真空钎焊炉的真空检漏与维修

真空钎焊炉的真空检漏与维修
真空钎焊炉的真空检漏与维修

真空钎焊炉的真空检漏与维修

一、概述

真空钎焊炉是热处理的大型设备,能够进行真空钎焊、真空退火、真空时效等多种加工。可编多个不同程序,能控制和编入上百个热处理曲线点,分上、下、左右、前后六区控温,有多点和单点温度记录仪以及过温保护装置,炉温均匀性可控制在士3℃以内,另配有高纯氮高流量强冷装置。该设备具有装炉量大、效率高,对复杂零件和有特殊要求的零件无需作补充工艺处理产品。

用途:主要用于铝合金热交换器等铝制品真空钎焊,不锈钢、钛合金、硬质合金、高温合金、有色金属的钎焊及高速钢、工模具钢、轴承钢、不锈钢等材料的真空回火,以及有色金属的时效和退火处理以及不锈钢换热器、机油冷却器、不锈钢保温杯的真空钎焊。

技术特点:

1、采用分区式加热器布置,使加热区内温度均匀性一致。

2.真空氛围中钎焊的,可保持工件的清洁和光亮。

二、真空钎焊炉真空系统的工作原理

设备真空系统主要由真空室、泵系统和各控制阀及热交换器组成。其中泵系统由机械泵、维持泵、罗茨泵、扩散泵构成。阀门包括前级阀(碟阀)、旁路阀(碟阀)、维持泵阀(碟阀)和高阀(板阀)组成,各阀门均为气动阀,由PLC控制气动阀进行控制。

真空钎焊炉由下列零部件组成:

1.KT-800型油扩散泵

2.ZJ-600型罗茨真空泵

3.2X-70型旋片式真空泵

4.2XZ-8型旋片式真空泵

5.DN800高真空气动挡板阀

6.DN800水冷挡板

7.DN150高真空气动挡板阀

8.DN100高真空气动挡板阀

9.DDC-JQ80型电磁带放气阀

10.DDC-JQ32型电磁带放气阀

金属波纹管,真空管路等

真空炉加热室主要零部件由下列设备组成:

1. 保温层(硅酸铝毡+炭毡+钼屏)

2. 石墨加热器

3. 水冷电极组件

4. 石墨电极及石墨连接件

5. 钼拉杆

6. 绝缘陶瓷件

7. 石墨炉床

8. 石墨喷嘴

9. 铂热电偶

加热室主要由不锈钢加热室壳体、不锈钢反射屏、石墨加热器加热器、陶瓷绝缘件、水冷电极、炉床等组成。采用多温区闭环独立加热控温方案。共设前门、后门、顶面、底面、左侧、右侧六个大区,共18个小区。电路与炉体绝缘性能良好,所采用的绝缘元件能防金属化,又便于拆卸清理更换。炉胆设有冷却气体循环,均匀冷却工件,炉胆便于清理。

真空炉强制气冷装置:

1.风机电机(45kW)

2.密封引线电极

3.高效热交换器(紫铜)

4.离心风机

5.导风装置

6.水冷电机座及罩体

5.冷却水系统

1.电磁阀

2.手动球阀

3.回水箱

4.管路

真空炉自动充气及分压装置:

1.安全阀

2.电磁阀

3.手动球阀

4.管路及接头

真空炉气动控制系统:

1.气动三联件

2.电磁换向阀组

3.管路及接头

真空炉加热电源:高性能晶闸管调压器+变压器(180kVA) 真空炉控制系统:

1.FP23(400段,SHIMADEN)

2.SR93型报警仪(SHIMADEN公司)

3.CPM2A 60点可编程序控制器(OMRON公司)

4.ZDF型数显电阻电离复合真空计(成都)

5.100mm双通道无纸记录仪

6.控制柜体

7.其它电气元件及电缆

8. 橡胶密封圈

9. 料盘(1件)

真空系统工作时,首一先启动机械泵、维持泵和扩散泵(加热),同时打开前级阀和维持泵阀,对扩散泵内进行抽真空。当真空度达到系统某一设定值时,罗茨泵启动,同时旁路阀打开,前级阀关闭,此时对真空室进行抽低真空当扩散泵加热至15090并且真空度高于10.67Pa(80mtorr)时,高阀打开,旁路阀关闭,前级阀打开。此时对真空室抽高真空,达到工艺要求的真空度以后,方可进行热处理工作。热加工过程完成后,由热交换器对真空室充入高纯氮气进行强制冷却,完成整个工艺过程。

三、故障现象

对设备全面检测,真空漏率实测值约155Pa/h(1.16torr/h),标准为0.667Pa/h(/h(5×10-3torr/h ),冷态真空度约0.444Pa(2.8×10-4torr),标准0.0013Pa(1×10-5torr),热态最高真空度约0.0119Pa(8.9×10-5torr)。热态最高真空度为空炉测量,测量值随着炉温的变化而变化,炉温越高,真空度越高。正常情况下冷态真空度应高于热态真空度,因此可知,该设备出现了反常现象。通过对不同材料试件进行测试,不锈钢,出炉温度80℃,色泽,浅蓝色。可以确定炉体有漏点。

