材料的力学性能 应力应变关系

材料的力学性能  应力应变关系
材料的力学性能  应力应变关系

材料的力学性能应力应变关系

分别从静力学、几何学观点出发,建立了应力、应变的概念以及满足平衡和变形协调等条件时的方程。仅用这些方程还不足以解决受力构件内各点的受力和变形程度,因为在推导这些方程时,没有考虑到应力与应变间内在的联系。实际上它们是相辅相成的,有应力就有应变;有应变,就有应力(这里指等温情况)。应力与应变间的关系,完全由材料决定,反映了材料所固有的力学性质。不同的材料会反映出不同的应力应变关系。材料的力学性能和应力应变关系要通过实验得到。

4.1 材料的力学性能与基本实验

材料在外力作用下所表现出的变形和破坏方面的特性,称为材料的力学性能。材料的力学性能通常都是通过实验来认识的,最基本的实验是材料的轴向拉伸和压缩实验。常温、静载下的轴向拉伸试验是材料力学中最基本、应用最广泛的试

验。通过拉伸试验,可以较全面地测定

材料的力学性能指标,如弹性、塑性、

强度、断裂等。这些性能指标对材料力

学的分析计算、工程设计、选择材料和

新材料开发有极其重要的作用,特别对

建立复杂应力状态下材料的失效准则

提供最基本的依据。由于有些材料在拉

伸和压缩时所表现的力学性能并不相

同,因而必须通过另一基本实验,轴向

压缩实验来了解材料压缩时的力学性

能。

试验时首先要把待测试的材料加工

成试件,试件的形状、加工精度和试验

条件等都有具体的国家标准或部颁标

准规定。例如,国家标准GB6397-86《金属拉伸试验试样》中规定拉伸试件截面可采用圆形和矩形(见图4-1),并分别具有长短两种规格。圆截面长试件其工作段长度(也称标距),短试件l 0 = 5d 0(图4-1a);矩形截面长试件

l0 = 11.3,短试件l 0 = 5.65,A 0为横截面面积(图4-1b)。金属材料的压缩实验,一般采用短圆柱形试件,其高度为直径的1.5~3倍(图4-1c)。除此之外,还规定了试验条件、试验内容及方法等。

4.2 轴向拉伸和压缩实验

4.2.1 低碳钢的拉伸实验

将试件装卡在材料试验机上进行常温、静载拉伸试验,直到把试件拉断,试验机的绘图装置会把试件所受的拉力F和试件的伸长量Dl之间的关系自动记录下来,绘出一条F - Dl曲线,称为拉伸图。研究拉伸图,并测定材料力学性能的各项指标。

1.低碳钢的拉伸图

图4-2为低碳钢试件的拉伸图。由图可见,在拉伸试验过程中,低碳钢试件工作段的伸长量Dl与试件所受拉力F之间的关系,大致可分为以下四个阶段。

第Ⅰ阶段试件受力以后,长度增加,产生变形,这时如将外力卸去,试件

工作段的变形可以消失,恢复原状,

变形为弹性变形,因此,称第Ⅰ阶

段为弹性变形阶段。低碳钢试件在弹

性变形阶段的大部分范围内,外力与

变形之间成正比,拉伸图呈一直线。

第Ⅱ阶段弹性变形阶段以后,

试件的伸长显著增加,但外力却滞留

在很小的范围内上下波动。这时低碳

钢似乎是失去了对变形的抵抗能力,

外力不需增加,变形却继续增大,这

种现象称为屈服或流动。因此,第Ⅱ

阶段称为屈服阶段或流动阶段。屈服

阶段中拉力波动的最低值称为屈服

载荷,用F s表示。在屈服阶段中,试件的表面上呈现出与轴线大致成45°的条纹线,这种条纹线是因材料沿最大切应力面滑移而形成的,通常称为滑移线。

第Ⅲ阶段过了屈服阶段以后,继续增加变形,需要加大外力,试件对变形的抵抗能力又获得增强。因此,第Ⅲ阶段称为强化阶段。强化阶段中,力与变形之间不再成正比,呈现着非线性的关系。

超过弹性阶段以后,若将载荷卸去(简称卸载),则在卸载过程中,力与变形按线性规律减少,且其间的比例关系与弹性阶段基本相同。载荷全部卸除以后,试件所产生的变形一部分消失,而另一部分则残留下来,试件不能完全恢复原状。在屈服阶段,试件已经有了明显的塑性变形。因此,过了弹性阶段以后,拉伸图曲线上任一点处对应的变形,都包含着弹性变形Dl e及塑性变形Dl p两部分(见图4-2)。

第Ⅳ阶段当拉力继续增大达某一确定数值时,可以看到,试件某处突然开始逐渐局部变细,形同细颈,称颈缩现象。颈缩出现以后,变形主要集中在细颈附近的局部区域。因此,第Ⅳ阶段称为局部变形阶段。局部变形阶段后期,颈缩处的横截面面积急剧减少,试件所能承受的拉力迅速降低,最后在颈缩处被拉断。若用d1及l1分别表示断裂后颈缩处的最小直径及断裂后试件工作段的长度,则d1及l1与试件初始直径d 0及工作段初始长度l0相比,均有很大差别。颈缩出现前,试件所能承受的拉力最大值,称为最大载荷,用F b表示。

2.低碳钢拉伸时的力学性能

低碳钢的拉伸图反映了试件的变形及破坏的情况,但还不能代表材料的力学性能。因为试件尺寸的不同,会使拉伸图在量的方面有所差异,为了定量地表示出材料的力学性能,将拉伸图纵、横坐标分别除以A0及l0,所得图形称为应力- 应变图(s-e图),s = F/A0(见第5章),e = Dl/l。图4-3为低碳钢的应力–应变图。由图可见,应力–应变图的曲线上有n个特殊点(如图中a、b、c、e等),当应力达到这些特殊点所对应的应力

值时,图中的曲线就要从一种形态变

到另一种形态。这些特殊点所对应的

应力称为极限应力,材料拉伸时反映

强度的一些力学性能,就是用这些极

限应力来表示的。从应力–应变图上,

还可以得出反映材料对弹性变形抵抗

能力及反映材料塑性的力学性能。下

面对拉伸时材料力学性能的主要指标

逐一进行讨论。

比例极限及弹性模量E应力–

应变曲线上o a段,按一般工程精度

要求,可视为直线,在a点以下,应

力与应变成正比。对应于a点的应力,称为比例极限,用E表示比例常数,则有

(4-1)

这就是虎克定律,其中比例常数E表示产生单位应变时所需的应力,是反映材料对弹性变形抵抗能力的一个性能指标,称为抗拉弹性模量,简称弹性模量。不

同材料,其比例极限和弹性模量E也不同。例如,低碳钢中的普通碳素钢A3,比例极限约200MPa,弹性模量约200GPa。

弹性极限是卸载后不产生塑性变形的最大应力,在图4-3中用b点所对应的应力表示。实际上低碳钢的弹性极限与比例极限十分接近,可以认为,对低碳钢来说,=。

屈服点等于屈服载荷F s除以试件的初始横截面面积A0,即

(4-2)

从图4-3可见,屈服阶段中曲线呈锯齿形,应力上下波动,锯齿形最高点所对应的应力称为上屈服点,最低点称为下屈服点。上屈服点不太稳定,常随试验状态(如加载速率)而改变。下屈服点比较稳定(如图4-3中的c点),通常把下屈服点所对应的应力作为材料的屈服点(参看GB228-76《金属拉力试验法》)。应力达屈服点时,材料将产生显著的塑性变形。

强度极限或抗拉强度图4-3中e点的应力等于试件拉断前所能承受的最大载荷F b除以试件初始横截面面积A 0,即

(4-3)

