工业机器人控制系统的基本原理

工业机器人控制系统的基本原理
工业机器人控制系统的基本原理

工业机器人控制系统的

基本原理

Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

工业机器人控制系统

20世纪80年代以后,由于微型计算机的发展,特别是电力半导体器件的出现,使整个机器人的控制系统发生了很大的变化,使机器人控制器日趋完善。具有非常好的人机界面,有功能完善的编程语言和系统保护,状态监控及诊断功能。同时机器人的操作更加简单,但是控制精度及作业能力却有很大的提高。目前机器人已具有很强的通信能力,因此能连接到各种网络(CAN—BUS、PROFIBUS或ETHERNET)。形成了机器人的生产线。特别是汽车的焊接生产线、油漆生产线、装配生产线很多都是靠机器人工作的。特别是控制系统已从模拟式的控制进入了全数字式的控制。

90年代以后,计算机的性能进一步提高,集成电路(IC)的集成度进一步的提高,使机器人的控制系统的价格逐渐降低,而运算的能力却大大提高,这样,过去许多用硬件才能实现的功能也逐渐地使用软件来完成。而且机器人控制系统的可靠性也由最早几百小时提高到现在的6万小时,几乎不需要维护。

一、控制系统基本原理及分类

工业机器人的控制器在要求完成特定作业时,需要做下述几件事:

示教:通过计算机来接受机器人将要去完成什么作业。也就是给机器人的作业命令,这个命令实质上是人发出的。

计算:这一部分实际上就是机器人控制系统中的计算机来完成的,它通过获得的示教信息要形成一个控制策略,然后再根据这个

策略(也称之为作业轨迹的规划)细化成各轴的伺服运动的控制的策略。同时计算机还要担负起对整个机器人系统的管理,采集并处理各种信息。因此,这一部分是非常重要的核心部分。

伺服驱动:就是通过机器人控制器的不同的控制算法将机器人控制策略转化为驱动信号,驱动伺服电动机,实现机器人的高

速、高精度运动,去完成指定的作业。

反馈:机器人控制中的传感器对机器人完成作业过程中的运动状态、位置、姿态进行实时地反馈,把这些信息反馈给控制计算机,使控制计算机实时监控整个系统的运行情况,及时做出各种决策。

图1 机器人控制基本原理图

控制系统可以有四种不同分类方法:控制运动方式、控制系统信号类型、控制机器人的数目以及人机的相互关系等分类。

(1)、按控制运动方式进行分类可分为程序控制系统、自适应控制系统和组合控制系统。

A、程序控制系统:绝大多数商品机器人是属于这种控制系统,主

要用于搬运、装配、点焊等点位控制,以及弧焊、喷涂机器人的轮廓控制。

程序控制可以使各关节的运动是连续的,也可以是离散的,通过各个关节的连续运动的合成,实现轮廓控制,也可用点位控制,用不连续的点位实现连续轮廓控制。

B、自适应控制系统:自适应是根据环境的变化,不断地给出后续

运动轨迹的控制。环境的变化是通过传感器来感知,也就是根据检测到的信息来决策。这个决策是控制系统中的核心问题。要有很复杂的计算方法。对环境的感知是实时的,要求是高精度和高速度的运算处理。硬件逻辑复杂。

这一类控制系统也是以程序控制为基础,仅是根据外界环境的变化来及时修改原有的程序。目前对于这一类智能机器人的各种感觉的研究尚处于探索阶段,特别是视觉,要求灵敏度高的视觉装置且可对图象处理和识别能力。

C、组合控制系统:它兼有程序控制和自适应控制两种功能,它具

有利用已知的基本上由工作性质和环境条件决定的信息实现程序控制,还可以在执行过程中根据工作条件的变化而改变控制过程并保证最佳的控制品质。所以,这是应用最广的控制系统。(2)、按控制系统的信号形式分类:可分为连续控制系统和离散控制系统。连续控制系统贯穿系统各环节的输入/输出信号量是时间的连续函数。离散控制系统全部或部分信号是以离散形式出现和产生所需要的控制。通常系统既有连续又有离散的信息,根据一个一定的阀值来进行两类信号的转换实现这种控制。

例如:

a、弧焊控制:对焊接电流的控制是连续控制,当发生短路时,立刻切断电源这又是离散控制。

b、生产线加工部件由传送带送到固定加工位置,同时发出到位信号,用来启动机器人控制程序的连续控制,从而由离散到连续。一般离散信号是继电器的动作,脉冲或数字信号。

(3)、根据控制机器人的数目分类:可分为单机系统和群控系统。

单机就是指控制系统仅对本机进行自主的控制。集中或分散的或两者结合的,同时控制多个机器人的控制系统称之为群控系统。群控系统也容许每个机器人有自己独立的控制系统,但每一个机器人的控制系统要接受总的控制系统的命令,或在系统之间有通信,以便能使所有机器人协调工作。

实际上群控系统是一个多级系统,每一级系统或者模块要接受上一级系统下达的指令与任务命令,使本级机器人执行上述的命令,并要向上一级反馈执行的结果的信息。

(4)、按人机关系分类:自动控制系统完全自治操作,操作人员不必干予。但有一些系统要求部分控制功能由操作人员来完成。

二、计算机控制系统

计算机控制系统有三种结构:集中控制、主从控制和分布式控制。

集中控制就是用一台功能较强的计算机实现全部控制功能,这是早期机器人来用的一种结构。因为当时计算机造价较高,当时机

器人功能也不多,所以采用这种方案来控制还是比较经济的,也是可以实现的。但由于计算非常复杂,所以控制的速度就很慢。

目前由于对机器人的功能要求愈来愈多,且控制的精度愈来愈高,集中控制已不可能满足这些要求,所以采用主从式控制和分布式控制,70年代的MOTORMAN弧焊机器人就是属于这种结构。

一级计算机(一级机)为主机,担当系统管理,机器人语言的编译和人机接口功能,同时也利用它的运算能力完成坐标变换,轨迹插补,并定时地把运算结果作为关节运动的增量值送到公共内存,供二级计算机(二级机)读取它。

二级机完成全部关节位置的数字控制,它从公共内存中读取给定值,也把各关节的实际位置值送回到公共内存中去,供一级机使用。公共内存是容量为几KB的双口RAM或普通静态RAM加上总线控制逻辑电路组成。由于功能分散,控制质量较集中式控制明显提高。这类系统的控制速率较快,一般可达到15ms,即每隔15ms 刷新一次给定,并实现位置控制一次。

这类系统在两个CPU之间仅通过公共的内部存贮器来交换信息,这种耦合是很松散的,因此采用这种方式来耦合更多的CPU是很能困难的。

现代机器人控制系统中几乎无例外地采用分布式结构,由上一级主控计算机负责整个系统管理以及坐标变换和轨迹的插补运算。下一级由多个微处理器组成,每一个微处理器控制一个关节运动,