注:1托=133.322帕或1帕=7.5×10-3托

四、故障分析及判断

真空泄漏故障维修的关键,是看能否准确地判断出故障点(泄漏点)。真空度抽不上去的原因可能有多个,也许真空机组的抽气能力不够,也可能是漏率偏高,又或为两者比如,抽空时间相同而真空度偏低,这时候关闭主阀,如真空计指针很快下降,多数情况是真空室漏了,这时应先查出漏点。如真空计指针下降很慢,多数情况是真空机组抽气能力不够,这时可将重点放到查找真空泵及阀门的泄漏上,或是扩散泵油污染、氧化了,或是前级管路密封不好,泵油不足,或是泵油乳化,轴封漏油等。根据以往真空设备的维修经验,设备真空度在短时间内迅速下降,一般由炉盖、板阀、碟阀等动态密封件老化、划伤及氧化皮脱落至密封线上所致。可以通过清理更换密封件,手动开关阀门检修或氦质谱检漏仪检漏,因本单位没有氦质谱检漏仪所以使用真空计检漏法:使用酒精,丙酮等易挥发液体涂在可能泄漏的地方,如泄漏则酒精渗入并挥发,影响内部真空,如真空计读数有变化,则表明该处泄漏。通过丙酮或酒精检漏法等观察真空度变化,仔细查找漏点。由于该设备真空室与外界接口较多,如连接法兰、管道及真空管等,一时难找出漏点。另一方面,由于加工任务紧急,设备没有太、长停机时间,不可能对所有接口逐一拆卸检修。经过仔细观察设备加工过程中真空度的细微变化,发现了反常现象,即热态真空度高于冷态真空度,根据这一现象,从理论上加以分析可初步判定漏点可能在炉体的十二组加热水冷电极上或者在炉内的热交换器上如果漏点在热交换器上真空度应该没有这么高,加工出来产品的颜色也不是这样。热交换器上如果漏点就会渗透出水,渗透出来的水经过高温气化产生水蒸气,大家都知道水是由水分子构成的. 水分子是由2个氢原子和1个氧原子构成的.如果在真空系统中出现水分子真空度是不容易上去的,所以初步怀疑漏点在加热电极周围的密封圈上,因为加热电极的密封圈可能老化或已受热碳化,电极连接板上虽然有水冷却装置,但此处是发热源,热量较高,密封件容易老化。当密封件老化或碳化降低或失去弹性时,冷态真空度必然下降,只有当炉内加温时,电极上的密封件受热膨胀才能起到较好的密封作用。这一结论正好印证了上述的真空度反常现象,但缺乏实际检测。

五、故障检修及改进

拆卸最大怀疑点的上、下两个区的电极,结果发现有两组电极密封垫已经碳化,其他密封件也已经老化。更换原装密封件后试机,与之前比较有所改善,冷态真空度0.006Pa(4.5×10-5torr),但该值距标准真空度仍差半个数量级。经反复装调,仍没有实质性改变,于是怀疑是原装密封件达不到要求。因此对电极锥面的O形密封圈设计尺寸产生怀疑,锥面上原装的O形圈截面直径为3mm,密封槽深2.4mm,压缩量只有0.6mm,该指标略低于真空密封的标准设计要求,O形圈的弹性张力不足,难以起到较好的密封效果鉴于这种情况,决定采用截面直径为4mm的O形密封圈代替原装密封圈,其压缩量由原来的0.6mm增加至1.6mm。再次开机测试,冷态真空度提高到0.0008Pa(6×10-6torr),超出该设备的设计真空度。真空漏率减少到0.04Pa/h(3×10-4torr/h ),优于设备的标准漏率。

六、结论

真空炉维修后,经过几个月不停运转,其真空度、漏率都非常稳定真空热处理后的材料(PH15-5,18Ni)色泽均显出金属本色,设备进入正常工作状态。

真空检漏常用方法和技巧

真空检漏1 一、概述1.概漏的基本概念真空检漏就是检测真空系统的漏气部位及其大小的过程。漏气也叫实漏,是气体通过系统上的漏孔或间隙从高压侧流到低压侧的现象。虚漏,是相对实漏而言的一种物理现象。这种现象是由于材料放气、解吸、凝结气体的再蒸发、气体通过器壁的渗透及系统内死空间中气体的流出等原因引起真空系统中气体压力升高的现象。气密性是表征真空系统器壁防止气体渗透的性能,它包括通过漏孔(或间隙)的漏气和材质的渗气。最小可检漏率是指某种检漏方法能够检测出的漏率的最小值。最佳灵敏度是指检漏仪器或检漏方法在最佳条件下所能检测出的最小漏率。对于检漏仪器来讲,最佳灵敏度又称作仪器灵敏度。检漏灵敏度是指在具体条件下,某种检漏方法所能检测出的最小漏率。检漏灵敏度又称作有效灵敏度。反应时间,即从检漏方法开始实施(如开始喷吹示漏气体)到指示方法(如仪表)做出反应的时间。消除时间,即从检漏方法停止(如停止喷吹且开始抽出示漏气体)到指示方法的指示消失的时间。漏率,即单位时间内流过漏孔(包括间隙)的气体量。2.漏孔、漏率及其单位真空技术中所指的漏孔,由于尺寸微小、形状复杂、形式多样(如图1所示),无法用几何尺寸表示其大小。所以一般用等效流导或漏气速率(简称为漏率)表示漏孔的大小。用漏率表示漏孔大小时,如果不加特殊说明,则是指在漏孔入口压力为×105Pa,出口压力低于×103Pa,温度为296士3K的标准条件下,单位时间内流过漏孔的露点温度低于248K的空气的气体量。漏率的单位是帕斯卡×立方米/秒,记为Pam3/s。为了方便,有时用帕斯卡×升/秒,记为PaL/s。3.最大容许漏率真空系统漏气是绝对的,不漏气是相对的在真空检漏技术中所指的“漏”是和最大容许漏率的概念联系在一起的。对于动态真空系统,只要其平衡压力能够达到所要求的真空度,这时即使存在着漏孔,也可以认为该系统的漏率是容许的,该情况下系统的漏率称为最大容许漏率。动态真空系统的最大容许漏率qLmax应满足qLmax≤1/10PwS (1) 式中Pw----系统工作压力S----系统的有效抽速对于静态真空系统,要求在一定时间内,其压力维持在容许的压力以下,这时即使存在着漏孔,同样叮以认为该系统的漏率是容许的,该情况下系统的漏率称为最大容许漏率。如果要求在时间t内,容积为V的系统的压力由p 升至pt,则其最大容许漏率qLmax应满足qLmax≤(pt-p)V/t (2) 各种真空设备的

