微带线馈电微带天线仿真_1GHz

微带线馈电微带天线仿真_1GHz
微带线馈电微带天线仿真_1GHz

1. 中心频率1GHz

天线结构

1GHz对应波长λ=300mm,所以设定微带贴片大小约为λ/2,利用HFSS仿真,最终贴片大小为63.5mm,天线高度取15mm,地板大小为300mm.

反射系数(在0.971~1.028GHz频带内反射系数小于-10dB,相对带宽为5.7%,大于5%)

三维方向图

二维增益方向图增益最大值出现在天顶处,约为5.6dBi左右。

增益

输入功率和天线辐射功率

辐射功率为1W,天线辐射功率为0.979W,所以天线的辐射效率为97.9%。

实验七 微带贴片天线的设计与仿真

实验七微带贴片天线的设计与仿真 一、实验目的 1.设计一个微带贴片天线 2..查看并分析该微带贴片天线的 二、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 传输线模分析法求微带贴片天线的辐射原理如下图所示: 设辐射元的长为L,宽为ω,介质基片的厚度为h。现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。 在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。缝的宽度△L≈h,长度为ω,两缝间距为L≈λ/2。这就是说,微带天线的辐射可以等效为有两个缝隙所组成的二元阵列。 四、实验内容 利用HFSS软件设计一个右手圆极化天线,此天线通过微带结构实现。中心频率为2.45GHz,选用介质基片R04003,其介电常数为εr=2.38,厚度为h =5mm。最后得到反射系数和三维方向图的仿真结果。 五、实验步骤 1.建立新工程 了方便建立模型,在Tool>Options>HFSS Options中讲Duplicate Boundaries with geometry 复选框选中。 2.将求解类型设置为激励求解类型: (1)在菜单栏中点击HFSS>Solution Type。

基于HFSS矩形微带贴片天线的仿真设计报告

.. .. .. 矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真 实验容:矩形微带天线仿真:工作频率7.55GHz 天线结构尺寸如表所示: 名称起点尺寸类型材料 Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.05 28.1,32,0.05 Box pec Patch -6.225,-8,0.794 12.45 , 16, 0.05 Box pec MSLine -3.1125,-8,0.794 2.49 , -8 , 0.05 Box pec Port -3.1125,-16,-0.05 2.49 ,0, 0.894 Rectangle Air -40,-40,-20 80,80,40 Box Vacumn 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File>>save as,输入0841,点击保存。 (2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。

(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。 (4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。 二、建立微带天线模型 (1)、插入模型设计 (2)、重命名

输入0841 (3)点击创建GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05 修改名称为GND, 修改材料属性为 pec, (4)介质基片:点击,:x:-14.05,y:-16,z:0。dx: 28.1,dy: 32,dz: 0.794, 修 改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。

基于HFSS的4_24微带阵列天线的研究与设计_惠鹏飞

第26卷第5期 齐 齐 哈 尔 大 学 学 报 Vol.26,No.5 2010年9月 Journal of Qiqihar University Sep.,2010 基于HFSS 的4×24微带阵列天线的研究与设计 惠鹏飞,夏颖,周喜权,陶佰睿,苗凤娟 (齐齐哈尔大学 通信与电子工程学院,黑龙江 齐齐哈尔 161006) 摘要:微带阵列天线的馈电方式有微带线馈电和同轴馈电两种方式,本文利用HFSS软件对微带阵列天线进行了研 究,分析了两种馈电方式的传输损耗及其对天线方向图的影响,利用模块化的设计方法实现了一种基于同轴线馈 电结构的多元矩形微带阵列天线。在HFSS仿真设计环境里对天线进行了物理建模,该微带阵列天线的方向图特性 良好,工程上实现比较方便。 关键词:微带阵列天线;模块化设计;HFSS 仿真;物理建模;方向图 中图分类号:TN820.1 文献标识码:A 文章编号:1007-984X(2010)05-0009-04 随着无线电技术的发展,微带天线在许多领域得到了越来越广泛的应用,主要应用场合包括:卫星通信、多普勒雷达及其它制式雷达、导弹遥测系统、复杂天线中的馈电单元等[1] 。微带天线通常采用天线阵列的形式,由馈电网络控制对天线子阵的激励幅度和相位,以获得高增益、强方向性等特点。 微带阵列天线的馈电方式主要有微带线馈电和同轴线馈电方式两种。利用微带线馈电时,馈线与微带贴片是共面的,因此可以方便地光刻,但缺点是损耗较大,在高效率的天馈系统里的应用受到较大限制[2]。本文首先对微带馈电网络产生的损耗进行了详细分析,利用HFSS 软件设计了2×4结构的微带子阵,采用同轴馈电的方式,利用模块化设计方法和方向图叠加原理最终实现了4×24矩形微带阵列天线,仿真设计结果表明,该大型矩形微带阵列天线的各项指标参数良好,设计思想得到了很好的验证。 1 微带阵列及馈电网络损耗分析 1.1 微带阵列理论 微带天线单元的增益较小,一般单个贴片单元的辐射增益只有6~8 dB,为了实现远距离传输和获得更大的增益,尤其是对天线的方向性要求比较苛刻的场合,常采用由微带辐射单元组成的微带阵列天线,如果对增益要求较高,可采用大型微带阵列天线结构[3]。 首先分析平面微带阵列天线的激励电流与电场分布情况,无论是线天线还是面天线,其辐射源都是高频电流源,天线系统将高频电流源的能量转换成电磁波的形式发射出去,讨论电流源的辐射场是分析天线的基础。假设由若干相同的微带天线元组成的平面阵结构,建立三维坐标系分析阵列天线的场量分布情况。以阵列的中心为坐标原点,天线在x 轴方向和y 轴方向的单元编号分别用m 和n 表示。以原点天线单元为相位参考点,为了简化分析,假设阵列中各单元间互耦影响可以忽略不计,各单元激励电流为 j()e xs ys m n mn I ψψ?+,天线阵在远区的辐射总场(,)E θ?为 ()(,)(,)E f S θ?θ?θ??,= 式中,(,)f θ?为阵元的方向性函数,(,)S θ?为平面阵的阵方向性函数。平面阵因子是两个线阵因子的乘积,可以利用线阵方向性分析的结论来分析平面阵列的方向性。 1.2 馈电网络及损耗分析 天线只有承载高频电流才能有电磁波辐射,馈线指将高频交流电能从电路的某一段传送到另一段所用 的设备,对天线的馈电包括对单元天线的馈电和阵列天线的馈电两种形式。当利用传输线对阵列结构进行 收稿日期:2010-06-06 基金项目:齐齐哈尔市科技局工业攻关项目(GYGG-09011-2) 作者简介:惠鹏飞(1980-),男,辽宁凌源人,讲师,硕士,主要从事雷达极化信息处理的研究,weibo505@https://www.360docs.net/doc/7318713614.html,。