它们并行的完成控制任务,因而提高了工作速度和处理能力。这些微处理器与主控级联系是通过总线形式紧密耦合。

计算机控制系统的基本结构

(1)、电源部件:

电源为三相交流电源和内部电源两大部分组成

制器各档电压的电源,伺服驱动系统,直流电源,继电接触器操作电源。三相交流电源有如下保护:过载保护、短路保护,并有滤波器来吸收浪涌电压。并有时采用电子(或者是铁磁的)稳压器对电源进行稳压。报警是直流电路的过压、过载保护,这时自动切除直流电源。防止故障扩大。

直流电源多为±5V、±12V、±15V、24V等种类的直源,目前较多的为+5伏及24伏,其他已少见。它们有熔丝保护,当集成电路短路,电容出现击穿,或三极管基极与发射极短路均靠这个熔丝保护,所以熔丝要注意电流值。

(2)、计算机系统

主CPU:整个系统的管理,数据处理和轨迹运算。

协处理器:协助主CPU数值的处理和提高实时性能。

从处理器:机器人各关节的运动控制。

I/O处理器:控制外部存贮器。

ROM中主要是引导程序,程序系统监控程序,诊断程序以及一般不变的参数。

RAM中主要存放从硬盘中装入的操作系统,系统控制程序,语言编辑,调试和修改的信息,用户编写的运动控制程序,传感器检测信息。存贮空间分配根据实际需要,由CPU提供可寻址空间以及初始化条件来决定。一般把操作系统,机器人语言解释程序,用户运动程序,一般软件工具都存放在硬盘中,在需要时,从中取入。

(3)、伺服控制系统

采用计算机控制的伺服系统将计算机的速度,位置指令转化为机器人的各关节的驱动信号,它是一个三环系统,即电流环、速度环与位置环,由光电子编码器反馈回来的信号作为位置及速度的检测,与给定信号进行比较,进行误差校正。

(4)、传感/检测部件

常用的传感/检测部件包括有限位开关,压力,加速度,速度,温度等信号,其中的模拟信号须经放大整形,再经过A/D转换器后转换为数字信号,然后送入计算机进行存贮或处理,对于触觉、听觉和视觉等更高级的传感/检测设备,需要更精确的检测手和复杂的识别和处理算法,通常也由一个单独的微处理器对信息进行处理。

(5)、人机交互部件

工业机器人有多种人机交互的通信手段,用于编程和显示的键盘,示教盒等,它们都是通过RS-232C串行接口与系统CPU远程通信。液晶显示器及键盘有单独的微处理器进行处理,其中ROM存放示教盒本身的操作监控程序和通讯处理程序。RAM是用以存放通信显示和扫描键盘的采样数据。

(6)、接口部件

主要是主计算机系统与伺服系统,外部设备的工作环境通信联系通道。磁盘、CRT、键盘、打印机等,标准外设与计算机的通信都是通过计算机内的标准接口进行的。与伺服系统通信则是采用专用接口,将主CPU的运动命令的位置数据转换成频率和数量的脉冲。还要采用一些带有A/D或D/A接口。

(7)、软件系统

管理程序或实时操作系统;用以对整个机器人控制系统的软件进行任务的调度和管理,以满足机器人控制的实时性能。系统控制程序:根据用户编制的运动控制程序解释执行,进行运动执行的插补运算,各坐标位置和速度的分配,外部事件的响应与处理,实时

信息和出错信息的处理和显示。运动控制程序,这是由用户特定的机器人语言编制的运动控制程序,在运动控制程序中,通过语句(或指令)指定机器人的工作方式、运动轨迹、运动速度、坐标位置、定时/计数及输入/输入通信要求,程序控制路径的选择等信息,在系统控制程序的解释下执行。

机器人控制器是使机器人执行各种操作的核心部分,分析机器人控制器的组成及工作原理,是更好地使用机器人进行工作的基础。因此深入研究控制原理及控制程序是很有必要的。

工业机器人控制系统组成及典型结构

工业机器人控制系统组成及典型结构 一、工业机器人控制系统所要达到的功能机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以完成特定的工作任务,其基本功能如下: 1、记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。 2、示教功能:离线编程,在线示教,间接示教。在线示教包括示教盒和导引示教两种。 3、与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。 4、坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。 5、人机接口:示教盒、操作面板、显示屏。 6、传感器接口:位置检测、视觉、触觉、力觉等。 7、位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。 8、故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障自诊断。 二、工业机器人控制系统的组成 1、控制计算机:控制系统的调度指挥机构。一般为微型机、微处理器有32 位、64 位等如奔腾系列CPU 以及其他类型CPU 。 2、示教盒:示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的 CPU 以及存储单元,与主计算机之间以串行通信方式实现信息交互。 3、操作面板:由各种操作按键、状态指示灯构成,只完成基本功能操作。 4、硬盘和软盘存储存:储机器人工作程序的外围存储器。 5、数字和模拟量输入输出:各种状态和控制命令的输入或输出。 6、打印机接口:记录需要输出的各种信息。 7、传感器接口:用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。 8、轴控制器:完成机器人各关节位置、速度和加速度控制。 9、辅助设备控制:用于和机器人配合的辅助设备控制,如手爪变位器等。 10 、通信接口:实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。 11 、网络接口 1) Ethernet 接口:可通过以太网实现数台或单台机器人的直接PC 通信,数据传输速率高达 10Mbit/s ,可直接在PC 上用windows 库函数进行应用程序编程之后,支持TCP/IP 通信协议,通过Ethernet 接口将数据及程序装入各个机器人控制器中。

机器人控制系统组成、分类及要求

机器人控制系统 一、工业机器人控制系统应具有的特点 工业机器人控制系统的主要任务是控制工业机器人在工作空间中的运动位置、姿态和轨迹、操作顺序及动作的时间等项。其中有些项目的控制是非常复杂的,这就决定了工业机器人的控制系统应具有以下特点: (1)工业机器人的控制与其机构运动学和动力学有着密不可分的关系,因而要使工业机器人的臂、腕及末端执行器等部位在空间具有准确无误的位姿,就必须在不同的坐标系中描述它们,并且随着基准坐标系的不同而要做适当的坐标变换,同时要经常求解运动学和动力学问题。 (2)描述工业机器人状态和运动的数学模型是一个非线性模型,随着工业机器人的运动及环境而改变。又因为工业机器人往往具有多个自由度,所以引起其运动变化的变量不止个,而且各个变量之间般都存在耦合问题。这就使得工业机器人的控制系统不仅是一个非线性系统,而且是一个多变量系统。 (3)对工业机器人的任一位姿都可以通过不同的方式和路径达到,因而工业机器人的控制系统还必须解决优化的问题。 二、对机器人控制系统的一般要求 机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以完成特定的工作任务,其基本功能如下: ?记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。 ?示教功能:离线编程,在线示教,间接示教。在线示教包括示教盒和导引示教两种。 ?与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。?坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。 ?人机接口:示教盒、操作面板、显示屏。 ?传感器接口:位置检测、视觉、触觉、力觉等。 ?位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。?故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障