不锈钢真空钎焊的工艺要点

不锈钢真空钎焊的工艺 要点 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

不锈钢真空钎焊的工艺要点 1?钎焊接头的设计: 设计钎焊接头时,应考虑接头的强度、组合件的定位方法、钎料置放的位置、接头间隙等诸多因素 钎焊接头连接方式: 钎焊接头有对接和搭接两种方式。 采用对接接头,由于钎料和钎缝的强度一般比母材低,因而对接接头不能保证接头具有与母材相等的承载能力,因此钎焊接头大多采用搭接形式。通过改变搭接长度提高钎焊接头的强度。 对于采用高强度铜基、镍基钎料钎焊的搭接接头,搭接长度通常取为薄壁件厚度的2~3倍。由于工件的形状不同,搭接接头的具体形状也各不相同。对于薄壁件而言,常采用锁边形式的搭接方式,提高钎焊接头的强度。 接头的定位:组合件的定位是影响钎焊质量的重要因素。 定位的方法主要有依靠自重、紧配合、毛刺定位、点焊定位、(氩弧焊)涨口定位、夹具定位等。 列管式EGR冷却器将采用涨口定位、点焊定位、焊接变位器等多种定位方法 ? 钎料的置放 钎料置放的原则是应尽可能利用钎料的重力作用和钎缝的毛细作用来促进钎料填满间隙。EGR冷却器的钎焊将使用镍基钎料膏状和非晶态薄带两种。膏状钎料应直接涂在钎缝处,而 非晶态薄带钎料标准有等不同的厚度。 按工件要求加工成不同的形状,置于钎缝处。 总之镍基钎料合理的使用对我们来说还要做很多工作, 比如钎料表面处理、膏剂的涂覆方法、钎料用量等诸多方面,根据实际要求进一步完善。? 接头的间隙: 钎焊时是依靠毛细作用使钎料填满间隙。

正确地选择接头间隙很大程度上影响钎缝的致密性和强度。不同的钎料对接头间隙的要求也有所不同。镍基钎料要求接头间隙为~,比其它钎料相比,这种钎料要求接头间隙小的特点应引起足够的关注。 由于BNi-2镍基钎料含有硼(%),硅(%)可以形成脆性相的元素,为保证接头的性能,应尽量使这些元素在钎缝内通过扩散作用而降低到最低程度。 当间隙小时,这些脆性相的元素数量少,向母材扩散的距离短,可以通过扩散使这些元素在钎缝中的浓度降低。从而避免产生脆性相,提高钎焊的强度。反之这些脆性相的元素将滞留 在钎缝中形成脆性相。 资料表明,当间隙为“零间隙”、、时。脆性相随着间隙的变化而增大。间隙在时,脆性相不仅增多,而且形成明显的连续层。钎缝的强度严重降低,危害极大。因此钎缝最佳间隙应控制小于<。 2? 工件表面处理 钎焊前彻底清除工件表面的氧化物,油污,脏物是钎料和母材相互润湿、扩散填充焊缝的前提条件。 工件表面净化处理的方法主要有以下几种: 清除油污 有机溶剂,金属洗涤剂,碱溶液: 清除氧化物 机械方法,化学清洗,电化学清洗 根据观察国外样件表面的光亮度的程度,其表面处理应有去油和化学清洗两道工序。EGR冷却器列管式结构,属薄壁件钎焊,焊点多达200多个,还要满足气密性,耐腐蚀性,及强度的要求,难度较大。因此彻底清除工件表面的油污,氧化物尤为重要。 3.制定温度曲线 空烧净化的目的是将真空炉升温到高于焊接温度80℃的条件下保温小时净化炉内气氛, 使炉内母材和钎料的蒸发物得以挥发出去。