实验一:微带天线的设计与仿真

实验一:微带天线的设计与仿真 一、实验步骤、仿真结果分析及优化 1、原理分析: 本微带天线采用矩形微带贴片来进行设计。 假设要设计一个在2.5GHz 附近工作的微带天线。我采用的介质基片, εr= 9.8, h=1.27mm 。理由是它的介电系数和厚度适中,在2.5GHz 附近能达到较高的天线效率。并且带宽相对较高。 由公式:2 /1212-?? ? ??+= r r f c W ε=25.82mm 贴片宽度经计算为25.82mm 。 2 /1121212 1-?? ? ?? +-+ += w h r r e εεε=8.889; ()()()()8.0/258.0264.0/3.0412.0+-++=?h w h w h l e e εε ?l=0.543mm ; 可以得到矩形贴片长度为: l f c L e r ?-= 22ε=18.08mm 馈电点距上边角的距离z 计算如下: ) 2( cos 2 ) (cos 2)(5010 22z R z G z Y e r in ?===λεπβ 2 20 90W R r λ= (0λ<

计算结果:在这类介质板上,2.5GHz 时候50Ω传输线的宽度为1.212mm 。 2、计算 基于ADS 系统的一个比较大的弱点:计算仿真速度慢。特别是在layout 下的速度令人 无法承受,所以先在sonnet 下来进行初步快速仿真。判断计算值是否能符合事实。 sonnet 中的仿真电路图如下: S11图象如下: 可见,按照公式计算出来的数据大致符合事实上模拟出来的结果。但是发现中心频率发生了偏移,这主要是由于公式中很多的近似引起的。主要的近似是下面公式引起 2 20 90W R r λ= (0λ<

微带天线仿真设计(5)讲解

太原理工大学现代科技学院 微波技术与天线课程设计 设计题目:微带天线仿真设计(5) 专业班级 学号 姓名 指导老师

专业班级 学号 姓名 成绩 设计题目:微带天线仿真设计(5) 一、设计目的: 通过仿真了解微带天线设计 二、设计原理: 1、微带天线的结构 微带天线是由一块厚度远小于波长的介质板(成为介质基片)和(用印刷电路或微波集成技术)覆盖在他的两面上的金属片构成的,其中完全覆盖介质板一片称为接触板,而尺寸可以和波长想比拟的另一片称为辐射元。 微带天线的馈电方式分为两种,如图所示。一种是侧面馈电,也就是馈电网络与辐射元刻制在同一表面;另一种是底馈,就是以同轴线的外导体直接与接地板相连,内导体穿过接地板和介质基片与辐射元相接。 微带天线的馈电 (a )侧馈 (b )底馈 2、微带天线的辐射原理 用传输线模分析法介绍矩形微带天线的辐射原理。矩形贴片天线如图: … …………… …… …… …… … …装 …… …… …… …… … …… …… …… 订… …… … …… …… …… …… …… … …线 …… …… …… …… … …… …… ……