当横截面上的应力达强度极限时,受拉杆件上将开始出现颈缩并随即发生断裂。

屈服点和抗拉强度是衡量材料强度的两个重要指标。普通碳素钢A3的屈服点约为=220MPa,抗拉强度约为=420MPa。

伸长率d d为试件拉断后,工作段的残余伸长量Dl R=l1-l0与标距长度l0的比值,通常用百分数表示,即

(4 -4)

伸长率d表示试件在拉断以前,所能进行的塑性变形的程度,是衡量材料塑性的指标。标距长度对伸长率有影响,因此,对用5倍试件及10倍试件测得的伸长率分别加注解标5及10字样,即分别用d 5及d 10表示,以示区别。普通碳素钢A3

的伸长率可达d 5=27%以上,在钢材中是塑性相当好的材料。工程上通常把静载常温下伸长率大于5%的材料称为塑性材料,金属材料中低碳钢是典型的塑性材料。

截面收缩率y用试件初始横截面面积A0减去断裂后颈缩处的最小横截面面

积A1,并除以A0所得商值的百分数表示,即

(4-5)普通碳素钢A3的截面收缩率约为y = 55%。

3.冷作硬化现象

图4-4a表示低碳钢的拉伸图。设载荷从零开始逐渐增大,拉伸图曲线将沿

Odef线变化直至f

点发生断裂为止。

前已述及,经过弹

性阶段以后,若从

某点(例如d点)

开始卸载,则力与

变形间的关系将

沿与弹性阶段直

线大体平行的dd 2

线回到d 2点。若卸

载后从d 2点开始

继续加载,曲线将首先大体沿d2d线回至d点,然后仍沿未经卸载的曲线def变化,直至f点发生断裂为止。

可见在再次加载过程中,直到d点以前,试件变形是弹性的,过d点后才开

始出现塑性变形。比较图4-4中a、b所示的两条曲线,说明在第二次加载时,

材料的比例极限得到提高,而塑性变形和伸长率有所降低。在常温下,材料经加

载到产生塑性变形后卸载,由于材料经历过强化,从而使其比例极限提高、塑性性能降低的现象称为冷作硬化。

冷作硬化可以提高构件在弹性范围内所能承受的载荷,同时也降低了材料继续进行塑性变形的能力。一些弹性元件及操纵钢索等常利用冷作硬化现象进行预加工处理,以使其能承受较大的载荷而不产生残余变形。冷压成形时,希望材料具有较大塑性变形的能力。因此,常设法防止或消除冷作硬化对材料塑性的影响,例如,在工序间进行退火等。

4.2.2 铸铁的拉伸实验

静载常温下伸长率小于5%的材料习惯上称为脆性材料。砖、石、玻璃、水泥、灰铸铁及某些高强度钢等都属于脆性材料。灰铸铁(简称铸铁)拉伸时,断裂后测得的伸长率尚不及1%,在金属材料中,是一种典型的脆性材料。图4-5为铸铁拉伸时的应力–应变图。由图可见,铸铁拉伸时,没有屈服阶段,也没有颈

缩现象,反映强度的力学性能只能测得强度极限,而且拉伸时强度极限的值较低。铸铁的应力–应变图没有明显的直线段,通常在应力较小时,取图上的弦线近似地表示铸铁拉伸时的应力–应变关系,并按弦线的斜率近似地确定弹性模量E。由于铸铁的抗拉强度较差,一般不宜选做承受拉力的构件。抗拉强度差,这是脆性材料共同的特点。

4.2.3 低碳钢和铸铁的压缩实验

图4-6中,曲线1表示低碳钢试件压缩时的应力–应变图,曲线2为拉伸时的应力–应变图。两个图形曲线在屈服阶段以前基本重合,即低碳钢压缩时,弹性模量E、屈服点均与拉伸时大致相同。过了屈服阶段,继续压缩时,试件的长度愈来愈短,而直径不断增大,由于受试验机上下压板摩擦力的影响,试件两端直径的增大受到阻碍,因而变成鼓形。压力继续增加,鼓形高度减小,直径愈益增大,最后被压成薄饼,而不发生断裂,因而低碳钢压缩时测不出强度极限。由于低碳钢压缩时的主要力学性能与拉伸时大体相同,所以一般通过拉伸试验即可得到其压缩时的主要力学性能。因此,对低碳钢来说,拉伸试验是基本的试验。

图4-9为铸铁压缩时的应力–应变图。与拉伸时相比,铸铁压缩时强度极限很高,例如,HT30-54压缩时的强度极限约为拉抻时强度极限的4倍。抗压强度远大于抗拉强度,这是铸铁力学性能的重要特点。铸铁试件受压缩发生断裂时,断裂面与轴线大致成45°的倾角(图4-7),这表明铸铁试件受压时断裂是因最大切应力所致。

顺便指出,混凝土及石料等非金属脆性材料进行压缩试验时,常采用立方体形状的试件。这类材料受压破坏的形式与试件端面所受摩擦阻力有关。例如,压缩时若在端面涂以润滑剂,试件将沿纵向开裂(图4-8a),而不涂润滑剂时,压坏后将呈对接的截锥体形(图4-8b)。两种情况下测得的抗压强度极限亦不相同。因此,对这类材料进行压缩实验时,除应注意采用规定的试件形状及尺寸外,还须注意端面的接触条件。

4.3 常见工程材料的应力–应变曲线

各种材料均可通过拉伸试验测定其力学性能,并绘制应力–应变图。图4-9示意表示几种塑性材料的应力–应变图。由图可见,一些塑性材料的应力–应变图中没有明显的屈服阶段。对于没有明显屈服阶段的塑性材料,通常人为地规

定,把产生0.2%残余应变时所对应的应力作为名义屈服点,并用表示(图4-10)。通常对于没有明显屈服阶段的材料,手册中列出的即是指的名义屈点

。表4-1给出了几种常用金属材料拉伸时的力学性能。关于材料更详尽的资料,可查阅有关国家标准、部标准或企业标准以及有关资料手册等。

表4-1 几种常用材料的主要力学性能

屈服点/MPa 抗拉强度

高分子材料是一种常用的工程材料,其种类很多,它们的力学性能有很大差异。主要分这样几类,一类为硬而脆的高分子材料,如聚苯乙烯、有机玻璃等,聚苯乙烯的应力-应变曲线示在图4-11中;第二类为具有一定强度和塑性的结晶态高分子材料,如尼龙、聚碳酸脂等,尼龙的应力-应变曲线见图4-11;第三类为高弹性材料,如橡胶等。

需要指出,结晶态高分子材料,拉伸时颈缩现象不是发生在强化阶段之后,而是在屈服的开始。但颈缩后不立即发生断裂,仍能承受很大的应变。

近年来,复合材料以其诸多优点广泛应用于各个工程领域。图4-12为某种碳/ 环氧(碳纤维增强环氧树脂基体)单层纤维复合材料沿纤维方向和垂直纤维方向拉伸时的应力-应变曲线,由图可见,材料的力学性能随加力方向变化,即为各向异性,其沿着纤维方向的抗拉强度和弹性模量均远大于垂直纤维方向的值。碳纤维和玻璃纤维的单向复合材料的力学性能列于表4-2中。

表4-2 单向复合材料的力学性能

注:V f是纤维在复合材料中所占体积的百分数

4.4 应力松驰与蠕变

加载速率、温度及载荷作用时间等因素,对材料的力学性能有显著影响。当载荷迅速增加时,材料的塑性变形可能还来不及完全形成就发生了破坏。图4-13为低碳钢在静载及迅速加载两种情况下的应力-应变曲线示意图。由图可见,迅速加载时,屈服阶段已不明显,但强度极限显著提高。其他塑性材料在迅速加载时也有类似性质。至于温度的影响,一般说来,随着温度的升高,金属材料的屈