关于真空容器检漏方法的探讨

书山有路勤为径,学海无涯苦作舟 关于真空容器检漏方法的探讨 关于真空容器检漏方法的探讨 以氦质谱检漏技术代替传统检漏方法 目前, 对于外压容器及真空容器, 通常以内压(液压或气压) 进行压力试验, 这类容器的主要失效形式是失稳, 考核指标是容器的刚度,压力试验的结果是对容器强度及致密性的验证。而外压及真空容器在内压试验时的受力情况与实际操作具有一定的差别, 实际操作时, 在外压作用下其材料和焊缝中可能存在的缺陷趋于闭合状态, 除某些缺陷(如穿透性针孔) 在外压作用下可能渗透外, 绝不会产生低应力失效,而其外压稳定性主要取决于容器的形状尺寸及制造偏差, 即外压容器的稳定性要通过设计及制造来保证。因此对外压容器进行压力试验只能是对容器的泄漏进行检验。 1、常用的检漏方法常用的检漏方法有: 氦质谱检漏、氨渗漏、气泡法、煤油渗漏、盛水试漏。对于不同结构、不同使用条件及不同漏率要求的设备, 要根据实际情况综合考虑试验成本, 选用适当的检漏方法。 在传统的检漏方法中, 氨渗漏、气泡法、油渗漏、盛水试漏试验方法简单、试验成本低, 但灵敏度也较低, 主要适用于检验较大漏率的泄漏。氦质谱检漏灵敏度高, 可靠性好, 适用于检测较小漏率要求的泄漏。 2、常规检漏方法的弊端对于外压及真空容器, 传统检漏是采用压力试验, 即液压试验或气压试验。考虑试验的安全性, 通常为液压试验, 对于容器内不允许有微量残留液体, 或由于结构原因不能充满液体的容器, 才采用气压试验。但这种方法对密封要求较高、漏率要求较小的真空容器灵敏度很难达到要求。在此情况下, 制造厂往往是在进行压力试验之后, 再进行氦质谱检漏, 以此增加检

各种材料的真空钎焊

各种材料的真空钎焊 一、碳钢和低合金钢的钎焊 1、钎焊材料 (1)钎料碳钢和低合金钢的钎焊包括软钎焊和硬钎焊。软钎焊中应用量广的钎料是锡铅钎料,这种钎料对钢的润湿性随含锡量的增加而提高,因而对密封接头宜采用含锡量高的钎料。锡铅钎料中的锡与钢在界面上可能形成FeSn2金属间化合物层,为避免该层化合物的形成,应适当控制钎焊温度和保温时间。几种典型的锡铅钎料钎焊的碳钢接头的抗剪强度如表1所示,其中以w(Sn)为50%的钎料钎焊的接头强度最高,不含锑的钎料所焊的接头强度比含锑的高。 表1 锡铅钎料钎焊的碳钢接头的抗剪强度 碳钢和低合金钢硬钎焊时,主要采用纯铜、铜锌和银铜锌钎料。纯铜熔点高,钎焊时易使母材氧化,主要用于气体保护钎焊和真空钎焊。但应注意的是钎焊接头间隙宜小于0.05mm,以免产生因铜的流动性好而使接头间隙不能填潢的问题。用纯铜钎焊的碳钢和低合金钢接头具有较高的强度,一般抗剪强度在150~215MPa,而抗拉强度分布在170~340MPa之间。 与纯铜相比,铜锌钎料因Zn的加入而使钎料熔点降低。为防止钎焊时Zn的蒸发,一方面可在铜锌钎料中加入少量的Si;另一方面必须采用快速加热的方法,如火焰钎焊、感应钎焊和浸沾钎焊等。采用铜

锌钎料钎焊的碳钢和低合金钢接头都具有较好的强度和塑性。例如用B-Cu62Zn钎料钎焊的碳钢接头抗拉强度达420MPa,抗剪强度达290MPa,银铜站钎料的熔点比铜锌钎料的熔点还低,便于针焊的操作。这种钎料适用于碳钢和低合金钢的火焰钎焊、感应钎焊和炉中钎焊,但在炉中钎焊时应尽量降低Zn的含量,同时应提高加热速度。采用银铜锌钎料钎焊碳钢和低合金钢,可获得强度和塑性均较好的接头,具体数据列于表2中。 表2 银铜锌钎料钎焊的低碳钢接头的强度

真空钎焊缺陷及其解决办法

真空钎焊缺陷及其解决办法 收藏此信息打印该信息添加:用户发布来源:未知 真空钎焊是在真空状态下,对结构件进行加热和保温,使钎料在适宜的温度和时间围熔化,在毛细力作用下与固态金属充分浸润、溶解、扩散、焊合,从而达到焊接目的的一种先进焊接方法。真空钎焊的突出优点是可连接不同的金属、实现复杂结构的同时焊接,焊接后的焊接头光洁致密、变形小且具有优良的力学性能和抗腐蚀性能。 1 钎料层厚度 当钎料层厚度过薄时,易造成焊接强度低、焊接不牢、承压不达标等焊接缺陷;过厚时,则会造成芯层合金厚度过薄、承压不达标、甚至出现熔蚀现象导致泄漏。因此,钎料层厚度及其均匀性是衡量其质量的重要指标,也是影响钎焊质量的重要因素之一。 2 其它质量要求 在缺陷如芯层合金的气孔、夹渣、与钎料层的焊合不良等;外在缺陷除表面处理不洁净外,还有在加工过程中的磕碰伤、划伤,当其深度超过钎料层厚度时,会直接破坏金属的连续性,导致承压能力下降。 3 真空钎焊工艺制度 在真空钎焊炉中,工件主要靠热辐射进行加热。而辐射传热有其特有的规律,即斯蒂芬玻尔兹曼定律: 性质:1879年J.斯蒂芬经实验求出黑体总发射本领和温度之间关系的定律。1884年L.玻尔兹曼又由热力学定律加以证实。定律表明:黑体的总发射本领E0(T)和黑体热力学温度T的4次方成正比,即 E0(T)=σT4, 式中σ为斯蒂芬-玻尔兹曼常数。其数值由下式给出:

σ=5.672×10-8。式中K为玻尔兹曼常数;A为普朗克常数;c为真空中的光速。 上式说明,高温时即使是很小的温度差也需要很高的热能传导,即真空加热温度越高, 需要传递的热量越大。说明在相同情况下真空炉升温速度要较其他加热方式慢很多。真空加热所需时间大约是空气炉的3倍、盐浴炉的6倍。因此,制定真空钎焊炉加热工艺制度时,不能照搬空气炉、盐浴炉和气氛炉的加热工艺制度。上式同时说明:真空钎焊过程中,应尽可能缓慢加热,以使待钎焊产品外温度保持一致,否则直接影响钎焊质量。对工业化生产中的预热定温、保温,蓄能定温、保温,钎焊定温、保温以及停电降温,是既能实现上述目的又能提高生产效率的行之有效的工艺流程,其中真空钎焊温度及保温时间是影响钎焊质量的关键。 (1)真空钎焊温度:①温度低时,钎料尚未达到必需的温度,钎料的流动性、浸润性均较差,易产生钎缝部气孔、钎缝不连续、虚焊等缺陷,使钎焊接头强度降低,承压能力不达标而产生泄漏,严重时甚至会撕裂;②温度高时,钎料完全熔化且流动性过大,易产生钎料氧化形成气孔和对焊缝的毛细力作用变差,造成钎料流失、熔蚀、产品弯曲等缺陷。适宜的定温应注重焊料的流点,通常焊料的熔点应比被焊金属熔点低60℃左右。此时,液态焊料对被焊金属具有良好的浸润性和流散性,能在毛细力作用下较好地填充钎焊间隙,并能与被焊金属产生良好的合金化作用,形成高强度接头。 (2)真空保温时间:钎焊时钎料的润湿和接头形成约需要1s~2s,因此保温时间主要由待钎焊产品心部温度达到钎焊温度所需的时间及氧化膜层消散所需时间决定。如果保温时间过短, 待钎焊产品中心部温度没有达到钎焊温度;时间过长,液态钎料容易使被焊金属熔蚀。 2.4真空钎焊炉的真空度 高温状态下的真空度较低时,炉残留的O2、H2O等氧化性气体易与产品金属起化学反应生成质硬的氧化膜。氧化物组织致密、稳定、熔点高,在普通真空钎焊温度下不易分解,钎料氧化后使其流动性浸润性变坏;被焊金属氧化后变得难以浸润,从而导致焊料与基体间

铝散热器真空钎焊炉操作规程

铝合金真空钎焊炉操作规程 一、说明 本操作规程适用于铝合金真空钎焊炉,同时对该真空钎焊炉进行的操作、维护保养等,均按此规程进行。 二、基本要求: 操作工在使用铝合金真空钎焊炉前必须接受相关培训,了解该设备的结构、性能、操作、调整和基本日常维护等各项要求。 三、操作规程: 3.1、真空钎焊炉操作步骤: 3.1.1、操作说明:当真空钎焊炉停炉超过8小时后,再进行钎焊 产品时,必须进行烘炉,烘炉是在对炉体抽真空的情况下加热到一定温度(700℃),再进行保温,当烘炉结束后,让炉体自然冷却到450℃左右时,打开炉门可以进行钎焊产品。 3.1.2、真空钎焊炉的烘炉:打开电源、水源、气阀;启动机械泵 (滑阀泵)、调到烘炉程序;启动罗茨泵(真空必须在4.0E2Pa 以下,如果没有达到4.0E2Pa,打开上角阀抽真空,直至到可以启动罗茨泵);开上角阀、下角阀、启动扩散泵(预热);加热(真空度进入E-3级以下);进入保温阶段(扩散泵预热1:30分钟左

右)、关闭上角阀、开主阀;程序结束、关闭加热;关主阀、启动维持泵、开维持泵阀、关下角阀(炉体温度下降到450℃左右);关罗茨泵;开炉体放气阀;开炉门、产品放入炉膛。 3.1.3、真空钎焊产品:关炉体放气阀、开上角阀、调到产品真空钎焊程序;启动罗茨泵(真空必须在 4.0E2Pa以下)、;开下角阀、关维持泵阀、关维持泵;关上角阀、开主阀(真空达到E-1Pa 级);开加热(真空必须在2E-2Pa以下);程序结束、关闭加热;关闭主阀、开维持泵、开维持泵阀(降温至450℃左右);关闭下角阀、关闭罗茨泵;打开炉体放气阀;产品出炉;如果继续钎焊产品,则重复钎焊产品操作步骤。 3.1.4、真空钎焊注意事项:以上操作均以操作指示灯亮以后,才能进行下一步操作;开炉时:先启动泵、再开泵阀;关炉时:先关泵阀,再关泵。 3.2、真空钎焊时,真空度低于3E-3Pa时才能够开始加热。 3.3、真空钎焊时,应严格执行真空钎焊工艺,操作人员不能随意更改真空钎焊工艺;在钎焊新产品前,应该试焊后,工艺员总结工艺,待工艺成熟后,再批量生产。 3.4、产品出炉温度低于450℃。