设辐射元的长为L,宽为ω,介质基片的厚度为h。现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。缝的宽度△L≈h,长度为ω,两缝间距为L≈λ/2。这就是说,微带天线的辐射可以等效为有两个缝隙所组成的二元阵列。 经过查阅资料,可以知道微带天线的波瓣较宽,方向系数较低,这正是微带天线的缺点,除此之外,微带天线的缺点还有频带窄、损耗大、交叉极化大、单个微带天线的功率容量小等.在这个课设中,借助EDA仿真软件Ansoft HFSS进行设计和仿真。Ansoft公司推出的基于电磁场有限元方法(FEM)的分析微波工程问题的三维电磁仿真软件,Ansoft HFSS 以其无与伦比的仿真精度和可靠性,快捷的仿真速度,方便易用的操作界面,稳定成熟的自适应网格剖分技术,使其成为高频结构设计的首选工具和行业标准,并已广泛应用于航

微带天线设计

班级:通信13-3班 姓名:王亚飞 学号:1306030318 指导教师:徐维 成绩: 电子与信息工程学院 信息与通信工程系

目录 1微带天线设计 (3) 1.1微带天线简介 (3) 1.2设计要求 (3) 1.3设计指标和天线几何结构参数计算 (4) 2 HFSS 设计和建模概述 (5) 2.1创建微带天线模型 (5) 2.1.1新建HFSS 工程 (5) 2.1.2建立模型 (6) 2.2相关条件设置 (14) 2.2.1设置激励端口 (14) 2.2.2添加和使用变量 (15) 2.2.3求解设置 (17) 3设计检查和运行仿真分析 (19) 3.1查看天线谐振点 (19) 3.1变量Length、Width扫描分析 (21) 3.2查看S11参数以及Smith圆图结果 (21) 3.3查看驻波比 (22) 3.4查看天线的三维增益方向图 (22) 3.5查看平面方向图 (23) 4总结体会 (23)

1微带天线设计 1.1微带天线简介 微带天线是近30年来逐渐发展起来的一类新型天线。早在1953年就提出了微带天线的概念,但并未引起工程界的重视。在50年代和60年代只有一些零星的研究,真正的发展和使用是在70年代。常用的一类微带天线是在一个薄介质基(如聚四氟乙烯玻璃纤维压层)上,一面附上金属薄层作为接地板,另一面用光刻腐蚀等方法作出一定形状的金属贴片,利用微带线和轴线探针对贴片馈电,这就构成了微带天线。当贴片是一面积单元时,称它为微带天线;若贴片是一细长带条则称其为微带振子天线。 图1.1 是一个简单的微带贴片天线的结构,由辐射元、介质层和参考地三部分组成。与天线性能相关的参数包括辐射元的长度L、辐射元的宽度W、介质层的厚度h、介质的 相对介电常数εr 和损耗正切tan δ、介质层的长度LG 和宽度WG。图10.1 所示的微带贴片天线是采用微带线来馈电的,本章将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线接头的内芯线穿过参考地和介质层与辐射元相连接。 图1.1微带天线的结构 1.2设计要求 设计一个矩形微带天线,工作频率为2.45Ghz ,天线使用同轴线馈电。天线的中心频率为2.45GHz,因此设置HFSS 的求解频率(即自适应网格剖分频率)为2.45GHz,同时添加1.5~3.5GHz 的扫频设置,分析天线在1.5~3.5GHz 频段内的回波损耗或者电压驻波比。

HFSS矩形微带贴片天线的仿真设计报告

基于HFSS矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验内容:矩形微带天线仿真:工作频率 天线结构尺寸如表所示: 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File?save as,输入Antenna,点击保存。 (2).设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK (3)、设置模型单位:3D Modeler>Units 选择mm,点击OK (4)、菜单栏Tools>>Options>>Modeler Options, 勾选” Edit properties of new pri ” ,点击OK 二、建立微带天线模型 (1)点击三仓U 建GND,起始点:x:0 ,y:0 ,z: ,dx:,dy:32,dz:

(2) 介质基片:点击 :比,:x:0, y:0 , z:0。dx: , dy: 32 , dz:-, 修改名称为Sub,修改 材料属性为 Rogers RT/Duriod 5880,修改颜色为绿色 点击OK (3) 建立天线模型patch , 点击^已,x:,y: 8, z:0 ,dx: ,dy: 16 ,dz: 命名为patch ,点击OK (4) 建立天线模型微带线 MSLine 点击’硏,x:,y: 0, ,z: 0 , dx: ,dy: 8 ,dz:, 命名为MSLine,材料pec,透明度 选中 Patch 和 MSLine,点击 Modeler>Boolean>Unite (5) 、建立端口。创建供设置端口用的矩形,该矩形连接馈线与地 Modeler>Grid Plane>XZ ,或者设置回厂刁冈 习 点击 e ,创建Port 。命名为port 双击 Port 下方 CreatRectangle 输入:起始点:x: ,y: 0,z:-,尺寸:dx: ,dy: 0 ,dz: (6) 、创建 Air 。 点击1 ,x:-5 ,y:-5 ,z:, dx:, dy:42, dz: 修改名字为Air ,透明度. 三、设置边界条件和端口激励。 (1)设置理想金属边界:选择 GND 右击Assign Boundaries>>Pefect E 将理想边界命名为:PerfE_GND ,点击OK (2)、设置边界条件:选择 Port ,点击 Assign Boundaries>>Pefect E 在对话框中将其命名为 PerfE_Patch ,点击0K ,透明度。 修改名称为GND,修改材料属性为pec ,

同轴馈电矩形微带天线设计与分析 2

同轴馈电矩形微带天线设计与分析 摘要:本文使用HFSS软件,设计了一种具有损耗低、稳定性好的同轴馈电矩形微带天线。该新型C波段微带天线射频频率2、45GHz,输入阻抗50Ω,利用矩形同轴线馈电(RCL)结构网络和微带天线子矩阵的基本原理和设计方法,运用HFSS对该天线进行仿真、优化,最终得到最佳性能,达到了频段范围内S11小于XXX,尺寸XXX,方向性XXX,达到XXX 的设计要求。 关键词:HFSS,微带线,天线 请在摘要中写明该天线的性能,点明创新性或所做的工作重点。 1、前言 在1953年Deschaps提出微带天线的理论,经过20年多的发展,Munson和Howell于20世纪70年代初期制造了实际的微带天线。传统的手工计算设计天线采用的是尝试法,设计和研发周期长,费用高。随着计算水平的提高,可以采用成熟的电磁仿真软件设计。 微带天线结构简单,体积小,能与载体共形,能和有源器件、电路等集成为统一的整体,具有体积小、重量轻、低剖面、易于集成和制造等点,在卫星通信、卫星定位系统等多个领域获得了广泛应用。已被大量应用于100MHz~100GHz宽频域上的无线电设备中, 特别是在飞行器和地面便携式设备中得到了广泛应用。 微带天线的特征是: 比通常的微波天线有更多的物理参数, 可以有任意的几何形状和尺寸;能够提供50Ω输入阻抗,不需要匹配电路或变换器;比较容易精确制造, 可重复性较好;可通过耦合馈电, 天线和RF电路不需要物理连接;较易将发射和接收信号频段分开;辐射方向图具有各向同性。设计的圆极化微带天线具有较宽的频带或者是双频堆叠结构且采用同轴线馈电,一般天线厚度尺寸较大,因此馈电同轴长加大,导电感抗加大,天线的性能随之恶化。通常,单层厚天线采用L形或T形同轴探针馈电;对于双层厚天线,通过在层间增加空气层以改善天线的驻波特性J。这两种结构给天线的制造带来了困难,前者需要在介质层内增加金属片来实现T形或L形探针馈电,制作不便,增加了制造代价;后者需要在两层天线中间添加空气层,由于空气层厚度对天线性能影响突出,厚度不易控制,因此也不是好的选择,而同轴馈电矩形微带电线成为了性能良好的天线选择之一。 本文设计的同轴馈电矩形微带天线工作于ISM频段,其中心频率为2.45GHz;无线局

用ADS设计微带天线

用ADS 设计微带天线 一、原理 本微带天线采用矩形微带贴片来进行设计。 假设要设计一个在2.5GHz 附近工作的微带天线。我采用的介质基片, εr= 9.8, h=1.27mm 。理由是它的介电系数和厚度适中,在2.5GHz 附近能达到较高的天线效率。并且带宽相对较高。 由公式:2 /1212-? ? ? ??+=r r f c W ε=25.82mm 贴片宽度经计算为25.82mm 。 2 /1121212 1-?? ? ?? +-+ += w h r r e εεε=8.889; ()()()()8.0/258.0264.0/3.0412.0+-++=?h w h w h l e e εε ?l=0.543mm ; 可以得到矩形贴片长度为: l f c L e r ?-= 22ε=18.08mm 馈电点距上边角的距离z 计算如下: ) 2( cos 2 ) (cos 2)(5010 2 2z R z G z Y e r in ?===λεπβ 2 20 90W R r λ= (0λ<

计算结果:在这类介质板上,2.5GHz时候50Ω传输线的宽度为1.212mm。 二、计算 基于ADS系统的一个比较大的弱点:计算仿真速度慢。特别是在layout下的速度令人无法承受,所以先在sonnet下来进行初步快速仿真。判断计算值是否能符合事实。 sonnet中的仿真电路图如下:

S11图象如下: 可见,按照公式计算出来的数据大致符合事实上模拟出来的结果。但是发现中心频率发生了偏移,这主要是由于公式中很多的近似引起的。主要的近似是下面公式引起 2 20 90W R r λ= (0λ<