服点、强度极限降低,而伸长率则增大。图4-14a为短期静载下,低碳钢的、

、E、d、Y等随温度的变化曲线。由图可见,当升温至250 ~ 300℃时,低碳

钢的强度极限反而升高,而伸长率d及截面收缩率Y却显著降低。这一现象称为蓝脆现象。蓝脆现象主要是低碳钢所特有的。因此,低碳钢锻件应尽量避免

在蓝脆区进行热加工,以防锻件开裂。图4-14b表示铬锰合金钢的、及d 随温度的变化曲线。对多数材料来说,随着温度升高,都是趋于强度降低,塑性增加。金属热加工就是根据材料的这一性质加热成型的。温度降至0℃以下时,钢材总的趋势是变脆,强度提高,塑性降低。

高温下,载荷作用的时间对材料的力学性能有重要影响。温度高于一定数值,应力超过某一限度以后,在定值静载应力作用下,材料的变形会随着时间而不断地缓慢增长,这种现象称为蠕变。蠕变变形主要是塑性变形,卸载后只有很少部分变形能够恢复。图4-15为金属材料蠕变曲线的示意图,图中纵坐标为蠕变应变,横坐标代表时间,曲线斜率即d e /d t表示蠕变速度。图4-15a中曲线的AB 段蠕变速度不断减少,是不稳定阶段;BC段蠕变速度最小,且近于常量,称稳定阶段;随后蠕变速度开始增加,CD段因之称为加速阶段;过了D点,蠕变速度急剧加大直至E点发生断裂,DE段称为破坏阶段。温度不变时,应力愈大稳定阶段的蠕变速度亦愈大,容易发生蠕变断裂(图4-15b)。应力小于某一限度,稳定阶段的蠕变速度将减少至零,这时就可以不考虑蠕变的影响。

高温下若变形保持不变,会出现应力随时间逐渐降低的现象,这种现象称为松弛。忽视蠕变与松弛的影响,会使高温下工作的构件发生重大事故。例如,燃气轮机的叶片在高温下可能产生过大的蠕变变形而与汽轮机酮体相撞,高压燃气管道紧固螺栓的预紧力会因松弛现象而大大降低,从而保证不了气密联结,等等。

应力-应变曲线

混凝土是一种复合建筑材料,内部组成结构非常复杂。它是由二相体所组成,即粗细骨料被水泥浆所包裹,靠水泥浆的粘接力,使骨料相互粘接成为整体。如果考虑到带气泡和毛细孔隙的存在,混凝土实际是一种三相体的混合物,不能认为是连续的整体。[2] 1. 普通高强度混凝土只能测出压应力-应变曲线的上升段,因为混凝土一旦出现出裂缝,承力系统在加压过程中积累的大量弹性能突然急剧释放,使得裂缝迅速扩展,试件即刻发生破坏,无法测得应力-应变曲线的下降段。[1] 2. 拟合本文的高强混凝土和纤维与混杂纤维增强高强混凝土的受压本构方程的参数结果 图3和图4为掺杂了纤维与混杂纤维的纤维增强高强混凝土的压缩应力一应变全曲线,由曲线可以看出,纤维与混杂纤维增强高强混凝土则能够准确地测出

完整的压应力.应变曲线.纤维增强高强混凝土和混杂纤维增强高强混凝土的这两种曲线具有相同的形状啪,都由三段组成:线性上升阶段、初裂点以后的非线性上升阶段、峰值点以后的缓慢下降阶段.[2] 3.[3]再生混凝土设计强度等级为C20,C25,C30,C40,再生骨料取代率100%。标准棱柱体试件150mm*150mm*300mm,28天强度测试结果。

“等应力循环加卸载试验方法”测定再生混凝土的应力-应变全曲线,即每次加载至预定应力后再卸载至零,再次进行加载,多次循环后达不到预定应力而自动转向包络线时,进行下一级预定应力的加载。 再生粗骨料来源的地域性和差异性使再生骨料及再生混凝土的力学性能有较大差别。 4.通过对普通混凝土和高强混凝土在单轴收压时的应力应变分析发现,混凝土的弹性模量随混凝土的强度的提高而提高,混凝土弹性段的范围随混凝土强度的提高而增大,混凝土应力应变曲线的下降段,随混凝土强度的提高而越来越陡,混凝土的峰值应变与混凝土的抗压强 度无正比关系。

弹性力学教学大纲

课程编号:05z8514 弹性力学Theory of Elasticity 学分学时:3/48 先修课程: 高等数学;线性代数;理论力学;材料力学 一、课程教学目标 《弹性力学》是航空、航天结构强度和力学专业的重要专业基础课程,是固体力学的一个分支。主要研究弹性体受外力作用或温度改变等原因而产生的应力、位移和变形。弹性力学的任务是分析各种结构或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。本课程的主要研究对象为非杆状结构,如板、壳以及其它实体结构。通过本课程的学习可为进一步学习力学类和相关工程类的后续课程打下坚实的力学基础。 二、教学内容及基本要求 1. 绪论(2学时) 弹性力学的发展史;研究内容;基本假设;矢量、张量基本知识。 2. 应力理论(4学时) 内力和应力;斜面应力公式;应力分量转换公式;主应力、应力不变量;最大剪应力;应力偏量;平衡微分方程。 3. 应变理论(4学时) 位移和变形;几何方程;转动张量;主应变和应变不变量;变形协调方程;位移场的单值条件;由应变求位移。 4. 本构关系(2学时) 热力学定律与应变能;本构关系;具有弹性对称面的弹性材料的本构关系;各向同性弹性材料的弹性常数;各向同性弹性材料的应变能密度 5. 弹性理论的建立与一般原理(4学时) 弹性力学基本方程和边界条件;位移解法和拉梅方程;应力解法与变形协调方程;叠加原理;解的唯一性原理;圣维南原理。 6.柱形杆问题(4学时) 圣维南问题;柱形扭转问题的基本解法;反逆法与半逆法,扭转问题解例;薄膜比拟;*柱形杆的一般弯曲。 7.平面问题(12学时) 平面问题及其分类;平面问题的基本解法;应力函数的性质;直角坐标解例(矩形梁的纯弯曲、简支梁受均布载荷和任意分布载荷);极坐标中的平面问题基本方程;轴对称问题(均匀圆筒或圆环、纯弯的曲梁、压力隧洞);非轴对称问题(小圆孔应力集中、楔体问题);关于解和解法的讨论。 8. 空间问题(2学时) 基本方程及求解方法;空间轴对称和球对称问题的基本方程;半空间体受重力及均布压力;半空间体在边界上受法向集中力;空心球受内压作用问题。 9.能量原理与变分法(6学时) 弹性体的变形比能与形变势能;变分法;位移变分方程;位移变分法;位移变分法应用于平面问题;应力变分方程与极小余能原理;应力变分法;应力变分法应用于平面问题;应力变分法应用于扭转问题。 10.复变函数解法或薄板弯曲(4学时)

第二章弹性力学基础

第二章弹性力学基础 弹性力学又称弹性理论,它是固体力学的一个分支。弹性力学任务是确定结构或机械零件在外载荷作用或温度改变等原因而发生的应力、位移和应变。 弹性力学与材料力学总的任务是相同的,但弹性力学研究的问题比材料力学要更加深刻和精确,并研究材料力学所不能解决的一些问题。 材料力学-----研究杆状构件(长度>>高度和宽度)在拉压、剪切、弯曲、扭转作用下的应力和位移。 弹性力学-----研究板壳、挡土墙、堤坝、地基等实体结构。对杆状构件作较精确的分析,也需用弹性力学。 结构力学-----研究杆状构件所组成的结构。例如桁架、刚架。