机器人教学的意义

把机器人教育引入校园,从发展的眼光来看,机器人肯定会越来越普及。有专家预言,从信息产业的角度看,本世纪第一个十年将是智能机器人时代。随着信息技术教育课程与教材改革的深入和人工智能技术的发展,在信息技术教育中渗透机器人学科知识与机器人应用前景方面的教育已势在必行。机器人最早只是在工厂里使用,现在已经在娱乐、医院和家庭等日常生活中使用。如韩国、日本将为将自己打造为一个高技术国家,他们预言说,到2015-2020年,每一个韩国家庭里都将拥有至少一个机器人。将来机器人可能会像计算机、汽车一样家家都有,变成人类离不开的一个工具,那时人人都要进行机器人的学习,将来会有越来越多的中小学生接触到机器人。机器人教育也会越来越普及,而且可以学到比计算机更全面的知识,除了能够学到编程语言、程序设计以外,同时还能学到机电方面的知识,所以机器人进入中小学教育是当今科技发展的一个必然趋势。 机器人融合了计算机、机械、电子、通讯、控制、声、光、电、磁等多个学科领域的知识。在活动中,既教会学生去思考,又让学生通过动手、动脑,培养综合素质。学生通过亲手组装机器人系统、检测调整传感器、编制调试控制程序等工作,能够使学生的综合知识水平得到提高,使学生的动手能力、逻辑思维能力、综合应用能力、创新能力等都能得到全方位训练和提升,对进行学科知识渗透、培养素质全面的创新型人才具有重要的作用。机器人进课堂后学生的学习兴趣高涨、综合素质提高、创新思维活跃,这正是素质教育的重要内容。因此,机器人教育引入校园,对学生至少有以下三个方面的获益。 其一,丰富学科生活,培养动手能力。由于生活水平的提高,现在的青少年自己动手制作玩具及科学模具的能力日益降低,创造发明的意念也渐呈弱化趋势。所有令他们爱不释手的玩具均是玩具商生产出来的,亦即是需用钱买来的。长此以往,将使未来中国少年儿童的求生能力、自我创造能力不断减低、变弱,这对于一个民族的科学发展是十分不利的。自我组装、制造机器人不但会提升青少年的科学兴趣,同时也会从小培养学生养成凡事自己动手的良好生活习惯。 其二,锻炼意志品质,培养团队精神。机器人制作涉及相关领域多种门类的专门知识,青少年必须广泛涉猎,持之以恒,才能有所成就。机器人的制作过程,正是锻炼意志、培养

人工智能原理及其应用(王万森)第3版 课后习题答案

第1章人工智能概述课后题答案 1.1什么是智能?智能包含哪几种能力? 解:智能主要是指人类的自然智能。一般认为,智能是是一种认识客观事物和运用知识解决问题的综合能力。 智能包含感知能力,记忆与思维能力,学习和自适应能力,行为能力 1.2人类有哪几种思维方式?各有什么特点? 解:人类思维方式有形象思维、抽象思维和灵感思维 形象思维也称直感思维,是一种基于形象概念,根据感性形象认识材料,对客观对象进行处理的一种思维方式。 抽象思维也称逻辑思维,是一种基于抽象概念,根据逻辑规则对信息或知识进行处理的理性思维形式。 灵感思维也称顿悟思维,是一种显意识与潜意识相互作用的思维方式。 1.3什么是人工智能?它的研究目标是什么? 解:从能力的角度讲,人工智能是指用人工的方法在机器(计算机)上实现智能;从学科的角度看,人工智能是一门研究如何构造智能机器或智能系统,使它能模拟、延伸和扩展人类智能的学科。 研究目标: 对智能行为有效解释的理论分析; 解释人类智能; 构造具有智能的人工产品; 1.4什么是图灵实验?图灵实验说明了什么? 解:图灵实验可描述如下,该实验的参加者由一位测试主持人和两个被测试对象组成。其中,两个被测试对象中一个是人,另一个是机器。测试规则为:测试主持人和每个被测试对象分别位于彼此不能看见的房间中,相互之间只能通过计算机终端进行会话。测试开始后,由测试主持人向被测试对象提出各种具有智能性的问题,但不能询问测试者的物理特征。被测试对象在回答问题时,都应尽量使测试者相信自己是“人”,而另一位是”机器”。在这个前提下,要求测试主持人区分这两个被测试对象中哪个是人,哪个是机器。如果无论如何更换测试主持人和被测试对象的人,测试主持人总能分辨出人和机器的概率都小于50%,则认为该机器具有了智能。 1.5人工智能的发展经历了哪几个阶段? 解:孕育期,形成期,知识应用期,从学派分立走向综合,智能科学技术学科的兴起

安川机器人远程控制总结 _机器人端

安川机器人远程控制总结 一、m aster程序 1、master程序的设置 单击【主菜单】—>选择屏幕上的【程序内容】—>【新建程序】,如图1-1。 图1-1 单击【选择】显示如图1-2所示的界面,单击【选择】,输入程序名,单击软键盘【ENTER】,显示如图1-3所示的界面,单击【执行】,此处程序名为“MASTER”,程序创建完毕。

图1-2 图1-3 单击【主菜单】—>选择屏幕上的【程序内容】—>【主程序】,如图1-4。 图1-4 单击【选择】,显示如图1-5所示的设置主程序界面。

图1-5 单击【选择】,出现如图1-6所示的界面,单击【向下】选择“设置主程序”。 图1-6 显示如图1-7所示的界面,单击【向下】选择“MASTER”单击【选择】。

如图1-7 主程序设置完毕。 2、MASTER程序的编辑 单击【主菜单】—>选择【程序内容】—>【选择程序】—>【选择】,出现如图1-7所示的界面,单击【向下】,选择“MSATER”,单击【选择】。在如图2-1所示的界面下编辑主程序。 图2-1 此处以2个工位,每个工位3种工件的工作站为例创建主程序内容,需要熟悉机器人示教器的基本操作(如【命令一览】【插入】【回车】【选择】)。 插入DOUT OT#(1) OFF程序举例: 光标定位在左侧行号处,如图2-2,如图单击【命令一览】,选择【I/O】,单击【选择】,选择【DOUT】,如图2-3所示的界面

图2-2 图2-3 单击【选择】,显示如图2-4所示的界面,光标定位在“DOUT”上,单击【选择】,显示如图2-5所示的界面,光标定位到“数据”行的ON,单击【选择】,切换成“OFF”,单击两次【回车】则可出入该指令。需要指出的是在光标定位处插入指令是向下插入。