微带天线设计

微带天线设计 天线大体可分为线天线和口径天线两类。 移动通信用的VHF 、UHF 天线,大多是以对称振 子为基础而发展的各种型式的线天线,卫星地面站接收卫星信号大多用抛物面天线(口径 天线)。 天线的特征与天线的形状、大小及构成材料有关。天线的大小一般以天线发射或接收电磁波的波长l 来计量。因为工作于波长l = 2m 的长为1m 的偶极子天线的辐射特性与工作于波长l = 2cm 的长为1cm 的偶极子天线是相同的。 与天线方向性有关参数:方向性函数或方向图 离开天线一定距离处,描述天线辐射的电磁场强度在空间的相对分布的数学表达式,称为天线的方向性函数; 把方向性函数用图形表示出来,就是方向图。 最大辐射波束通常称为方向图的主瓣。主瓣旁边的几个小的波束叫旁瓣。 为了方便对各种天线的方向图进行比较,就需要规定一些表示方向图特性的参数,这些参数有: 1.天线增益G (或方向性GD )、波束宽度(或主瓣宽度)、旁瓣电平等。 2.天线效率 3.极化特性 4.频带宽度 5.输入阻抗

天线增益是在波阵面某一给定方向天线辐射强度的量度。它是被研究天线在最大辐射方向的辐射强度与被研究天线具有同等输入功率的各向同性天线在同一点所产生的最大辐射强度之比。 天线方向性GD与天线增益G类似但与天线增益定义略有不同。 因为天线总有损耗,天线辐射功率比馈入功率总要小一些,所以天线增益总要比天线方向性小一些。 理想天线能把全部馈入天线的功率限制在某一立体角ΩB内辐射出去,且在ΩB立体角内均匀分布。这种情况下天线增益与天线方向性相等。 理想的天线辐射波束立体角ΩB及波束宽度θB 实际天线的辐射功率有时并不限制在一个波束中,在一个波束内也非均匀分布。在波束中心辐射强度最大,偏离波束中心,辐射强度减小。辐射强度减小到3db时的立体角即定义为ΩB。波束宽度θB与立体角ΩB关系为 旁瓣电平

基于ADS的微带缝隙天线的仿真设计

课程设计说明书 题目:基于ADS的微带缝隙天线的仿真设计 学院(系): 年级专业: 学号: 学生姓名: 指导教师: 教师职称:

基于ADS的微带缝隙天线的仿真设计 摘要:通信系统的发展带来了天线行业的勃勃生机,在众多的天线类型中微带天线已成为当前研究的前沿之一,具有广阔的前景与实用意义。特别是微带缝隙天线,以其重量轻、剖面薄、平面结构且易与载体共形,馈电网络可与天线结构一起制成等优点已经引起天线工作者的广泛关注。本文就设计一个中心频率工作为880MHz,相对带宽为B=5%,介质板厚度h=1.6mm,损耗角正切tanδ=0.0018,介电常数为Er=2.3的微带缝隙天线展开研究以及仿真和优化。 关键词:ADS;微带缝隙天线;仿真设计; Design of microstrip slot antenna based on ADS simulation Abstract: Communication system development has brought the antenna the vitality of the industry, in many types of antenna microstrip antenna has become one of the forefront of current research, has broad prospects and practical significance. Microstrip slot antenna, in particular, with its light weight, thin section, flat structure and easy with conformal carrier, feeding the advantages of network can be made with the antenna structure has caused extensive concern of antenna workers. In this paper, the design of a work center frequency is 880 MHZ, relative bandwidth is B = 5%, medium plate thickness h = 1.6 mm, loss tangent tan delta = 0.0018, the dielectric constant of Er = 2.3 microstrip slot antenna study and simulation and optimization. Key words: ADS; Microstrip slot antenna. The simulation design; 学习目的 1. 学习射频电路的理论知识;

矩形微带贴片天线设计及仿真

《现代电子电路》课程设计题目矩形微带天线的设计与仿真 单位(院、系):信息工程学院 学科专业: 电子与通信工程 学号:416114410159 姓名:曾永安 时间:2011.4.25

矩形微带天线的设计与仿真 学科专业:电子与通信工程学号:416114410159 姓名:曾永安指导老师:吴毅强 摘要:本文介绍了一种谢振频率为2.45GHz,天线输入阻抗为50Ω的使用同轴线馈电的矩形微带天线。通过HFSS V10软件对该天线进行仿真、优化,最终得到最佳性能。 关键词:HFSS,微带线,天线

Design and Simulation of Rectangular Microstrip Antenna Abstract:This paper introduces a rectangular microstrip antenna which works at resonance frequency of 2.45GHz and antenna input impedance of 50Ω and is fed by coaxial cable. The model of the antenna is set up a nd simulated by ANSOFT HFSS V10 ,and the optimal parameters of the microstrip antenna are obtained as well. Key words:HFSS,Microstrip,Antenna

