环液是通过兑卤循环泵泵至冷冻换热器获取冷量,冷冻换热器的冷源为冷冻机组的制冷剂。 兑卤槽在循环换热过程中因温度下降会有芒硝晶体析出并沉降,根据晶体析出情况定期泵至沉硝槽,在沉硝槽中晶体进一步长大。含大量芒硝晶体的浆料随

后送至离心机进行离心分离,得到产品芒硝。沉硝槽的上清液只含少量的硫酸根离子(出槽淡盐水硫酸钠浓度为6~10 g/L,出槽淡盐水脱硝后返回前端),溢流收集于冷盐水储槽,经预冷换热器回收冷量后回流至淡盐水储槽进一步处理。 冷冻脱硝的吨水直接运行成本(电以0.65元计)约为30~40元。 3、技术特点 本系统工艺设计的主要技术特点如下: (1)采用逐级降温、三段沉硝,能很好地解决硝分离单元芒硝结晶堵塞严重的问题,冷冻效率高。富硝盐水在浓缩液储罐进行一次沉硝,并根据氯化钠和硫酸钠在水中的互溶度合理设定预冷温度,从而避免预冷换热器的堵塞。二次沉硝发生在兑卤槽,温度降至-(5~7)℃左右,冷冻换热器换热温差小,兑卤循环液流速大,从而有效避免了冷冻换热器的堵塞。三次沉硝发生在沉硝槽,温度在-(7~8)℃左右,沉降的晶体固液比高,有利于离心分离。 (2)换热网络合理,有利于节省能耗。沉硝槽溢流冷盐水用作预冷换热器的热源,既回收了热量(或冷量),同时也减轻了返回化盐工序后对系统工艺温度的影响。 (3)运行管理方便,工艺运转自动化程度高,设备维护简单。

冷冻结晶技术+膜过滤组合工艺处理硫酸钠废水的优越性

冷冻结晶技术+膜过滤组合工艺处理硫酸钠废水的优越性 在化工企业中,有许多废水是含较高浓度的硫酸钠废水,因含盐量较高无法直接进行生化处理,因此一般采用多效蒸发结晶技术,得到无水硫酸钠固废,冷凝水回用或进一步处理;近些年随着MVR热泵蒸发器的兴起,因其较低的处理能耗得到较多推崇,但是由于压缩风机均为进口设备,投资较高。那么,究竟有没有一个投资相对更小、处理能耗更低的工艺路线呢。 针对硫酸钠的物料特性,其既可以通过蒸发得到无水硫酸钠结晶,又可以通过冷冻得到含十个结晶水的芒硝(即十水硫酸钠);同时,随着膜浓缩技术的进步,通过膜浓缩可以将原料液及结晶母液浓度提升至15%左右,因此我们独辟蹊径,采用膜浓缩及冷冻结晶脱硝组合工艺,得到芒硝晶体及膜过滤得到的洁净水。 那么,这种组合结晶的工艺和多效蒸发结晶技术、MVR蒸发结晶技术相比,在投资及能耗上究竟有多大优势及合理性呢,就此,我们以日处理200吨含量为18%的硫酸钠废水为例,进行具体比较。 一、设计条件: 每天处理200m3其中含硫酸钠18%,比重为1131kg/m3,按每天运行20小时计。 来料温度200C 二、设备选型 根据硫酸钠的特性及本系统废水中硫酸钠的含量,可选用下列几种处理方式1)通过冷冻结晶+膜浓缩组合处理工艺得到十水硫酸钠与纯水。 2)通过多效强制循环蒸发工艺得到硫酸钠。 3)通过热泵+多效强制循环蒸发组合处理工艺得到硫酸钠。 三、各处理工艺介绍

1、冷冻结晶+膜浓缩组合处理工艺 (1)工艺流程 200C的物料溶液通过连续冷冻结晶器通过不断冷却产生过饱和度从而得到 十水硫酸钠警惕,出料泵取出的晶浆经稠厚器进一步消除饱和度后进入离心机固液分离后,固体进入下工序,母液进入膜过滤工序进行再浓缩,可将母液浓度提升至15%左右,浓缩后的纯水进入生产工序回用,浓缩液进入结晶器继续参与结晶。 通过结晶得到十水硫酸钠作为固体产品与纯水,母液则通过膜浓缩在体系内循环继续参与结晶。 (2)工艺特点: 1)为了使晶体有更好的生长环境和更高的收率、更低的能耗,采用本方案采用母液预冷+冷冻水冷却结晶。采用预冷换热,可以有效利用能量,运行费用低,操作稳定性好。 2)配大流量、低扬程、低转速的轴流泵作为循环动力,可以使物料均匀冷却,避免产生大量细晶核。并防止了循环晶浆中的晶粒与循环泵的叶轮高速碰撞而出现大量二次成核现象。 3)根据结晶数据曲线及结晶要求,结晶器采用了外冷式的Krystal分级结晶器。 4)本装置可采用人工控制或自动控制,操作简单、稳定。 5)可充分利用冷量,能量消耗低。 (3)工艺能耗 冷冻机组功率消耗:440Kw/h 其他设备功率消耗(不含离心机功率):80Kw/h。 电费按0.6元/kw,则每小时的总能量消耗为:312元/小时,约合处理每立方水的成本为:31.2元。 (4)结晶器设备投资 结晶器主体设备投资318万元(不含安装、离心机及膜处理部分)