工业机器人控制系统

更多论文请加QQ 1634189238 492186520 第一章绪论 1.1 工业机器人的发展及分类 1.1.1 工业机器人的发展 工业机器人的发展通常可规划分为三代: 第一代工业机器人:通常是指目前国际上商品化与使用化的“可编程的工业机器人”,又称“示教再现工业机器人”,即为了让工业机器人完成某项作业,首先由操作者将完成该作业所需要的各种知识(如运动轨迹、作业条件、作业顺序和作业时间等),通过直接或间接手段,对工业机器人进行“示教”,工业机器人将这些知识记忆下来后,即可根据“再现”指令,在一定精度范围内,忠实的重复再现各种被示教的动作。1962年美国万能自动化公司的第一台Unimate工业机器人在美国通用汽车公司投入使用,标志着第一代工业机器人的诞生。 第二代工业机器人:通常是指具有某种智能(如触觉、力觉、视觉等)功能的“智能机器人”。即有传感器得到触觉、力觉和视觉等信息计算机处理后,控制机器人的操作机完成相应的适当操作。1982年美国通用汽车在装配线上为工业机器人装备了视觉系统,从而宣布了新一代智能工业机器人的问世。 第三代工业机器人:即所谓的“只治式工业机器人”。它不仅具有感知功能,而且还有一定的决策及规划能力。第一代工业机器人目前仍处在实验室研究阶段。工业机器人经历了诞生---成长---成熟期后,已成为制造业中不可缺少的核心装备,世界上有约75万台工业机器人正与工人朋友并肩战斗在个条生产线上,特种机器人作为机器人家族的后起之秀,由于其用途广泛而大有后来居上之势,仿人机器人、农业机器人、服务机器人、水下机器人、医疗机器人、军用机器人、娱乐机器人等各种用途发特种机器人纷纷面世,而且正以飞快的速度向实用化迈进。 我国的工业机器人从80年代“七五”科技攻关开始起步,在国家的支持下,通过“七五”、“八五”科技攻关,目前已基本掌握了机器人的操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术、生产了部分机器人的关键元器件,开发出喷漆、焊弧、点焊、装配、搬运等机器人;其中有130多台配套喷漆机器人在二十与家企业的近30条自动喷漆生产线上获得规模应用,弧焊机器人已应用在汽车制造厂的焊装线上。 但总的来看,我国的工业机器人技术及其工程应用水平和国外比还有一定的距离,如:可靠性低于国外产品;机器人应工程起步较晚,应用领域窄,生产线系统技术与国外比有差距;在应用规模上,我国已安装的国产工业机器人约200台,约占全球已安装台数的万分之四。以上原因主要是没有形成机器人产业,当前我国的机器人生产都是应用户的要求,“一客户,一次重新设计”,品种规格多、批量小、零部件通用化程度低、供货周期长、成本也不低,而且质量、可靠性不稳定。因此迫切需要解决产业化前期的关键技术,对产品进行全面规划,搞好系列化、通用化、模化设计,积极推进产业化进程。 1.1.2 工业机器人的分类 工业机器人按不同的方法可分下述类型 工业机器人按操作机坐标形式分以下几类:(坐标形式是指操作机的手臂在运动时所取的参考坐标系的形式。)

机器人控制器的现状及展望

第21卷第1期1999年1月 机器人 ROBOT V ol.21,No.1  J a n.,1999机器人控制器的现状及展望⒇ 范 永 谭 民 (中国科学院自动化研究所 北京 100080) 摘 要 机器人控制器是影响机器人性能的关键部分之一,它从一定程度上影响着机器人的发展.本文介绍了目前机器人控制器的现状,分析了它们各自的优点和不足,探讨了机器人控制器的发展方向和要着重解决的问题. 关键词 机器人控制器,开放式结构,模块化 1 引言 从世界上第一台遥控机械手的诞生至今已有50年了,在这短短的几年里,伴随着计算机、自动控制理论的发展和工业生产的需要及相关技术的进步,机器人的发展已经历了3代[1]: (1)可编程的示教再现型机器人;(2)基于传感器控制具有一定自主能力的机器人;(3)智能机器人.作为机器人的核心部分,机器人控制器是影响机器人性能的关键部分之一.它从一定程度上影响着机器人的发展.目前,由于人工智能、计算机科学、传感器技术及其它相关学科的长足进步,使得机器人的研究在高水平上进行,同时也为机器人控制器的性能提出更高的要求. 对于不同类型的机器人,如有腿的步行机器人与关节型工业机器人,控制系统的综合方法有较大差别,控制器的设计方案也不一样.本文仅讨论工业机器人控制器问题. 2 机器人控制器类型 机器人控制器是根据指令以及传感信息控制机器人完成一定的动作或作业任务的装置,它是机器人的心脏,决定了机器人性能的优劣. 从机器人控制算法的处理方式来看,可分为串行、并行两种结构类型. 2.1 串行处理结构 所谓的串行处理结构是指机器人的控制算法是由串行机来处理.对于这种类型的控制器,从计算机结构、控制方式来划分,又可分为以下几种[2]. (1)单CPU结构、集中控制方式 用一台功能较强的计算机实现全部控制功能.在早期的机器人中,如Hero-I,Robo t-I等,就采用这种结构,但控制过程中需要许多计算(如坐标变换),因此这种控制结构速度较慢. (2)二级CPU结构、主从式控制方式 一级CPU为主机,担当系统管理、机器人语言编译和人机接口功能,同时也利用它的运算能力完成坐标变换、轨迹插补,并定时地把运算结果作为关节运动的增量送到公用内存,供二级CPU读取;二级CPU完成全部关节位置数字控制.这类系统的两个C PU总线之间基本没有联系,仅通过公用内存交换数据,是一个松耦合的关系.对采用更多的CPU进一步分散 ⒇1998-09-03收稿 DOI:10.13973/https://www.360docs.net/doc/7318306731.html, k i.rob ot.1999.01.014

机器人的定义和特征

机器人都有哪些定义不同特征? 其实并不是人们不想给机器人一个完整的定义,自机器人诞生之日起人们就不断地尝试着说明到底什么是机器人。但随着机器人技术的飞速发展和信息时代的到来,机器人所涵盖的内容越来越丰富,机器人的定义也不断充实和创新。 1886年法国作家利尔亚当在他的小说《未来夏娃》中将外表像人的机器起名为“安德罗丁”(Android),它由4部分组成: 1,生命系统(平衡、步行、发声、身体摆动、感觉、表情、调节运动等); 2,造型解质(关节能自由运动的金属覆盖体,一种盔甲); 3,人造肌肉(在上述盔甲上有肉体、静脉、性别等身体的各种形态); 4,人造皮肤(含有肤色、机理、轮廓、头发、视觉、牙齿、手爪等)。 1920年捷克作家卡雷尔·卡佩克发表了科幻剧本《罗萨姆的万能机器人》。在剧本中,卡佩克把捷克语“Robota”写成了“Robot”,“Robota”是奴隶的意思。该剧预告了机器人的发展对人类社会的悲剧性影响,引起了大家的广泛关注,被当成了机器人一