第一节弹性力学假设 在弹性力学中,所研究的问题主要是理想弹性体的线性问题,所谓理想弹性体的线性问题,是指符合以下假定的物体。 1. 假设物体是线弹性的 假定物体服从虎克定律,即应变与引起该应变的应力成正比,反映这一比例关系的常数,就是弹性常数。即该比例关系不随应力、应变的大小和符号而变。 由材料力学已知: 脆性材料的物体:在应力?比例极限以前,可作为近似的完全弹性体; 韧性(塑性)材料的物体:在应力<屈服极限以前,可作为近似的完全弹性体。 这个假定,使得物体在任意瞬时的应变将完全取决于该瞬时物体所受到的外力或温度变化等因素,而与加载的历史和加载顺序无关。 2. 假设物体是连续性的 假设整个物体的体积都被该物体介质完全充满,不留下任何空隙。有了这一假定决定了应力、应变、位移是连续的,可用坐标的连续函数来表示他们的变化规律。 注:实际上,一切物体都是由微粒组成的,都不能符合该假定。但是由于物体粒子的尺寸以及相邻粒子间的距离,

都比物体自己本身的尺寸小得很多,因此连续性假设不会引起显着的误差。 3. 假设物体是均匀性、各向同性的 整个物体是由同一材料组成的。这样整个物体的所有各部分才具有相同的弹性,因而物体的弹性常数不随坐标而变化,可以取出该物体的任意一小部分来加以分析,然后把分析所得结果应用于整个物体。 各向同性是指物体内一点的弹性在所的各个方向上都是相同的,故物体的弹性常数不随方向而变化。 对于非晶体材料,是完全符合这一假定。而由木材,竹材等做成的构件,就不能作为各向同性体来研究;钢材构件基本上是各向同性的。 弹性常数? 凡是符合以上三个假定的物体,就称为理想弹性体。 4. 假设物体的位移和应变是微小的 假定物体在载荷或温度变化等外界因素的作用下所产生的位移远小于物体原来的尺寸,应变分量和转角都远小于1。 因此 ①在建立物体变形以后的平衡方程时,可用变形前的尺寸代替变形后的尺寸,而不至于引起显著的误差。

应力状态——材料力学

土体应力计算 补充一、力学基础知识 材料力学研究物体受力后的内在表现,即变形规律和破坏特征。 一、材料力学的研究对象 材料力学以“梁、杆”为主要研究对象。

二、材料力学的任务 材料力学的任务:在满足强度、刚度、稳定性的要求下,以最经济的代价,为构件确定合理的形状和尺寸,选择适宜的材料,而提供必要的理论基础和计算方法。 强度:杆件在外载作用下,抵抗断裂或过量塑性变形的能力。刚度:杆件在外载作用下,抵抗弹性变形的能力。 稳定性:杆件在压力外载作用下,保持其原有平衡状态的能力。 如:自行车结构也有强度、刚度和稳定问题; 大型桥梁的强度、刚度、稳定问题 强度、刚度、稳定性

三、基本假设 1、连续性假设:物质密实地充满物体所在空间,毫无空隙。(可用微积分数学工具) 2、均匀性假设:物体内,各处的力学性质完全相同。 3、各向同性假设:组成物体的材料沿各方向的力学性质完全相同。(这样的材料称为各项同性材料;沿各方向的力学性质不同的材料称为各项异性材料。) 4、小变形假设:材料力学所研究的构件在载荷作用下的变形与原始尺寸相比甚小,故对构件进行受力分析时可忽略其变形。 假设

四、杆件变形的基本形式

五、内力?截面法?轴力 1、内力 指由外力作用所引起的、物体内相邻部分之间分布内力系的合成(附加内力)。 2、截面法 内力的计算是分析构件强度、刚度、稳定性等问题的基础。求内力的一般方法是截面法。

(1)截面法的基本步骤: ①截开:在所求内力的截面处,假想地用截面将杆件一分为二。 ②代替:任取一部分,其弃去部分对留下部分的作用,用作用在截开面上相应的内力(力或力偶)代替。 ③平衡:对留下的部分建立平衡方程,根据其上的已知外力来计算杆在截开面上的未知内力(此时截开面上的内力对所留部分而言是外力) 截面法

应力-应变曲线

应力-应变曲线 MA 02139,剑桥 麻省理工学院 材料科学与工程系 David Roylance 2001年8月23日 引言 应力-应变曲线是描述材料力学性能的极其重要的图形。所有学习材料力学的学生将经 常接触这些曲线。这些曲线也有某些细微的差别,特别对试验时会产生显著的几何变形的塑 性材料。在本模块中,将对表明应力-应变曲线特征的几个点作简略讨论,使读者对材料力 学性能的某些方面有初步的总体了解。本模块中不准备纵述“现代工程材料的应力-应变曲 线”这一广阔的领域,相关内容可参阅参考文献中列出的博依(Boyer )编的图集。这里提 到的几个专题——特别是屈服和断裂——将在随后的模块中更详尽地叙述。 “工程”应力-应变曲线 在确定材料力学响应的各种试验中,最重要的恐怕就是拉伸试验1 了。进行拉伸试验时, 杆状或线状试样的一端被加载装置夹紧,另一端的位移δ是可以控制的,参见图1。传感器 与试样相串联,能显示与位移对应的载荷)(δP 的电子读数。若采用现代的伺服控制试验机, 则允许选择载荷而不是位移为控制变量,此时位移)(P δ是作为载荷的函数而被监控的。 图1 拉伸试验 在本模块中,应力和应变的工程测量值分别记作e σ和e ε, 它们由测得的载荷和位移值,及试样的原始横截面面积和原始长度按下式确定 0A 0L 1 应力-应变试验及材料力学中几乎所有的试验方法都由制定标准的组织,特别是美国试验和材料学会 (ASTM)作详尽的规定。金属材料的拉伸试验由ASTM 试验E8规定;塑料的拉伸试验由ASTM D638规定; 复合材料的拉伸试验由ASTM D3039规定。

材料力学精选练习题答案

材料力学精选练习题答案 一、是非题 1.1 材料力学主要研究杆件受力后变形与破坏的规律。 1.内力只能是力。 1.若物体各点均无位移,则该物体必定无变形。 1.截面法是分析应力的基本方法。二、选择题 1.构件的强度是指,刚度是指,稳定性是指。 A. 在外力作用下构件抵抗变形的能力 B. 在外力作用下构件保持其原有的平衡状态的能力 C. 在外力作用下构件抵抗破坏的能力 1.根据均匀性假设,可认为构件的在各点处相同。 A. 应力 B. 应变 C. 材料的弹性常数 D. 位移 1.下列结论中正确的是 A. 内力是应力的代数和 B. 应力是内力的平均值 C. 应力是内力的集度 D. 内力必大于应力 参考答案:1.1 √ 1.× 1.√ 1.× 1.C,A,B 1.C 1.C 轴向拉压 一、选择题 1. 等截面直杆CD位于两块夹板之间,如图示。杆件与夹板间的摩擦力与杆件自重保持平衡。设杆CD两侧的摩擦力沿轴线方向均匀分布,且两侧摩擦力的集度均为q,杆