手性药物结晶拆分方法_附件

手性药物的结晶拆分方法--直接结晶法---逆向结晶法 在优先结晶法中,通过加入不溶的添加物即晶种形成晶核,加快或促进与之晶型或立体构型相同的对映异构体结晶的生长。而逆向结晶法则是在外消旋体的饱和溶液中加入可溶性某一种构型的异构体[如(R)—异构体],添加的(R)—异构体就会吸附到外消旋体溶液中的同种构型异构体结晶体的表面,从而抑制了这种异构体结晶的继续生长,而外消旋体溶液中相反构型的(S)—异构体结晶速度就会加快,从而形成结晶析出。例如在外消旋的酒石酸钠铵盐的水溶液中溶入少量的(S)—(—)—苹果酸钠铵或(S)—(—)—天冬酰胺时,可从溶液中结晶得到(R,R)—(十)—酒石酸钠铵。 逆向结晶中的添加物必须和溶液中的化合物在结构和构型上有相关之处。这样所添加的物质才能嵌入生长晶体的晶格中,取代其正常的晶格组分并能阻止该晶体的生长。逆向结晶是一种晶体生长的动力学现象,添加物的加入造成了结晶速度上的差别。由于逆向结晶是晶体生长的动力学的现象,因此当结晶时间无限制的延长下之,最终得到的仍是外消旋的晶体。从化合物的性质上来看,逆向结晶只能用于能形成聚集体的化合物。在结晶法的拆分过程中,若能将优先结晶法中“加入某种单—对映异构体晶体可诱导相同构型结晶生长”的原理和逆向结晶中“加入另一个对映异构体溶液可抑制相同构型的对映异构体生长”的原理相结合,可使结晶拆分的效率大大提高 手性药物的结晶拆分方法--直接结晶法---优先结晶法 优先结晶方法(preferential crystallization)是在饱和或过饱和的外消旋体溶液中加入一个对映异构体的晶种,使该对映异构体稍稍过量因而造成不对称环境,结晶就会按非稍的过程进行,这样旋光性与该晶种相同的异构体就会从溶液中结晶出来。优先结晶方法是在巴士德的研究基础上发现的。文献最早报道的优先结晶方法是用于肾上腺素的拆分。1934年Duschinsky第一次用该方法分离得到盐酸组氨酸,使人们认识到该方法的实用性。但直到1963年工业化学家Secor对该方法进行综述后,才引起人们关注并逐渐发展成为众所周知的科学实用方法。Secor根据优先结晶法是聚集物的结晶的原理,可用其溶解度曲线的相图来进行结晶分离过程的分析。20世纪60~70年代,优先结晶方法在工业生产上大规模的用于由丙烯腈制备L—谷氨酸的拆分,每年的产量可达1.3万吨。这一技术不仅在工业生产上有非常显著的应用价值,在'实验室也可用于拆分数克到数十克的光学活性的化合物。应当指出的是,优先结晶方法仅适用于拆分能形成聚集体的外消旋体,而且该聚集体是稳定的结晶形式。换句话讲,假若该外消旋体可以是以聚集物或外消旋化合物的形式存在,但在某一定的温度范围内,只可以以聚集物的形式结晶出来,而刁;是产生外消旋化合物的结晶。例如盐酸组氨酸在45℃以上温度进行的优先结晶拆分。减肥药物芬氟拉明(fenfluramine,6)及其前体去乙基芬氟拉明(7)的拆分研究说明了优先结晶拆分的局限性。在对(6)和(7)与非手性的有机酸形成的50多个盐进行聚集物性质研究时,发现只有五个(6)的盐和三个(7)的盐是聚集体,但其中有两个盐不能使用优先结晶法结晶,这两个盐是(6)的苯氧乙酸盐和(7)的二氯乙酸盐。(6)的苯氧乙酸盐在室温下以不稳定的聚集体和稳定的外消旋化合物的形式发生共结晶,而(7)的二氯乙酸盐在结晶过程中会发生异手性(heterochiral growth)生长,即—种对映异构体的晶体生长在另一种异构体晶体的表面,得到晶体的光学纯度很低。聚集体通常在一定的温度范围内是稳定的,一旦超过该温度范围则叫咱S形成聚集体的亚稳态的形式,这种亚稳态的形式也可以用优先结晶的方法拆分,但得到的将是亚稳态多晶型的形式。例如盐酸组氨酸在25℃时的结晶。也有些化合物,例如外消旋的3—(3—氯苯基)—3—羟基丙酸(8),可以形成热力学稳定的聚旧体的形式,但在溶剂中结晶时总是生成亚稳态的外消旋化合物,而且该外消旋化合物的溶解度约是其对映异构体的7倍,这种情况难以用优先结晶法进行结晶。优先结晶法是一种高效、简单而又快捷的拆分方法,晶种的加入造成两个对映异构体具有不同的结晶速率是该动态过程控制的关键。延长结晶时间可提高产品的产率,但产品的光学纯度有所下降。从优先结晶法中得到晶体后,如要进一步提高产物的光学纯度,可经过反复的重结晶实现。 在实际应用过程中,尤其在工、限生产过程中,利用优先结晶方法的特点进行循环往复的结晶分离。这一方法从20世纪50年代起用于抗生素氯霉素(chloramphenicol,9)的中间体D—苏型?1—对硝基苯基—2—氨基—1,3—丙二醇(10)的拆分,至今工业生产中仍然在使用。循环优先结晶方法又称为“交*诱导结晶拆分

相关文档
最新文档