词的起源。在该剧中,机器人按照其主人的命令默默地工作,没有感觉和感情,以呆板的方式从事繁重的劳动。后来,罗萨姆公司取得了成功,使机器人具有了感情,导致机器人的应用部门迅速增加。在工厂和家务劳动中,机器人成了必不可少的成员。机器人发觉人类十分自私和不公正,终于造反了,机器人的体能和智能都非常优异,因此消灭了人类。 但是机器人不知道如何制造它们自己,认为它们自己很快就会灭绝,所以它们开始寻找人类的幸存者,但没有结果。最后,一对感知能力优于其它机器人的男女机器人相爱了。这时机器人进化为人类,世界又起死回生了。 卡佩克提出的是机器人的安全、感知和自我繁殖问题。科学技术的进步很可能引发人类不希望出现的问题。虽然科幻世界只是一种想象,但人类社会将可能面临这种现实。 为了防止机器人伤害人类,科幻作家阿西莫夫(Isaac.Asimov)于1940年提出了“机器人三原则”: 1,机器人不应伤害人类; 2,机器人应遵守人类的命令,与第一条违背的命令除外;

工业机器人控制系统的基本原理

工业机器人控制系统的 基本原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

工业机器人控制系统 20世纪80年代以后,由于微型计算机的发展,特别是电力半导体器件的出现,使整个机器人的控制系统发生了很大的变化,使机器人控制器日趋完善。具有非常好的人机界面,有功能完善的编程语言和系统保护,状态监控及诊断功能。同时机器人的操作更加简单,但是控制精度及作业能力却有很大的提高。目前机器人已具有很强的通信能力,因此能连接到各种网络(CAN—BUS、PROFIBUS或ETHERNET)。形成了机器人的生产线。特别是汽车的焊接生产线、油漆生产线、装配生产线很多都是靠机器人工作的。特别是控制系统已从模拟式的控制进入了全数字式的控制。 90年代以后,计算机的性能进一步提高,集成电路(IC)的集成度进一步的提高,使机器人的控制系统的价格逐渐降低,而运算的能力却大大提高,这样,过去许多用硬件才能实现的功能也逐渐地使用软件来完成。而且机器人控制系统的可靠性也由最早几百小时提高到现在的6万小时,几乎不需要维护。 一、控制系统基本原理及分类 工业机器人的控制器在要求完成特定作业时,需要做下述几件事: 示教:通过计算机来接受机器人将要去完成什么作业。也就是给机器人的作业命令,这个命令实质上是人发出的。 计算:这一部分实际上就是机器人控制系统中的计算机来完成的,它通过获得的示教信息要形成一个控制策略,然后再根据这个

策略(也称之为作业轨迹的规划)细化成各轴的伺服运动的控制的策略。同时计算机还要担负起对整个机器人系统的管理,采集并处理各种信息。因此,这一部分是非常重要的核心部分。 伺服驱动:就是通过机器人控制器的不同的控制算法将机器人控制策略转化为驱动信号,驱动伺服电动机,实现机器人的高 速、高精度运动,去完成指定的作业。 反馈:机器人控制中的传感器对机器人完成作业过程中的运动状态、位置、姿态进行实时地反馈,把这些信息反馈给控制计算机,使控制计算机实时监控整个系统的运行情况,及时做出各种决策。 图1 机器人控制基本原理图 控制系统可以有四种不同分类方法:控制运动方式、控制系统信号类型、控制机器人的数目以及人机的相互关系等分类。 (1)、按控制运动方式进行分类可分为程序控制系统、自适应控制系统和组合控制系统。 A、程序控制系统:绝大多数商品机器人是属于这种控制系统,主 要用于搬运、装配、点焊等点位控制,以及弧焊、喷涂机器人的轮廓控制。

工业机器人控制系统的组成教学内容

工业机器人控制系统 的组成

工业机器人控制系统的组成 1、控制计算机:控制系统的调度指挥机构。一般为微型机、微处理器有32位、64位等如奔腾系列CPU以及其他类型CPU。 2、示教盒:示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的CPU以及存储单元,与主计算机之间以串行通信方式实现信息交互。 3、操作面板:由各种操作按键、状态指示灯构成,只完成基本功能操作。 4、硬盘和软盘存储存:储机器人工作程序的外围存储器。 5、数字和模拟量输入输出:各种状态和控制命令的输入或输出。 6、打印机接口:记录需要输出的各种信息。 7、传感器接口:用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。 8、轴控制器:完成机器人各关节位置、速度和加速度控制。 9、辅助设备控制:用于和机器人配合的辅助设备控制,如手爪变位器等。 10、通信接口:实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。 11、网络接口 1)Ethernet接口:可通过以太网实现数台或单台机器人的直接PC通信,数据传输速率高达10Mbit/s,可直接在PC上用windows库函数进行应用程序编程之后,支持TCP/IP通信协议,通过Ethernet接口将数据及程序装入各个机器人控制器中。 2)Fieldbus接口:支持多种流行的现场总线规格,如Devicenet、ABRemoteI/O、Interbus-s、profibus-DP、M-NET等。

工业机器人控制系统分类 1、程序控制系统:给每一个自由度施加一定规律的控制作用,机器人就可实现要求的空间轨迹。 2、自适应控制系统:当外界条件变化时,为保证所要求的品质或为了随着经验的积累而自行改善控制品质,其过程是基于操作机的状态和伺服误差的观察,再调整非线性模型的参数,一直到误差消失为止。这种系统的结构和参数能随时间和条件自动改变。 3、人工智能系统:事先无法编制运动程序,而是要求在运动过程中根据所获得的周围状态信息,实时确定控制作用。 4、点位式:要求机器人准确控制末端执行器的位姿,而与路径无关。 5、轨迹式:要求机器人按示教的轨迹和速度运动。 6、控制总线:国际标准总线控制系统。采用国际标准总线作为控制系统的控制总线,如VME、MULTI-bus、STD-bus、PC-bus。 7、自定义总线控制系统:由生产厂家自行定义使用的总线作为控制系统总线。 8、编程方式:物理设置编程系统。由操作者设置固定的限位开关,实现起动,停车的程序操作,只能用于简单的拾起和放置作业。