1.引言 微带天线的概念首先是由Deschamps于1953年提出来的,经过20多年的发展,Munson和Howell于20世纪70年代初期制造了实际的微带天线。微带天线结构简单,体积小,能与载体共形, 能和有源器件、电路等集成为统一的整体,已被大量应用于100MHz~100GHz宽频域上的无线电设备中, 特别是在飞行器和地面便携式设备中得到了广泛应用。微带天线的特征是: 比通常的微波天线有更多的物理参数, 可以有任意的几何形状和尺寸;能够提供50Ω输入阻抗,不需要匹配电路或变换器;比较容易精确制造, 可重复性较好;可通过耦合馈电, 天线和RF电路不需要物理连接;较易将发射和接收信号频段分开;辐射方向图具有各向同性。本文设计的矩形微带天线工作于ISM频段,其中心频率为2.45GHz;无线局域网、蓝牙、ZigBee等无线网络均可工作在该频段上。选用的介质板材为Rogers R04003,其相对介电常数εr=3.38,厚度h=5mm;天线使用同轴线馈电。 2.微带贴片天线理论分析 图1是一个简单的微带贴片天线的结构,由辐射元、介质层和参考地三部分组成。与天线性能相关的参数包括辐射元的长度L、辐射元的宽度W、介质层的厚度h、介质的相对介电常数 r和损耗角正切tanδ、介质层的长度LG和宽度WG。图1所示的微带贴片天线采用微带线馈电,本文将要设计的矩形微带天线采用的是同轴线馈电,也就是将同轴线街头的内芯线穿过参考点和介质层与辐射元相连接。 图1 微带天线的结构

一种L型探针馈电的微带共形天线设计

一种L型探针馈电的微带共形天线设计 【摘要】微带贴片天线以其剖面小、体积小、结构简单等优点在近年来得到了极大的发展,尤其是运用在机载共形天线上。本文结合L型探针的馈电方式,并综合使用了加载短路探针的方法实现了天线剖面r=198mm,h=25mm的共形化设计,极大降低了天线尺寸、减小了剖面面积,使天线更好的与载体共形并节约载体空间。 【关键词】微带共形天线;L型探针馈电;短路探针加载 0 引言 共形天线作为机载天线的一种重要形式,必须具有体积小、剖面低、可探测性低、抗损伤性高等特点,因此能够用作共形天线的天线形式主要有各种微带和缝隙天线(也有其它形式但比较少)。而缝隙天线主要是在平板、圆筒或圆柱等结构上直接开槽的一种天线形式,优点是结构简单,但同时也存在着频带窄,在大功率时容易击穿等缺点。相比较起来则是微带天线作为共形天线更为常见。微带天线是一种由薄介质基片,其上用金属沉积矩形、圆形或其他几何形状的辐射元,而背面贴以金属接地板的天线。 本文提出的L型探针的馈电方式,使这种微带天线具有结构紧凑、剖面低、辐射效率高、易与载体共形等优点。 1 设计原理 1.1 L型馈电探针的原理 该结构相当于空气介质基板的微带贴片天线。天线辐射机理为[1]:L型探针的垂直部分产生感抗,水平部分和贴片之间产生容抗,两者相消产生谐振,使天线呈现宽频带或者多频带。通过与同轴电缆相连,L型探针上将存在交变电场,电场方向为探针水平臂所指方向,交变电场将引起变化的磁场,磁场方向与电场方向垂直。当磁力线垂直穿过贴片时,又将产生变化的电场。这种变化的电磁场经过金属底板的反射后辐射出去。 1.2 微带天线小型化的技术 1.2.1 辐射贴片开槽 研究发现,对辐射贴片进行开槽,贴片表面电流的路径将发生弯曲,导致有效路径变长。因此,在贴片几何尺寸保持不变的情况下,采用开槽贴片可以增大天线有效长度,降低天线的谐振频率,从而实现天线小型化。 不过,辐射贴片表面开槽也有相应的缺点。天线表面开槽后会有垂直于主激

HFSS 矩形微带贴片天线的仿真设计报告

基于H F S S矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真 实验内容:矩形微带天线仿真:工作频率 天线结构尺寸如表所示: 名称起点尺寸类型材料 Sub 0,0,0 ,32,Box Rogers 5880 (tm) GND 0,0,,32,Box pec Patch , 8 , 0 , 16, Box pec MSLine ,0, , 8 , Box pec Port ,0, ,0, Rectangle Air -5,-5, , 42, Box Vacumn 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File>>save as,输入Antenna,点击保存。 (2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。 (3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。 (4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。 二、建立微带天线模型 (1)点击创建GND,起始点:x:0,y:0,z:,dx:,dy:32,dz:

修改名称为GND, 修改材料属性为 pec, (2)介质基片:点击,:x:0,y:0,z:0。dx: ,dy: 32,dz: - , 修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度。点击OK (3) 建立天线模型patch, 点击,x:,y: 8, z:0 ,dx: ,dy: 16,dz: 命名为patch,点击OK。 (4) 建立天线模型微带线MSLine 点击,x:,y: 0, ,z: 0 , dx:,dy: 8,dz: , 命名为MSLine,材料pec, 透明度 选中Patch和MSLine,点击Modeler>Boolean>Unite (5)、建立端口。创建供设置端口用的矩形,该矩形连接馈线与地。Modeler>Grid Plane>XZ,或者设置 点击,创建Port。命名为port 双击Port下方CreatRectangle 输入:起始点:x: ,y: 0,z:- ,尺寸: dx:,dy: 0,dz: (6)、创建Air。 点击,x:-5,y:-5,z:, dx:, dy:42, dz: 修改名字为Air,透明度. , 三、设置边界条件和端口激励。 (1)设置理想金属边界:选择GND,右击Assign Boundaries>>Perfect E 将理想边界命名为:PerfE_GND,,点击OK。 (2)、设置边界条件:选择Port,点击Assign Boundaries>>Perfect E

微带天线仿真设计(圆形侧馈)

太原理工大学 微波技术与天线课程设计设计题目:微带天线仿真设计 学生姓名 学号 专业班级 指导教师

太原理工大学现代科技学院 课程设计任务书 注:课程设计完成后,学生提交的归档文件应按,封面—任务书—说明书—图纸的顺序进 行装订上交(大张图纸不必装订) 指导教师签名: 日期: 专业班级 学生姓名 课程名称 微波技术与天线课程设计 设计名称 微波器件或天线设计 设计周数 1.5周 指导教师 设计 任务 主要 设计 参数 1 熟悉HFSS 仿真平台的使用 2 熟悉微带天线的工作原理与设计方法 3 在HFSS 平台上完成如下仿真设计 题目一:三角形微带天线设计(同轴馈),900MHz ,1800MHz /2.4GHz , 4GHz /2.4GHz ,5.8GHz 学号为1、6完成此题 题目二:三角形微带天线设计(侧馈),900MHz ,1800MHz /2.4GHz , 4GHz /2.4GHz ,5.8GHz 学号为2、7完成此题 题目三:圆形微带天线设计(同轴馈),900MHz ,1800MHz /2.6GHz , 4GHz /2.4GHz ,5.8GHz 学号为3、8完成此题 题目四:圆形微带天线设计(侧馈),900MHz ,1800MHz /2.6GHz , 4GHz /2.4GHz ,5.8GHz 学号为4、9完成此题 题目五:半波偶极子天线设计,900MHz ,1800MHz /2.6GHz , 4GHz /2.4GHz ,5.8GHz 学号为5、0完成此题 4 结合同组其他同学的设计结果完成对于结构参数与性能之间关系的探讨 5 在1.5周内完成设计任务 设计内容 设计要求 1、 6. 5:分组、任务分配、任务理解 2、 6. 6:查阅参考资料,理论上熟悉所设计的器件的工作原理与特性,完成方案的设计 3、 6. 7~6.9:熟悉仿真平台的使用,完成在平台上的建模,设置,结果提取与分析,以 及验收。 4、 6. 12:同组同学结果汇总及讨论 5、 6.13~6.14:设计说明书的撰写 在设计过程中,作为设计小组成员,每位同学要具有团队意识和合作精神,并最终独立完成自己的设计任务。 主要参考 资 料 刘学观,微波技术与天线,西安电子科技大学电出版社,2008 李明洋,HFSS 应用设计详解,人民邮电出版社,2010 学生提交 归档文件 1、相关知识及基本原理 2、参数归纳:材质、尺寸 3、软件仿真过程及结果分析 4、设计总结

微带天线仿真设计

… 设计一、微带天线仿真设计 三角形贴片是微带贴片天线最基本的模型,本设计就是基于微带贴片天线基础理论以及熟练掌握HFSS10仿真软件基础上,设计一个三角形贴片天线,其工作频率为,分析其远区辐射场特性以及S曲线。 一.设计目的与要求 1.理解和掌握微带天线的设计原理 2.选定微带天线的参数:工作频率、介质基片厚度、贴片模型及馈电点位置 3.创建工程并根据设计尺寸参数指标绘制微带天线HFSS模型 4.保存工程后设定边界条件、求解扫描频率,生成S参数曲线和方向图 5.观察对比不同尺寸参数的微带天线的仿真结果,并分析它们对性能的影响— 二.实验原理 如下图所示,用传输线模分析法介绍它的辐射原理。。 设辐射元的长为L,宽为ω,介质基片的厚度为h。现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。 在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。缝的宽度△L≈h,长度为ω,两缝间距为L≈λ/2。这就是说,微带天线的辐射可以等效为有两个缝隙所组成的二元阵列。