CD的横截面面积为A,质量密度为?,试问下列结论中哪一个是正确的? q??gA; 杆内最大轴力FNmax?ql;杆内各横截面上的轴力FN? ?gAl 2 ; 杆内各横截面上的轴力FN?0。 2. 低碳钢试样拉伸时,横截面上的应力公式??FNA适用于以下哪一种情况? 只适用于?≤?p;只适用于?≤?e; 3. 在A和B 和点B的距离保持不变,绳索的许用拉应力为[? ]取何值时,绳索的用料最省? 0; 0; 5; 0。 4. 桁架如图示,载荷F可在横梁DE为A,许用应力均为[?]。求载荷F 的许用值。以下四种答案中哪一种是正确的? [?]A2[?]A ;; 32 [?]A; [?]A。 5. 一种是正确的? 外径和壁厚都增大;

弹性力学 第四章 应力和应变关系

第四章应力和应变关系知识点 应变能原理 应力应变关系的一般表达式完全各向异性弹性体 正交各向异性弹性体本构关系弹性常数 各向同性弹性体应变能格林公式 广义胡克定理 一个弹性对称面的弹性体本构关系各向同性弹性体的应力和应变关系应变表示的各向同性本构关系 一、内容介绍 前两章分别从静力学和运动学的角度推导了静力平衡方程,几何方程和变形协调方程。由于弹性体的静力平衡和几何变形是通过具体物体的材料性质相联系的,因此,必须建立了材料的应力和应变的内在联系。应力和应变是相辅相成的,有应力就有应变;反之,有应变则必有应力。对于每一种材料,在一定的温度下,应力和应变之间有着完全确定的关系。这是材料的固有特性,因此称为物理方程或者本构关系。 对于复杂应力状态,应力应变关系的实验测试是有困难的,因此本章首先通过能量法讨论本构关系的一般形式。分别讨论广义胡克定理;具有一个和两个弹性对称面的本构关系一般表达式;各向同性材料的本构关系等。 本章的任务就是建立弹性变形阶段的应力应变关系。 二、重点 1、应变能函数和格林公式; 2、广义胡克定律的一般表达式; 3、具 有一个和两个弹性对称面的本构关系;4、各向同性材料的本构关系; 5、材料的弹性常数。 §4.1 弹性体的应变能原理 学习思路: 弹性体在外力作用下产生变形,因此外力在变形过程中作功。同时,弹性体内部的能量也要相应的发生变化。借助于能量关系,可以使得弹性力学问题的求

解方法和思路简化,因此能量原理是一个有效的分析工具。 本节根据热力学概念推导弹性体的应变能函数表达式,并且建立应变能函数表达的材料本构方程。 根据能量关系,容易得到由于变形而存储于物体内的单位体积的弹性势能,即应变能函数。 探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。 如果材料的应力应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐二次函数。因此由齐次函数的欧拉定理,可以得到用应变或者应力表示的应变能函数。 学习要点:1、应变能;2、格林公式;3、应变能原理。 1、应变能 弹性体发生变形时,外力将要做功,内部的能量也要相应的发生变化。本节通过热力学的观点,分析弹性体的功能变化规律。 根据热力学的观点,外力在变形过程中所做的功,一部分将转化为内能,一部分将转化为动能;另外变形过程中,弹性体的温度将发生变化,它必须向外界吸收或释放热量。设弹性体变形时,外力所做的功为d W,则 d W=d W1+d W2 其中,d W1为表面力F s所做的功,d W2为体积力F b所做的功。变形过程中,由外界输入热量为d Q,弹性体的内能增量为d E,根据热力学第一定律, d W1+d W2=d E - d Q 因为 将上式代入功能关系公式,则

材料力学习题01拉压剪切

拉伸与压缩 一、 选择题 (如果题目有5个备选答案选出其中2—5个正确答案,有4个备选答案选出其中一个正确答案。) 1.若两等直杆的横截面面积为A ,长度为l ,两端所受轴向拉力均相同,但材料不同,那么下列结论正确的是( )。 A .两者轴力相同应力相同 B .两者应变和仲长量不同 C .两者变形相同 D .两者强度相同 E .两者刚度不同 2.一圆截面直杆,两端承受拉力作用,若将其直径增大一倍,其它条件不变,则( )。 A .其轴力不变 B .其应力将是原来的1/4 C .其强度将是原来的4倍 D .其伸长量将是原来的1/4 E .其抗拉强度将是原来的4倍 3.设ε和1ε分别表示拉压杆的轴向线应变和横向线应变,μ为材料的泊松比,则下列结论正确的是( )。 A .εεμ1= B .εεμ1-= C .ε ε μ1= D .ε εμ1 - = E .常数时, =≤μσσ p 4.钢材经过冷作硬化处理后,其性能的变化是( )。 A .比例极限提高 B .屈服极限提高 C .弹性模量降低 D .延伸率提高 E .塑性变形能力降低 5.低碳钢的拉伸σ-ε曲线如图1-19所示若加载至强化阶段的C 点,然后卸载,则应力回到零值的路径是( )。 A .曲线cbao B .曲线cbf (bf ∥oa ) C .直线ce (ce ∥oa ) D .直线cd (cd ∥o σ轴)

6.低碳钢的拉伸σ-ε曲线如图l —19,若加载至强化阶段的C 点时,试件的弹性应变 和塑性应变分别是( )。 A .弹性应变是of B .弹性应变是oe C .弹性应变是ed D .塑性应变是of E .塑性应变是oe 7.图l-2l 表示四种材料的应力—应变曲线,则: (1)弹性模量最大的材料是( ); (2)强度最高的材料是( ); (3)塑性性能最好的材料是( )。 8.等截面直杆承受拉力,若选用三种不同的截面形状:圆形、正方形、空心圆,比较材料用量,则( )。 A .正方形截面最省料 B .圆形截面最省料 C .空心圆截面最省料 D .三者用料相同 9.若直杆在两外力作用下发生轴向拉伸(压缩)变形,则此两外力应满足的条件是 A .等值 B .反向 C .同向 D .作用线与杆轴线重合 E .作用线与轴线垂直 10.轴向受拉杆的变形特征是( )。 A .轴向伸长横向缩短 B .横向伸长轴向缩短 C .轴向伸长横向伸长 D .横向线应变与轴向线应变正负号相反 E .横向线应变ε'与轴向线应变ε的关系是μεε=' 11.低碳钢(等塑性金属材料)在拉伸与压缩时力学性能指标相同的是( )。 A .比例极限 B .弹性极限 C .屈服极限 D .强度极限 E .弹性模量 12.材料安全正常地工作时容许承受的最大应力值是( )。 A .p σ B .σ C .b σ D .][σ 13.拉杆的危险截面一定是全杆中( )的横截面。 A .轴力最大 B .面积最小 C .应力σ最大 D .位移最大 E .应变ε最大 14.若正方形横截面的轴向拉杆容许应力][σ=100 MPa ,杆两端的轴向拉力N =2.5 kN ,根据强度条件,拉杆横截面的边长至少为 ( )。 A . m 2500100 B .m 1005.2 C .m 100 2500 D .mm 5 15.长度、横截面和轴向拉力相同的钢杆与铝杆的关系是两者的( )。 A .内力相同 B .应力相同 C. 容许荷载相同 D .轴向线应变相同 E .轴向伸长量相同 16.长度和轴向拉力相同的钢拉杆①和木拉杆②,如果产生相同的伸长量,那么两者 之间的关系是( )。 A .21εε= B .1σ>2σ C .1σ=2σ D .1A >2A E .1A <2A (其中1ε、1σ、1A 为钢杆的应变、应力和横截面面积,2ε、2σ、2A 为木杆的应变、应力和横截面面积。)