小学教育中机器人教学的意义

小学教育中机器人教学的意义 摘要:小学信息技术教育的初衷在于培养学生对于信息技术的基础认知,为以后深入的教育打下基础,并提前培养兴趣,不同于传统的语、数、英教育,信息技术的教学内容更加丰富多彩,更具有开拓性和创新性,因而在课堂中就必须于一种教学方式以及教学内容能够符合这一特点。而机器人教学就十分符合这一要求,由于机器人教学在内容上创新性较强,能够有效开拓学生的创新能力以及眼界,符合素质教育的基本要求,为学生立足未来社会打下坚实的基础,因此,机器人教育在小学信息教育课堂中具有重要意义。 关键词:小学教育;机器人教育;信息技术;意义分析 机器人技术发展至今融合了多种科学技术成果,是现代社会、经济发展的衡量标志之一。机器人技术的发展代表了一个国家高新技术发展水平,同样也象征着一个国家技术改革的深度。而作为教育的基础,小学教育对于学生后期的发展具有重要意义,而作为信息技术的启蒙教育,小学信息技术教学以其独有优势迅速发展,而机器人教育中融合了多种信息技术,因而在小学信息技术的教学中都可以设计机器人教育,并利用这一综合性的技术教育平台为学生打开信息技术的大门。在未来小学信息技术教学中有效利用机器人教育这一载体并将成为信息技术课堂的新发展方向,并通过这种新型的教学方式提高学生的创新能力以及信息素养,真正实现素质教育。 1机器人教学符合信息化发展要求 一个完整的机器人涉及了诸多学科领域,不但包括了计算机技术,还融合了材料技术、控制技术以及机械技术和通讯技术,并且在机器人中还应用电、磁力、光、声等物理学知识,因而在小学信息化教学中,利用机器人教育这一平台不但能够令学生充分掌握课本中所要求的知识点,在动手操作中,学生的知识面也可以得到充分拓展。现代社会是信息化社会,现代社会所需要的也是信息化人才,因此教育工作者也开始更多的关注信息技术教育。作为教师,在信息技术教学中不但要提高工作中的主动意识,开始应当进一步对信息技术教育进行创新,全面提高学生的综合素养。而通过机器人教育就可以全面实现这一目的,通过机器人的发展以及现代新型技术的展示,在实践中令学生充分了解传感器作用,对控制

工业机器人控制系统的基本原理

工业机器人控制系统 20世纪80年代以后,由于微型计算机的发展,特别是电力半导体器件的出现,使整个机器人的控制系统发生了很大的变化,使机器人控制器日趋完善。具有非常好的人机界面,有功能完善的编程语言和系统保护,状态监控及诊断功能。同时机器人的操作更加简单,但是控制精度及作业能力却有很大的提高。目前机器人已具有很强的通信能力,因此能连接到各种网络(CAN—BUS、PROFIBUS或ETHERNET)。形成了机器人的生产线。特别是汽车的焊接生产线、油漆生产线、装配生产线很多都是靠机器人工作的。特别是控制系统已从模拟式的控制进入了全数字式的控制。 90年代以后,计算机的性能进一步提高,集成电路(IC)的集成度进一步的提高,使机器人的控制系统的价格逐渐降低,而运算的能力却大大提高,这样,过去许多用硬件才能实现的功能也逐渐地使用软件来完成。而且机器人控制系统的可靠性也由最早几百小时提高到现在的6万小时,几乎不需要维护。 一、控制系统基本原理及分类 工业机器人的控制器在要求完成特定作业时,需要做下述几件事:示教:通过计算机来接受机器人将要去完成什么作业。也就是给机器人的作业命令,这个命令实质上是人发出的。 计算:这一部分实际上就是机器人控制系统中的计算机来完成的,它通过获得的示教信息要形成一个控制策略,然后再根据这个策

略(也称之为作业轨迹的规划)细化成各轴的伺服运动的控制 的策略。同时计算机还要担负起对整个机器人系统的管理,采 集并处理各种信息。因此,这一部分是非常重要的核心部分。伺服驱动:就是通过机器人控制器的不同的控制算法将机器人控制策略转化为驱动信号,驱动伺服电动机,实现机器人的高速、 高精度运动,去完成指定的作业。 反馈:机器人控制中的传感器对机器人完成作业过程中的运动状态、位置、姿态进行实时地反馈,把这些信息反馈给控制计算机, 使控制计算机实时监控整个系统的运行情况,及时做出各种决 策。 图1 机器人控制基本原理图 控制系统可以有四种不同分类方法:控制运动方式、控制系统信号类型、控制机器人的数目以及人机的相互关系等分类。 (1)、按控制运动方式进行分类可分为程序控制系统、自适应控制系统和组合控制系统。 A、程序控制系统:绝大多数商品机器人是属于这种控制系统,主 要用于搬运、装配、点焊等点位控制,以及弧焊、喷涂机器人的轮廓控制。

机器人教育的好处

中国机器人教育的意义 近几年,机器人技术的应用正逐步从生产领域向更为广泛的人类生活领域拓展。机器人教育也成为人们的热点话题,教育部的政策也从一开始的鼓励到现在将机器人课程纳入小学课程范畴,可见机器人教育对青少儿成长有着重大意义。格物斯坦小坦克给您说说机器人教育的重要作用。 促进教育方式的变革,注重培养青少儿综合能力。机器人教育课堂是以学生为中心,教师作为指导者只负责提供学习材料和建议,学生必须自己去学习知识,构建知识体系,提出解决方案,这样有效培养了主动思考、创新思维能力及动手能力。机器人教育还可以培养学生的时间管理、信息采集、资源分配、系统分析、设计工程等综合能力。 有效激发青少儿学习兴趣和动机。“寓教于乐”是机器人教育的追求目标,这也是教育游戏成为当前热点一个原因。学习兴趣是重要因素,机器人教育可以通过竞技比赛形式,让孩子得到周围环境的认可和赞赏,激发学习兴趣和斗志拼搏精神。 培养青少儿团队协作能力。机器人教育多以小组形式展开项目,机器人的学习、竞赛实际上是一个团体学习的过程。需要学习者团结协作,与他人进行有效沟通,集思广益,在实践锻炼中提高自己的能力及团队协作能力。 帮助青少儿扩大知识面,转换思维方式。在机器人教育过程中,通过解决项目中遇到的实际问题,可以学到科学,技术,工程,数学等多学科知识,从而扩大青少儿知识面。通过为机器人编写程序学到科学而高效的思维方式,逻辑判断思维、系统思维等隐性知识,使思维方式发生转换。 当孩子自己产生强烈的需求,想让机器人按照自己的想法去执行任务时,那么他就会主动地去分析问题、解决问题,此时此刻他将全部的心思,能量聚集在这个方向上,那么他的潜能就会被挖掘出来。这其实也是机器人教育的本质,让孩子在玩机器人的过程中实现“创新”,让他们先动脑,再动手,通过反复的调试和修改,完成自己的独创。 即使在多次尝试失败后,孩子也从中掌握了很多方法及经验,最终他一定会成功。而这种由内在驱动力激励后所学到的东西,远远超出了课堂上老师所教授的东西。随着教育模式的改革,已经越来越倡导孩子主动参与、乐于研究、勤于动手。机器人教学正是这样的一种学习方式。慢慢的改变孩子“模仿式“学习模式,注重建立探索性、鼓励孩子试错的主动的学习方式,让每个孩子收获更多的知识,收获更多的自信和满足,同时也促进孩子的全面发展,提高孩子的各种能力。 生活中我们不难发现,高度智能化的机器人技术已经应用在教育、环境、社会服务、医疗等领域。充满实用性的人性化人工智能机器人将持续研究开发,开展机器人教育才能使青少儿在机器人时代跟上步调,走在前沿。