矩形贴片天线示意图 三.贴片天线仿真步骤 1、建立新的工程 】 运行HFSS,点击菜单栏中的Project>Insert HFSS Dessign,建立一个新的工程。 2、设置求解类型 (1)在菜单栏中点击HFSS>Solution Type。 (2)在弹出的Solution Type窗口中 (a)选择Driven Modal。 (b)点击OK按钮。 3. 设置模型单位 将创建模型中的单位设置为毫米。 《 (1)在菜单栏中点击3D Modeler>Units。 (2)设置模型单位: (a)在设置单位窗口中选择:mm。 (b)点击OK按钮。 4、创建微带天线模型 (1)创建地板GroundPlane。坐标:X:-45,Y:-45,Z:0按回车键。在坐标输入栏中输入长、宽:dX:90,dY:90,dZ:0。 (2)为GroundPlane设置理想金属边界。在3D模型窗口中将3D模型以合适的大小显示(可以用Ctrl+D来操作)。

微带天线设计

08通信陆静晔04

微带天线设计 一、实验目的: ● 利用电磁软件Ansoft HFSS 设计一款微带天线 ? 微带天线的要求:工作频率为2.5GHz ,带宽(S11<-10dB )大于5%。 ● 在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、实验原理: 微带天线的概念首先是由Deschamps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1-1是一个简单的微带贴片 天线的结构,由辐射源、介质层和参 考地三部分组成。与天线性能相关的 参数包括辐射源的长度L 、辐射源的 宽度W 、介质层的厚度h 、介质的相对介电常数和损耗正切、介质层的长度LG 和宽度WG 。图1-1所示的微带贴片天线是采用微带线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线接头的内芯线穿过参考地和介质层 与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能。矩形贴片微带天线的工作主模式是模,意味着电场在长度L 方向上有/2的改变,而在宽度W 方向上保持不变,如图1-2(a )所示,在长度L 方向上可以看作成有两个终端开路的缝隙辐射出电磁能量,在宽度W 方向的边缘由于终端开路,所以电压值最大电流值最小。从图1-2(b )可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直分量大小相等、方向相反,平行电场分量大小相等、方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。 图 1-1 图1-2 矩形微带天线俯视图和侧视图

微带天线设计学习资料

班级:通信13-3班姓名:王亚飞 学号:1306030318 指导教师:徐维 成绩: 电子与信息工程学院 信息与通信工程系

目录 1微带天线设计 (3) 1.1微带天线简介 (3) 1.2设计要求 (3) 1.3设计指标和天线几何结构参数计算 (4) 2 HFSS 设计和建模概述 (5) 2.1创建微带天线模型 (5) 2.1.1新建HFSS 工程 (5) 2.1.2建立模型 (6) 2.2相关条件设置 (14) 2.2.1设置激励端口 (14) 2.2.2添加和使用变量 (15) 2.2.3求解设置 (17) 3设计检查和运行仿真分析 (19) 3.1查看天线谐振点 (19) 3.1变量Length、Width扫描分析 (21) 3.2查看S11参数以及Smith圆图结果 (21) 3.3查看驻波比 (22) 3.4查看天线的三维增益方向图 (22) 3.5查看平面方向图 (23) 4总结体会 (23)

1微带天线设计 1.1微带天线简介 微带天线是近30年来逐渐发展起来的一类新型天线。早在1953年就提出了微带天线的概念,但并未引起工程界的重视。在50年代和60年代只有一些零星的研究,真正的发展和使用是在70年代。常用的一类微带天线是在一个薄介质基(如聚四氟乙烯玻璃纤维压层)上,一面附上金属薄层作为接地板,另一面用光刻腐蚀等方法作出一定形状的金属贴片,利用微带线和轴线探针对贴片馈电,这就构成了微带天线。当贴片是一面积单元时,称它为微带天线;若贴片是一细长带条则称其为微带振子天线。 图1.1 是一个简单的微带贴片天线的结构,由辐射元、介质层和参考地三部分组 成。与天线性能相关的参数包括辐射元的长度L、辐射元的宽度W、介质层的厚度h、介质的相对介电常数εr 和损耗正切tan δ、介质层的长度LG 和宽度WG。图10.1 所示 的微带贴片天线是采用微带线来馈电的,本章将要设计的矩形微带贴片天线采用的是同 轴线馈电,也就是将同轴线接头的内芯线穿过参考地和介质层与辐射元相连接。 图1. 1微带天线的结构 1.2设计要求 设计一个矩形微带天线,工作频率为2.45Ghz ,天线使用同轴线馈电。天线的中心频率为2.45GHz,因此设置HFSS 的求解频率(即自适应网格剖分频率)为2.45GHz,同时添加1.5~3.5GHz 的扫频设置,分析天线在1.5~3.5GHz 频段内的回波损耗或者电压驻波比。

相关文档
最新文档