材料力学基本概念及公式

第一章 绪论 第一节 材料力学的任务 1、组成机械与结构的各组成部分,统称为构件。 2、保证构件正常或安全工作的基本要求:a)强度,即抵抗破坏的能力;b)刚度,即抵抗变形的能力;c)稳定性,即保持原有平衡状态的能力。 3、材料力学的任务:研究构件在外力作用下的变形与破坏的规律,为合理设计构件提供强度、刚度和稳定性分析的基本理论与计算方法。 第二节 材料力学的基本假设 1、连续性假设:材料无空隙地充满整个构件。 2、均匀性假设:构件内每一处的力学性能都相同 3、各向同性假设:构件某一处材料沿各个方向的力学性能相同。木材是各向异性材料。 第三节 内力 1、内力:构件内部各部分之间因受力后变形而引起的相互作用力。 2、截面法:用假想的截面把构件分成两部分,以显示并确定内力的方法。 3、截面法求内力的步骤:①用假想截面将杆件切开,一分为二;②取一部分,得到分离体;③对分离体建立平衡方程,求得内力。 4、内力的分类:轴力N F ;剪力S F ;扭矩T ;弯矩M 第四节 应力 1、一点的应力: 一点处内力的集(中程)度。 全应力0lim A F p A ?→?=?;正应力σ;切应力τ;p =2、应力单位: (112,11×106 ,11×109 ) 第五节 变形与应变 1、变形:构件尺寸与形状的变化称为变形。除特别声明的以外,材料力学所研究的对象均为变形体。 2、弹性变形:外力解除后能消失的变形成为弹性变形。 3、塑性变形:外力解除后不能消失的变形,称为塑性变形或残余变形。 4、小变形条件:材料力学研究的问题限于小变形的情况,其变形和位移远小于构件的最小尺寸。对构件进行受力分析时可忽略其变形。 5、线应变:l l ?=ε。线应变是无量纲量,在同一点不同方向线应变一般不同。

材料力学习题册答案-第7章+应力状态

第 七 章 应力状态 强度理论 一、 判断题 1、平面应力状态即二向应力状态,空间应力状态即三向应力状态。 (√) 2、单元体中正应力为最大值的截面上,剪应力必定为零。 (√) 3、单元体中剪应力为最大值的截面上,正应力必定为零。 (×) 原因:正应力一般不为零。 4、单向应力状态的应力圆和三向均匀拉伸或压缩应力状态的应力圆相同,且均为应力轴 上的一个点。 (×) 原因:单向应力状态的应力圆不为一个点,而是一个圆。三向等拉或等压倒是为一个点。 5、纯剪应力状态的单元体,最大正应力和最大剪应力值相等,且作用在同一平面上。(×) 原因:最大正应力和最大剪应力值相等,但不在同一平面上 6、材料在静载作用下的失效形式主要有断裂和屈服两种。 (√) 7、砖,石等脆性材料式样压缩时沿横截面断裂。 (×) 8、塑性材料制成的杆件,其危险点必须用第三或第四强度理论所建立的强度条件来校核强度。 (×) 原因:塑性材料也会表现出脆性,比如三向受拉时,此时,就应用第一强度理论 9、纯剪应力状态的单元体既在体积改变,又有形状改变。(×) 原因:只形状改变,体积不变 10、铸铁水管冬天结冰时会因冰膨胀被胀裂,而管内的冰不会被破坏,只是因为冰的强度比铸铁的强度高。(×) 原因:铸铁的强度显然高于冰,其破坏原因是受到复杂应力状态 二、 选择题 1、危险截面是( C )所在的截面。 A 最大面积 B 最小面积 C 最大应力 D 最大内力 2、关于用单元体表示一点处的应力状态,如下论述中正确的一种是( D )。 A 单元体的形状可以是任意的 B 单元体的形状不是任意的,只能是六面体微元 C 不一定是六面体,五面体也可以,其他形状则不行 D 单元体的形状可以是任意的,但其上已知的应力分量足以确定任意方向面上的硬力 3、受力构件内任意一点,随着所截取截面方位不同,一般来说( D ) A 正应力相同,剪应力不同 B 正应力不同,剪应力相同 C 正应力和剪应力均相同 D 正应力和剪应力均不同 4、圆轴受扭时,轴表面各点处于( B ) A 单向应力状态 B 二向应力状态 C 三向应力状态 D 各向等应力状态 5、分析处于平面应力状态的一点,说法正确的是( B )。 A a σ=0时,必有a τ=max τ或a τ=min τ B a τ=0时,必有a σ=max σ或a σ=min σ C a σ+90a σ+及|a τ|+|90a τ+|为常量 D 1230σσσ≥≥≥

弹性力学 第二章 应力状态分析

第二章应力状态分析 一、内容介绍 弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。 应力状态是本章讨论的首要问题。由于应力矢量与内力和作用截面方位均有关。因此,一点各个截面的应力是不同的。确定一点不同截面的应力变化规律称为应力状态分析。首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定—转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。应力状态分析表明应力分量为二阶对称张量。本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。 本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。 二、重点 1、应力状态的定义:应力矢量;正应力与切应力;应力分量; 2、平衡微分方程与切应力互等定理; 3、面力边界条件; 4、应力分量的转轴公式; 5、应力状态特征方程和应力不变量; 知识点: 体力;面力;应力矢量;正应力与切应力;应力分量;应力矢量与应力 分量;平衡微分方程;面力边界条件;主平面与主应力;主应力性质; 截面正应力与切应力;三向应力圆;八面体单元;偏应力张量不变量; 切应力互等定理;应力分量转轴公式;平面问题的转轴公式;应力状态 特征方程;应力不变量;最大切应力;球应力张量和偏应力张量 §2.1 体力和面力 学习思路:

本节介绍弹性力学的基本概念——体力和面力,体力F b和面力F s的概念均不难理解。 应该注意的问题是,在弹性力学中,虽然体力和面力都是矢量,但是它们均为作用于一点的力,而且体力是指单位体积的力;面力为单位面积的作用力。 体力矢量用F b表示,其沿三个坐标轴的分量用F b i(i=1,2,3)或者F b x、F b y和F b z表示,称为体力分量。 面力矢量用F s表示,其分量用F s i(i=1,2,3)或者F s x、F s y和F s z表示。 体力和面力分量的方向均规定与坐标轴方向一致为正,反之为负。 学习要点: 1、体力; 2、面力。 1、体力 作用于物体的外力可以分为两种类型:体力和面力。 所谓体力就是分布在物体整个体积内部各个质点上的力,又称为质量力。例如物体的重力,惯性力,电磁力等等。 面力是分布在物体表面上的力,例如风力,静水压力,物体之间的接触力等。为了表明物体在xyz坐标系内任意一点P 所受体力的大小和方向,在P点的邻域取一微小体积元素△V,如图所示 设△V 的体力合力为△F,则P点的体力定义为 令微小体积元素△V趋近于0,则可以定义一点P的体力为

材料力学B试题7应力状态_强度理论

(2) 主应力大小及主平面位置,并将主平面标在单元体上。 解:(1) MPa 6.762sin 2cos 2 2 =--+ += ατασσσσσα x y x y x MPa 7.322cos 2sin 2 -=+-=ατασστα x y x (2) 2 2min max )2 (2xy y x y x τσσσσσσ+-±+=98.12198.81-=MPa 98.811=σMPa ,02 =σ,98.1213-=σ MPa 35.3940 200 arctan 21)2arctan( 2 10== --=y x xy σστα 2. 解:取合适坐标轴令25=x σ MPa ,9.129-=x τ由02cos 2sin 2 120 =+-= ατασστxy y x 得125-=y σMPa 所以2 2m in m ax )2 (2xy y x y x τσσσσσσ+-± += 200 100 15050)9.129(755022-= ±-=-+± -= MPa 1001=σ MPa ,02=σ,2003-=σ MPa 3. 一点处两个互成 45平面上的应力如图所示,其中σ未知,求该点主应力。 解:150=y σ MPa ,120-=x τ MPa