工业机器人内部结构及基本组成原理详解

工业机器人内部结构及基本组成原理详解 工业机器人详解 你对工业机器人有着什么样的了解?关于工业机器人,我们过去也反反复复推送了很多的文章,在这一次,我们将尝试解决有关---在工业环境中使用的最常见的机器人和作业时经常会遇到的问题。关于工业机器人定义什么可以被 认为是一个工业机器人?什么不能被称为工业机器人?工业机器人直到最近才能避开这种混乱。不是在工业环境中使 用的每个机电设备都可以被认为是机器人。根据国际标准组织的定义,工业机器人是一种可编程的三自由度或多轴自动控制的可编程多用途机械手。这几乎是在谈论工业机器人时被接受的定义。工业机器人自中年以来发生了什么变化?越来越多的工程师和企业家正在寻找越来越多的机器人技术,帮助在工业环境中优化工作流程的方式。随着时代的发展和机器人技术的进步,机器人手臂必须为诸如仓储中使用的群组AGV等新手铺路。我们经常说典型的工业机器人 由工具,工业机器人手臂,控制柜,控制面板,示教器以及其他外围设备组成。那么这些是什么?这些部分通常都在一起,控制柜类似于机器人的大脑。控制面板和示教器构成用户环境。工具(也称为末端执行器)是为特定任务设计的设备(例如焊接或喷涂)。机器人手臂基本上是移动工具的

东西。但并不是每个工业机器人都像一个手臂。不同机器人有不同类型的结构。控制面板--- 操作员使用控制面板来执行一些常规任务。(例如:改变程序或控制外围设备)。应用“机器人工人” --------- 什么时候应该使用工业机器人而不是人工?相信这个问题大家思考的次数并不少了。理想情况下,这应该是双赢的。想快速看到效果,你需要知道什么是别人最不喜欢的工作。想得最多的是那些重复的,乏味的工作,需要从工作人员那边进行大量单调的行动,这个思考是正确的,因为正是如此,例如从一个输送机到另一个输送机。如果总是相同的任务,您可以使用专门针对您的需求量身定制的自动化解决方案。工厂的工作处理需要越来越灵活,在这些情况下,正确的解决方案是:可以试用用于不同任务的可重新编程的机器人进行任务操作。此外,就是那些对人类工作有害的任务。(例如:用危险化学品进行表面处理,这是在有害环境中工作。在许多情况下,长期使用机器人比聘用工人更聪明和便宜。)当然,还有的是人类难以操作的工作。(例如:举或搬运重物或在不适合人类生活的条件下工作。)同样,在许多这些情况下,可以应用特定的自动化解决方案。然而,如果任务需要灵活性处理,还需要考虑要用到的机器人。以下是最常见的机器人应用程序列表:电弧焊、部件、涂层、去毛刺、压铸、造型、物料搬运、选择、码垛、打包、绘画、点焊、运输,仓储关于工业机器人的

详细解析工业机器人控制系统

详细解析工业机器人控制系统 什么是机器人控制系统 如果仅仅有感官和肌肉,人的四肢还是不能动作。一方面是因为来自感官的信号没有器官去接收和处理,另一方面也是因为没有器官发出神经信号,驱使肌肉发生收缩或舒张。同样,如果机器人只有传感器和驱动器,机械臂也不能正常工作。原因是传感器输出的信号没有起作用,驱动电动机也得不到驱动电压和电流,所以机器人需要有一个控制器,用硬件坨和软件组成一个的控制系统。 机器人控制系统的功能是接收来自传感器的检测信号,根据操作任务的要求,驱动机械臂中的各台电动机就像我们人的活动需要依赖自身的感官一样,机器人的运动控制离不开传感器。机器人需要用传感器来检测各种状态。机器人的内部传感器信号被用来反映机械臂关节的实际运动状态,机器人的外部传感器信号被用来检测工作环境的变化。 所以机器人的神经与大脑组合起来才能成一个完整的机器人控制系统。 机器人的运动控制系统包含哪些方面? 执行机构----伺服电机或步进电机; 驱动机构----伺服或者步进驱动器; 控制机构----运动控制器,做路径和电机联动的算法运算控制; 控制方式----有固定执行动作方式的,那就编好固定参数的程序给运动控制器;如果有加视觉系统或者其他传感器的,根据传感器信号,就编好不固定参数的程序给运动控制器。 机器人控制系统的基本功能 1.控制机械臂末端执行器的运动位置(即控制末端执行器经过的点和移动路径); 2.控制机械臂的运动姿态(即控制相邻两个活动构件的相对位置); 3.控制运动速度(即控制末端执行器运动位置随时间变化的规律); 4.控制运动加速度(即控制末端执行器在运动过程中的速度变化);

人工智能原理与应用_(张仰森_著)_高等教育出版社_课后答案

2.7解:根据谓词知识表示的步骤求解问题如下: 解法一: (1)本问题涉及的常量定义为: 猴子:Monkey,箱子:Box,香蕉:Banana,位置:a,b,c (2)定义谓词如下: SITE(x,y):表示x在y处; HANG(x,y):表示x悬挂在y处; ON(x,y):表示x站在y上; HOLDS(y,w):表示y手里拿着w。 (3)根据问题的描述将问题的初始状态和目标状态分别用谓词公式表示如下: 问题的初始状态表示: SITE(Monkey,a)∧HANG(Banana,b)∧SITE(Box,c)∧~ON(Monkey,Box)∧~HOLDS(Monkey,Banana) 问题的目标状态表示: SITE(Monkey,b)∧~HANG(Banana,b)∧SITE(Box,b) ∧ON(Monkey,Box)∧HOLDS(Monkey,Banana) 解法二: (1)本问题涉及的常量定义为: 猴子:Monkey,箱子:Box,香蕉:Banana,位置:a,b,c (2)定义谓词如下: SITE(x,y):表示x在y处; ONBOX(x):表示x站在箱子顶上; HOLDS(x):表示x摘到了香蕉。 (3)根据问题的描述将问题的初始状态和目标状态分别用谓词公式表示如下: 问题的初始状态表示: SITE(Monkey,a)∧SITE(Box,c)∧~ONBOX(Monkey)∧~HOLDS(Monkey) 问题的目标状态表示: SITE(Box,b)∧SITE(Monkey,b)∧ONBOX(Monkey)∧HOLDS(Monkey) 从上述两种解法可以看出,只要谓词定义不同,问题的初始状态和目标状态就不同。所以,对于同样的知识,不同的人的表示结果可能不同。 2.8解:本问题的关键就是制定一组操作,将初始状态转换为目标状态。为了用谓词公式表示操作,可将操作分为条件(为完成相应操作所必须具备的条件)和动作两部分。条件易于用谓词公式表示,而动作则可通过执行该动作前后的状态变化表示出来,即由于动作的执行,当前状态中删去了某些谓词公式而又增加一些谓词公式从而得到了新的状态,通过这种不同状态中谓词公式的增、减来描述动作。 定义四个操作的谓词如下,操作的条件和动作可用谓词公式的增、删表示: (1)goto