泄漏检测技术分析

无损检测课程报告 ——泄漏检测技术 一、概述 泄漏检测技术(Leak Testing,L T)主要用于真空容器,压力容器或储液容器等探测,例如漏孔、裂纹等穿壁缺陷以及气密缺陷,以防止发生泄漏而酿成事故,避免能源、资源的损失以及污染环境等。 泄漏检测俗称“检漏”。它主要是用于发现漏孔类缺陷,即指封闭壳体壁在压力作用下或者壁的两侧存在浓度差时,气体或液体通过它能够由一侧到达另一侧的孔洞或缝隙——称为穿壁缺陷。 泄漏检测的基本原理是利用示漏介质(气体或液体)来判断有无穿壁缺陷(漏孔)存在,并根据示漏介质的漏率(压强差和温度一定时,单位时间内通过漏孔的示漏介质的数量),可以测定漏孔的大小。检漏的任务就是在制造、安装、调试过程中,判断漏与不漏、泄漏率的大小,找出漏孔的位置;在运转使用过程中监视系统可能发生的泄漏及其变化。 泄漏是绝对的,不漏则是相对的。对于真空系统来说,只要系统内的压力在一定的时间间隔内能维持在所允许的真空度以下,这时即使存在漏孔,也可以认为系统是不漏的;对于压力系统来说,只要系统的压力降能维持在所允许的值以下,不会影响系统的正常操作,同样也可以认为系统是不漏的。对于密封有毒的、易燃易爆的、对环境有污染的、贵重的介质,则要求系统的泄漏率必须小于环保、安全以及经济性决定的最大允许泄漏率指标。 二、检漏方法的选择和分类 1、检漏方法的选择 泄漏检测方法很多,每种方法的特点不同,检漏前应首先根据检漏要求、检漏环境等选择合适的检漏方法。 选择泄漏检测方法要考虑如下几个方面因素: (1)检漏原理不论采用哪种检漏方法,必须理解它的基本原理。泄漏检测方法涉及的内容较广,集中反映了各种计量和测试技术。 (2)灵敏度检漏方法的灵敏度可以用该方法可检测到的最小泄漏率来表示。选择检漏方法时应考虑各种方法的灵敏度,即采用哪种方法可以检测出哪一级的泄漏。 (3)响应时间不论采用什么方法,要检测出泄漏率,总要花费一定的时间。响应时间的长短可能会影响检漏的精度和灵敏度。响应时间包括检测仪器本身的应答时间,气体流动的滞后时间和各种准备所需的时间。选择检漏方法时,必须考虑到这一点。 (4)泄漏点的判断有些检漏方法仅仅可以判断出系统有无泄漏,但无法确定泄漏点在何处,有的检漏方法不仅可以确定泄漏点,而且还可以确定泄漏率的大小。 (5)一致性对有些检漏方法来说,不管检测人员是否熟练,所得到的检测结果都基本相同;有些方法则是内行和外行使用,其结果全然不同。每种方法都有不同的技术关键,不同的检漏人员未必能得出一致的检漏结果 (6)稳定性泄漏检测是一种计量和测试的综合技术。正确的泄漏检测不仅需要检测仪器具有稳定性,而且需要检测方法本身也具有较好的稳定性。 1

不锈钢真空钎焊的工艺要点

不锈钢真空钎焊的工艺要点 1 钎焊接头的设计: 设计钎焊接头时,应考虑接头的强度、组合件的定位方法、钎料置放的位置、接头间隙等诸多因素 1.1钎焊接头连接方式: 钎焊接头有对接和搭接两种方式。采用对接接头,由于钎料和钎缝的强度一般比母材低,因而对接接头不能保证接头具有与母材相等的承载能力,因此钎焊接头大多采用搭接形式。通过改变搭接长度提高钎焊接头的强度。对于采用高强度铜基、镍基钎料钎焊的搭接接头,搭接长度通常取为薄壁件厚度的2~3倍。由于工件的形状不同,搭接接头的具体形状也各不相同。对于薄壁件而言,常采用锁边形式的搭接方式,提高钎焊接头的强度。 1.2接头的定位: 组合件的定位是影响钎焊质量的重要因素。定位的方法主要有依靠自重、紧配合、毛刺定位、点焊定位、(氩弧焊)涨口定位、夹具定位等。列管式EGR冷却器将采用涨口定位、点焊定位、焊接变位器等多种定位方法 1.3 钎料的置放: 钎料置放的原则是应尽可能利用钎料的重力作用和钎缝的毛细作用来促进钎料填满间隙。E GR冷却器的钎焊将使用镍基钎料膏状和非晶态薄带两种。膏状钎料应直接涂在钎缝处,而非晶态薄带钎料标准有0.0254mm 0.0381mm等不同的厚度。按工件要求加工成不同的形状,置于钎缝处。总之镍基钎料合理的使用对我们来说还要做很多工作,比如钎料表面处理、膏剂的涂覆方法、钎料用量等诸多方面,根据实际要求进一步完善。 1.4 接头的间隙: 钎焊时是依靠毛细作用使钎料填满间隙。正确地选择接头间隙很大程度上影响钎缝的致密性和强度。不同的钎料对接头间隙的要求也有所不同。镍基钎料要求接头间隙为0.02~0.10m m,比其它钎料相比,这种钎料要求接头间隙小的特点应引起足够的关注。 由于BNi—2镍基钎料含有硼(3.2%),硅(4.5%)可以形成脆性相的元素,为保证接头的性能,应尽量使这些元素在钎缝内通过扩散作用而降低到最低程度。 当间隙小时,这些脆性相的元素数量少,向母材扩散的距离短,可以通过扩散使这些元素在钎缝中的浓度降低。从而避免产生脆性相,提高钎焊的强度。反之这些脆性相的元素将滞留在钎缝中形成脆性相,。 资料表明,当间隙为“零间隙”、0.05mm、0.1mm时。脆性相随着间隙的变化而增大。间隙在0.1mm时,脆性相不仅增多,而且形成明显的连续层。钎缝的强度严重降低,危害极大。因此钎缝最佳间隙应控制小于<0.08mm。 2 工件表面处理 钎焊前彻底清除工件表面的氧化物,油污,脏物是钎料和母材相互润湿、扩散填充焊缝的前