由 ατασστ2cos 2sin 2 45 xy y x +-= 802 150 -=-= x σ 得 10-=x σ MPa 所以 2 2min max )2 (2xy y x y x τσσσσσσ+-±+= 22 .7422.214-= MPa 22.2141=σ MPa ,02=σ,22.743-=σ 4. 图示封闭薄壁圆筒,内径100=d mm ,壁厚2=t mm ,承受内压4=p MPa ,外力偶矩192.0=e M kN ·m 。求靠圆筒内壁任一 点处的主应力。 解:75.505.032 ) 1.0104.0(π1019 2.0443 =?-?= x τ MPa 504==t pd x σ MPa 1002==t pd y σ MPa 35.497.100)2 (22 2min max =+-±+=xy y x y x τσσσσσσ MPa 7.1001=σ MPa ,35.492=σ MPa ,43-=σ MPa 5. 受力体某点平面上的应力如图示,求其主应力大小。 解:取坐标轴使100=x σMPa ,20=x τ α τασσσσσα2sin 2cos 2 2 x y x y x --+ += ' 45-M e

应力应变曲线

应力应变曲线 stress-strain curve 在工程中,应力和应变是按下式计算的: 应力(工程应力或名义应力)ζ=P/A。,应变(工程应变或名义应变)ε=(L-L。)/L。 式中,P为载荷;A。为试样的原始截面积;L。为试样的原始标距长度;L 为试样变形后的长度。 这种应力-应变曲线通常称为工程应力-应变曲线,它与载荷-变形曲线相似,只是坐标不同。从此曲线上,可以看出低碳钢的变形过程有如下特点:当应力低于ζe 时,应力与试样的应变成正比,应力去除,变形消失,即试样处于弹性变形阶段,ζe 为材料的弹性极限,它表示材料保持完全弹性变形的最大应力。 当应力超过ζe 后,应力与应变之间的直线关系被破坏,并出现屈服平台或屈服齿。如果卸载,试样的变形只能部分恢复,而保留一部分残余变形,即塑性变形,这说明钢的变形进入弹塑性变形阶段。ζs称为材料的屈服强度或屈服点,对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限。 当应力超过ζs后,试样发生明显而均匀的塑性变形,若使试样的应变增大,则必须增加应力值,这种随着塑性变形的增大,塑性变形抗力不断增加的现象称为加工硬化或形变强化。当应力达到ζb时试样的均匀变形阶段即告终止,此最大应力ζb称为材料的强度极限或抗拉强度,它表示材料对最大均匀塑性变形的抗力。 在ζb值之后,试样开始发生不均匀塑性变形并形成缩颈,应力下降,最后应力达到ζk时试样断裂。ζk为材料的条件断裂强度,它表示材料对塑性的极限抗力。 上述应力-应变曲线中的应力和应变是以试样的初始尺寸进行计算的,事实上,在拉伸过程中试样的尺寸是在不断变化的,此时的真实应力S应该是瞬时载荷(P)除以试样的瞬时截面积(A),即:S=P/A;同样,真实应变e应该是瞬时伸长量除以瞬时长度de=dL/L。下图是真应力-真应变曲线,它不像应力-应变曲线那样在载荷达到最大值后转而下降,而是继续上升直至断裂,这说明金属在塑性变形过程中不断地发生加工硬化,从而外加应力必须不断增高,才能使变形继续进行,即使在出现缩颈之后,缩颈处的真实应力仍在升高,这就排除了应力-应变曲线中应力下降的假象。 应力-应变曲线是描述材料力学性能的极其重要的图形。所有学习材料力学的学生将经常接触这些曲线。这些曲线也有某些细微的差别,特别对试验时会产生显著的几何变形的塑性材料。在本模块中,将对表明应力-应变曲线特征的几个点作简略讨论,使读者对材料力学性能的某些方面有初步的总体了解。本模块中不准备纵述“现代工程材料的应力-应变曲线”这一广阔的领域,相关内容可参阅参考文献中列出的博依(Boyer)编的图集。这里提到的几个专题——特别是屈服和断裂——将在随后的模块中更详尽地叙述。 “工程”应力-应变曲线 在确定材料力学响应的各种试验中,最重要的恐怕就是拉伸试验1了。进行拉伸试验时,杆状或线状试样的一端被加载装置夹紧,另一端的位移δ是可以

材料力学作业和答案

材料力学课程作业1<本科) 作业涉及教案内容:第一、二章 一、问答题: 1.材料力学的基本任务是什么?答:主要研究构件在外力作用下的变形、受力与破坏或失效的规律,为合理设计构件提供有关强度、刚度与稳定性分析的基本理论与方法。b5E2RGbCAP 2.材料力学对研究对象所做的基本假设是什么?答:1。连续性假设;2。均匀性假设。3。各向同性假设。 3、试简述材料力学中求解内力的基本方法?答:截面法。 4、试画出固体材料低碳钢轴向拉伸实验的应力应变曲线,并标明变形过程中各变 形阶段的极限应力?1。线性阶段的极限应力称为比例极限。用表示;p 2.屈服阶段的极限应力称为屈服应力或屈服极限。s 3.硬化阶段的极限应力称为强度极限。B 4缩径阶段 二、填空题: 1.计算内力的基本方法是_截面法________。 2.圆轴扭转时,轴内除轴线上各点处于________应力状态外,其余各点均处于___________应力状态。p1EanqFDPw 3、由杆件截面骤然变化<或几何外形局部不规则)而引起的局部应力骤然增加的

现象,称为应力聚中。 4.衡量固体材料强度的两个重要指标是轴力与扭矩。 三、选择题: 1.材料力学中内力<即轴力、扭矩)的符号规则是根据构件的 A 来规定的。 A.变形 B.运动 C.平衡 D.受载情况 2.材料力学求内力的基本方法是 C。 A.叠加法 B.能量法 C.截面法 D.解读法 3.材料力学中两个最基本力学要素是 D。 A.力和力偶 B.力和力矩 C.内力和外力 D.应力和应变4.长度和横截面面积相同的两根杆件,一为钢杆,一为铜杆,若在相同的轴向拉力作用下,_____B_______。<杆件的轴线方向为x轴)DXDiTa9E3d A 两杆的应力、应变均相同 B两杆应力相同,应变不同 C两杆的应力,应变均不相同 D两杆应力不同,应变相同 5.材料许用应力,式中为极限应力,对脆性材料应选 ____B________。 A比例极限B弹性极限C屈服极限D强度极限 6.不属于材料力学的基本假设的是 D 。 A. 连续性; B. 均匀性; C. 各向同性; D. 各向异性; 7.以下说法错误的是C 。

材料力学应力状态

材料力学应力状态

关键词:单元体的取法,莫尔应力圆的前提 有那么一个单元体后(单元体其中的一对截面上主应力=0(平面)或平衡(空间),也就是单元体的一对截面为主平面),才有这么 一个隔离体,才有那么一个莫尔应力圆和表达式 也就是:取的单元体不同,则单元体的应力特点不一样,从而用截面法求任意截面上的应力取隔离体列平衡方程时,隔离体的受力特点不同,从而球出来的表达式也不同,只有这种表达式才适合 莫尔应力圆。 因此拿到一个单元体后,不要急着应用莫尔应力圆,要先看它的特点适合不适合莫尔应力圆,也就是σα和τα的表达式球出来以后还是 不是下面的这个公式。