工业机器人控制的功能、组成和分类

1. 对机器人控制系统的一般要求 机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以完成特定的工作任务,其基本功能如下: ·记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。 ·示教功能:离线编程,在线示教,间接示教。在线示教包括示教盒和导引示教两种。 ·与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。 ·坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。 ·人机接口:示教盒、操作面板、显示屏。 ·传感器接口:位置检测、视觉、触觉、力觉等。 ·位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。 ·故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障自诊断。 2.机器人控制系统的组成(图1) (1)控制计算机控制系统的调度指挥机构。一般为微型机、微处理器有32位、64位等,如奔腾系列CPU以及其他类型CPU。 (2)示教盒示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的CPU以及存储单元,与主计算机之间以串行通信方式实现信息交互。 (3)操作面板由各种操作按键、状态指示灯构成,只完成基本功能操作。 (4)硬盘和软盘存储存储机器人工作程序的外围存储器。 (5)数字和模拟量输入输出各种状态和控制命令的输入或输出。 (6)打印机接口记录需要输出的各种信息。 (7)传感器接口用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。 (8)轴控制器完成机器人各关节位置、速度和加速度控制。 (9)辅助设备控制用于和机器人配合的辅助设备控制,如手爪变位器等。 (10)通信接口实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。 (11)网络接口 1)Ethernet接口:可通过以太网实现数台或单台机器人的直接PC通信,数据传输速率高达10Mbit/s,可直接在PC 上用windows库函数进行应用程序编程之后,支持TCP/IP通信协议,通过Ethernet接口将数据及程序装入各个机器人控制器中。 2)Fieldbus接口:支持多种流行的现场总线规格,如Device net、AB Remote I/O、Interbus-s、profibus-DP、M-NET 等。

教育机器人发展趋势

导语 当今社会科技突飞猛进,科技发展给我们的生活带来的变化,比过去任何一个时代都要多,也更加剧烈。当下,我们生活在一个“海量科技”的时代,处处感受着科技为生活所带来的诸多便利,也感受着它对我们生活方式、思维方式的巨大冲击,这在与科技发展关系最为密切的教育领域当中表现得更加明显。 机器人教育现状 我国目前正在开展新一轮基础教育课程的改革,正是在全球化浪潮和科技发展冲击下进行的一次巨大变革,是世界范围内课程改革的一部分,而机器人教育则在其中具有举足轻重的地位。因此我们有必要分析和借鉴国外机器人教育改革的经验和成果,以全球化视野来促进我们的相关领域发展。 教育机器人则是一类应用于教育领域的机器人,它一般具备以下特点:首先是教学适用性,符合教学使用的相关需求;其次是具有良好的性能价格比,特定的教学用户群决定了其价位不能过高;再次就是它的开放性和可扩展性,可以根据需要方便地增、减功能模块,进行自主创新;此外,它还具有人机交互界面。 科学教育改革 在科学教育改革的推动下,很多中、小学的科学课程内容也丰富起来,增加了更多的科技信息。教学过程开始从学生角度出发,体现出学生的主体地位,教学内容贴近学生日常生活、符合学生兴趣和需要,提倡并引导教师运用灵活多变、有利于发展学生探究能力的教学形式;强调培养学生的综合能力等等。 实际上,教育机器人也是一种十分典型的数字化益智玩具,适用于各个年龄阶段的孩子,并且能够以不同角度、通过多样的形式发挥其教育功能,达到寓教于乐的目的。 全新模式的教学工具 孩子是天生的学习者,孩子们在"玩"的过程中,探索、体验着属于他们的世界。玩具直接影响到孩子的性格、兴趣和爱好。使用教育机器人成为教学工具,可以让孩子承担更错综复杂的探索并促成其全面发展。 传统的教学工具,如电子书,与孩子的交互有限,而且大多是固定的,孩子一般只是简单地使用这些工具,而不能对工具本身做任何互动。与传统的教学工具相比,教育机器人有较强的交互性,交互形式多样,对于孩子来说也不容易产生厌烦感。教育机器人作为教学工具,使用形式灵活多样。 它可以作为儿童的伴侣,独生子女没有兄弟姐妹共同生活,容易形成感情上的“自我中心”不善于交流、不善于同情、不善解人意、缺少助人为乐的品质和行为。而教育机器人可以充当儿童伴侣,在一定程度上缓解独生子女的以上问题,教育机器人还可以作为知识获取工具,更是培养创新能力的工具! 课外活动新载体 传统的学校教育是对科学达到概念性理解的主要渠道,但课外的非正式教育即课外活动对于科学知识的学习也有相当大的影响。课外活动不受教学计划、教学大纲和教育形式的限制,活动的范围比较广泛,内容也很丰富。教育机器人作为学校课外活动的

机器人技术教育的必要性和建议

机器人技术教育的必要性和建议 1、开展机器人技术教育必要性 机器人技术是一个国家科技发展水平和国民经济现代化、信息化的重要标志。据了解美国、日本等一些发达国家已经看好机器人教育对未来高科技社会的作用和影响,他们在高职类院校乃至中小学信息技术教育中都不同程度地对学生进行机器人教育。为了与国际接轨,为了迎接即将到来的机器人时代,我们必须大力发展机器人教育。目前,国内高等学府及职业类院校先后开展了机器人教育。随着机器人技术的进一步发展,机器人将会走进越来越多的学校,越来越多的学生将与机器人成为伙伴。面对机器人技术的快速发展,如果中职校不及时采取措施,不在相关技术教育专业的师生中开展机器人教育,那么必将会出现机器人人才及教师队伍严重缺乏的情况。机器人作为高科技的产物,涉及工业设计、机械、电子、传感器、计算机软件、硬件、人机交互、人工智能等多门学科。它的出现在教学上极大的丰富了教育内容。要开展机器人教育,要求教师掌握机器人所涉及

学科的相关内容,但实际情况是很多教师并不具备这些知识,因此,新建机器人实训室是迫在眉睫。 2、开展机器人技术教学的作用 开展机器人技术教学,能够扩大学生的知识面,提高专业知识水平,掌握机器人所涉及的机械、电子、传感器、计算机软件硬件和人工智能等学科的相关内容。在中专阶段,给相关专业的学生开设专门的课程,系统地讲授机器人的知识,能够为他们以后从事机器人相关工作奠定良好的基础。 我国技术教育要求教师具备较高的技术素养,有一定的实践能力和创新精神。而目前职校的教学大多重视基本知识和基本技能的传授,对学生信息素养、创新精神和实践能力的培养并不到位。在机器人课程中,通过学习为智能机器人编写程序,可以提高学生分析问题和解决问题的能力;通过学习扩展、组装机器人,可以增强学生的创新意识,锻炼动手能力;通过以小组合作的形式完成机器人项目,可以培养学生们的协作能力和团队精神。

相关文档
最新文档