真空钎焊炉操作规程

VQB—335型多功能真空钎焊炉使用方法及注意事项 一、开炉前,保证水、电、气在工作状态。开启空压机,保证气压在0.4MPa,开启循环水,保证水压表指到0.16。检查炉体气阀正常关闭。达到上述要求后方可通电,进行操作。 二、放料前,检查设备加热室,加热室必须干净,不得有杂物、灰尘、油污、水等。再检查所放样品,同样干燥清洁,无水渍、油污等。 三、装料后,打开操作面板上“启动”按钮,自动检测启动,检查无误后,按“测试”键结束。然后,启动“旋片泵”,对真空机组和炉膛抽气,同时打开记录仪电源、真空计电源。 四、在程序设定板上设定钎焊保温温度和时间。具体操作见说明书。 五、当炉膛真空度达到工作真空度后(一般的工作真空度为5.0×10-3Pa),开启加热,同时温控表自动启动运行。 六、升温、保温整个工艺流程结束后,加热自动关闭。 七、自然冷却,让设备照常运行,待设备自然冷却到270℃左右,关闭“主阀”“扩散泵”,只留下“旋片泵”和“罗茨泵”对“扩散泵”进行抽真空并冷却。 八、等扩散泵体的温度降至室温,然后逐一关闭“前级阀门”“罗茨泵”“旋片泵”“记录仪电源”“真空计电源”。最后按“停止”按钮结束。 九、关闭水、电、气。完成整个工艺流程。 注意事项: 水压 钎焊过程中关键问题是水压,在试验过程中必须满足水压表的示数在0.1-0.2之间,一般选择在0.14~0.16之间,一方面保护炉体,另一方面冷却扩散泵。当水压阀全开时水压表才满足以上要求时,试验过程务必不能离人。 在实验过程中水压下降到0.12以下时,一方面将水压阀开大,另一方面与主楼北侧的实验室(130王自东、151刘雪峰)进行协调,尽量满足要求,实在难以满足时放弃试验。

真空钎焊技术的应用

真空钎焊技术的应用 一、前言 真空钎焊技术从四十年代开始至今,已成为一种极有发展前途的焊接技术。 最早出现在电子工业上钎焊铜和不锈钢的零件,后来又应用到航空工业、原子能工业,在1959年开始应用到制造不锈钢的板翅式换热器上。现在,被广泛应用于空气分离设备、石油化工设备、工程机械、车、船和家电等工业部门的板翅式换热器和冷却器中。 由于真空钎焊技术具有无可比拟的优点,所以在世界工业发达国家得到迅速的发展和广泛的应用。 二、真空钎焊的优点 1. 真空钎焊,因不用钎剂,显著提高了产品的抗腐蚀性,免除了各种污染,无公害的处理设备费,有好的安全生产条件; 2. 真空钎焊不仅节省大量价格昂贵的金属钎剂,而且又不需要复杂的焊剂清洗工序,降低了生产成本; 3. 真空钎焊钎料的湿润性和流动性良好,可以焊更复杂和狭小通道的器件,真空钎焊提高了产品的成品率,获得坚固的清洁的工作面; 4. 与其它方法相比,炉子的内部结构及夹具等寿命长,可降低炉子的维修费用; 5. 适于真空钎焊的材料很多,如:铝、铝合金、铜、铜合金,不锈钢、合金钢、低碳钢、钛、镍、因康镍(Inconei)等都可以在真空电炉中钎焊,设计者根据钎焊器件的用途确定所需的材料,其中铝和铝合金应用得最广泛。 三、真空钎焊的应用 1. 真空钎焊在航空发动机上的应用 国外,美国普。惠公司的JT9D发动机蜂窝封严环,由环件和蜂窝夹芯用真空钎焊制成;该发动机燃油总管由主管和多个支管、喷咀用真空钎焊组成;此机发动机不锈钢热交换器由300多根不锈钢管、隔板、壳体用真空钎焊组成;JT8D发动机12、13级压气机静子环由内外环和几十个叶片用真空钎焊制成。美国GE 的发动机机匣由240多个0.25~0.7mm厚的因康镍合金零件分三次阶梯真空钎焊而成。国内,沈阳黎明发动机公司、成都发动机公司分别真空钎焊静子环,用于海军飞机上;成都发动机公司真空钎焊燃油总管,并通过发动机试车。 真空钎焊电炉是航空发动机制造中的主要钎焊设备,美国已有200多台真空钎焊炉。国内,黎明发动机制造公司、成都发动机公司、北京航空工艺研究所在70年代分别研制出中型单室的真空钎焊电炉。北京航空工艺研究所在1964年与天津电炉厂合作研制出半连续式真空钎焊炉,西安航发动机公司引进伊普森公司卧式真空电炉(炉膛尺寸910×610×610mm),北京民航Ameco公司引进伊普森公司钟罩式真空钎焊电炉(炉膛尺寸髟2300×1300mm),进口的炉子皆为微机控温、程序自动控制。现在,沈阳真空技术研究所、北京航空工艺研究所、沈阳市真空应用研究所等单位都研制了能够微机控温、按程序自动控制的大型高温真空钎焊电炉。 2. 真空钎焊在工程机械上的应用 真空钎焊中小钎头就是一个实例,中小钎头广泛地应用于冶金、地质、煤碳、水利、铁路、军工等建设事业上。据统计1978年,全国消耗中小钎头约1万只,而现在的用量就更大,在国民经济建设中发挥了重要作用。 西北矿冶研究所1978年开始研制真空钎焊中小钎头,1980年通过冶金部作的技术鉴定,80年代已具有年产十万只中小钎头的生产线,产品供应全国上百家矿山使用。该所生产的钎头还先后在大庙铁矿、湘东钨矿、南京梅山铁矿、红透山铜矿、华铜铜矿等地进行了数十次试验。钻凿了不同类型的矿岩,经受了坚硬的花岗岩、难钻凿的角岩以及坚硬磨蚀性强的块状磁铁矿夹矽卡岩等考验。φ42mm的十字形钎头与瑞典同类型钎头在现场进行钻凿花岗岩的