σy的形式。比如,面的外法线之间的夹角,这样公式中才是σx— 当α表示的是斜截面的外法线与σ1所在平面的夹角,那么公式就是σ1—σ2的形式;不论是谁减谁,应力圆的性状都不变; 1.首先,先有主平面和主应力的概念,剪应力为0的平面为主平面,主平面上的正应力为主应力; 2.然后,由于构件受力情况的不同,各点的应力状态也不一样,可以按三个主应力中有几个不等于零而将一点处的应力状态划分为三类: ?单向应力状态:只有一个主应力不等于零,如受轴向拉伸和压缩的直杆及纯弯曲的直杆内各点的应力状态。 ?二向应力状态(平面应力状态):有两个主应力不等于零,如受扭的圆轴,低压容器器壁各点的应力状态。 ?三向应力状态:三个主应力都不等于零,如高压容器器壁内各点的应力状态。 3.然后,根据受力宏观判断是单轴应力状态还是平面应力状态还是三轴应力状态,取单元体关键,单元体取的不同,单元体上的应力也不同,做莫尔圆的繁简程度也不同,对于平面应力状态,当然要用主应力=0的那个截面参与单元体截取;

材料力学试题及答案46054

一、判断题(正确打“√”,错误打“X ”,本题满分为10分) 1、拉杆伸长后,横向会缩短,这是因为杆有横向应力的存在。( ) 2、圆截面杆件受扭时,横截面上的最大切应力发生在横截面离圆心最远处。( ) 3、两梁的跨度、承受载荷及支承相同,但材料和横截面面积不同,因而两梁的剪力图和弯矩图不一定相同。( ) 4、交变应力是指构件的应力,它随时间作周期性变化,而作用在构件上的载荷可能是动载荷,也可能是静载荷。( ) 5、弹性体的应变能与加载次序无关,只与载荷的最终值有关。( ) 6、单元体上最大切应力作用面上必无正应力。( ) 7、平行移轴公式表示图形对任意两个相互平行轴的惯性矩和惯性积之间的关系。( ) 8、动载荷作用下,构件的动应力与材料的弹性模量有关。( ) 9、构件由突加载荷所引起的应力,是由相应的静载荷所引起应力的两倍。( ) 10、包围一个点一定有一个单元体,该单元体各个面上只有正应力而无切应力。( ) 二、选择题(每个2分,本题满分16分) 1.应用拉压正应力公式A F N = σ的条件是( )。 A 、应力小于比例极限; B 、外力的合力沿杆轴线; C 、应力小于弹性极限;D 、应力小于屈服极限。 2.梁拟用图示两种方式搁置,则两种情况下的最大弯曲正应力之比 ) (m ax )(m ax b a σσ 为 ( )。 A 、1/4; B 、1/16; C 、1/64; D (a) (b)

3、关于弹性体受力后某一方向的应力与应变关系有如下论述:正确的是。 A、有应力一定有应变,有应变不一定有应力; B、有应力不一定有应变,有应变不一定有应力; C、有应力不一定有应变,有应变一定有应力; D、有应力一定有应变,有应变一定有应力。 4、火车运动时,其轮轴横截面边缘上危险点的应力有四种说法,正确的是。 A:脉动循环应力:B:非对称的循环应力; C:不变的弯曲应力;D:对称循环应力 5、如图所示的铸铁制悬臂梁受集中力F作用,其合理的截面形状应为图() 6、对钢制圆轴作扭转校核时,发现强度和刚度均比规定的要求低了20%,若安全因数不变,改用屈服极限提高了30%的钢材,则圆轴的() A、强度、刚度均足够; B、强度不够,刚度足够; C、强度足够,刚度不够; D、强度、刚度均不够。 7、图示拉杆的外表面上有一斜线,当拉杆变形时,斜线将。 A:平动;B:转动 C:不动;D:平动加转动 8、按照第三强度理论,比较图中两个应力状态的相当应力正确的是()。(图中应力单位为MPa) A、两者相同; B、(a)大; B、C、(b)大;D、无法判断 一、判断: ×√××√××√√√二、选择:B A C D B C D A

材料力学习题(1)2-6章

材料力学习题(1)2-6章

材料力学习题 第2章 2-1 试求出图示各杆Ⅰ—Ⅰ截面上的内力。 2-2图示矩形截面杆,横截面上正应力沿截面高度线性分布,截面顶边各点 处的正应力均为 MPa 100 max = σ ,底边各点处的正应力均为零。杆件横截面 上存在何种内力分量,并确定其大小(C点为截面形心)。 2-3 试指出图示各单元体表示哪种应力状态。 2-4 已知应力状态如图所示(应力单位为MPa),试用解析法计算图中指定截面的应力。

2-5 试作应力圆来确定习题2-4图中指定截面的应力。 2-6已知应力状态如图所示(应力单位为MPa ),试用解析法求:(1)主应力及主方向;(2)主切应力及主切平面;(3)最大切应力。 2-7 已知应力状态如习题2-6图所示,试作应力圆来确定:(1)主应力及主方向; (2)主切应力及主切平面;(3)最大切应力。 2-8已知构件内某点处的应力状态为两种应力状态的叠加结果,试求叠加后所得 应力状态的主应力、主切应力。 2-9图示双向拉应力状态, σ σσ==y x 。试证明任一斜截面上的正应力均等 于σ,而切应力为零。 2-10 已知K 点处为二向应力状态,过K 点两个截面上的应力如图所示(应力单位为MPa )。试分别用解析法与图解法确定该点的主应力。 2-11 一点处的应力状态在两种坐标系中的表示方法分别如图 a)和b)所示。 试确定未知的应力分量 y y x xy ' ''σττ、、的大小与方向。

2-12 图示受力板件,试证明尖角A 处各截面的正应力与切应力均为零。 2-13 已知应力状态如图所示(单位为MPa ),试求其主应力及第一、第二、第三不变量 321I I I 、、。 2-14 已知应力状态如图所示(单位为MPa ),试画三向应力圆,并求主应力、最大正应力与最大切应 力。 第3章 3-1 已知某点的位移分量u = A , v = Bx +Cy +Dz , w = Ex 2+Fy 2+Gz 2+Ixy +Jyz +Kzx 。A 、B 、C 、D 、E 、F 、G 、I 、J 、K 均为常数,求该点处的应变分量。 3-2 已知某点处于平面应变状态,试证明 2222,,Bxy y Ax y Bx Axy xy y x +===γεε(其中, B A 、为任意常数)可作为该点的三个应变分量。 3-3 平面应力状态的点O 处x ε=6×10-4 mm/m ,y ε=4×10 -4 mm/m , xy γ=0;求:1)平面内以y x ' '、方向的线应变;2)以x '与 y '为两垂直线元的切应变;3)该平面内的最大切应变及其与x 轴 的夹角。 3-4 平面应力状态一点 处的 x ε= 0,y ε= 0, xy γ=-1× 10-8 rad 。试求:1)平面内以 y x ''、方 向的线应变;2)以x '与 y '为两垂直线 元的切应变;3)该平面内的最大切应 变及其与x 轴的夹角。 3-5 用图解法解习题3-3。 3-6 用图解法解习题3-4。 m/m , y ε=2×10-8 m/m , xy γ=1× 3-7 某点处的 x ε=8×10-8 10-8 rad ;分别用图解法和解析法求该点xy 面内的:1)与x 轴夹角为45°方向的线应变和以45°方向为 始边的直角的切应变;2)最大线应变的方向和线应变的值。 3-8 设在平面内一点周围任何方向上的线应变都相同,证明以此点为顶点 的任意直角的切应变均为零。

11弹性力学试题及答案解析

2012年度弹性力学与有限元分析复习题及其答案 (绝密试题) 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力 =1σ150MPa ,=2σ0MPa ,=1α6135' 。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力 =1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为

相关文档
最新文档