第7讲_真空检漏

42  真 空 V acuum2V acuum T echno logy and M aterial 第5期 1997年10月 真空技术及应用系列讲座 东北大学真空工程博士点,博士导师杨乃恒先生主持 第一讲:真空科学的发展及其应用李云奇 95(2) ………………………………………… 第二讲:真空物理基础张世伟 95(3) ……………………………………………………… 第三讲:机械真空泵(一)(二)(三)(四)(五)(六)…张以忱95(4)、(5)、(6)、96(1)、(2)、(3) 第四讲:蒸汽流真空泵姚民生 96(4) ……………………………………………………… 第五讲:气体捕集式真空泵徐成海 96(5) ………………………………………………… 第六讲:真空测量刘玉岱 96(6)、97(1)、(2)、(3)、(4) …………………………………… 第七讲:真空检漏 关奎之 (东北大学) 一、概述 11概漏的基本概念 真空检漏就是检测真空系统的漏气部位及其大小的过程。 漏气也叫实漏,是气体通过系统上的漏孔或间隙从高压侧流到低压侧的现象。 虚漏,是相对实漏而言的一种物理现象。这种现象是由于材料放气、解吸、凝结气体的再蒸发、气体通过器壁的渗透及系统内死空间中气体的流出等原因引起真空系统中气体压力升高的现象。 气密性是表征真空系统器壁防止气体渗透的性能,它包括通过漏孔(或间隙)的漏气和材质的渗气。 最小可检漏率是指某种检漏方法能够检测出的漏率的最小值。 最佳灵敏度是指检漏仪器或检漏方法在最佳条件下所能检测出的最小漏率。对于检漏仪器来讲,最佳灵敏度又称作仪器灵敏度。 检漏灵敏度是指在具体条件下,某种检漏方法所能检测出的最小漏率。检漏灵敏度又称作有效灵敏度。 反应时间,即从检漏方法开始实施(如开始喷吹示漏气体)到指示方法(如仪表)做出反应的时间。 消除时间,即从检漏方法停止(如停止喷吹且开始抽出示漏气体)到指示方法的指示消失的时间。 漏率,即单位时间内流过漏孔(包括间隙)的气体量。 21漏孔、漏率及其单位 真空技术中所指的漏孔,由于尺寸微小、形状复杂、形式多样(如图1所示),无法用几何尺寸表示其大小,所以一般用等效流导或漏气速率(简称为漏率)表示漏孔的大小。

真空测量与检漏分析

真空测量与检漏 主讲人:刘玉岱 东北大学 真空测量与检漏东北大学首期《真空技术》培训班系列教程之三

真空测量与检漏 1 真空测量概述 2 全压力测量 3 分压力测量 4 真空计校准 I 真空测量 II 检漏 5 检漏概述 6 检漏方法 7 检漏仪 真空测量与检漏

I 真空测量 1 真空测量概述 1.1 什么是真空测量 1. 2 真空度的表征及单位 1.3 真空计分类 1.4 真空计测量范围 1.5 真空测量特点 1.6 选择真空计原则 真空测量与检漏

1.1 什么是真空测量 真空测量就是真空度的测量,而真空度是指低于大气压力的气体稀薄程度。真空度是用压力来表示的。 真空测量包括全压力测量、分压力测量和真空计校准。 真空计是指探测低压空间稀薄气体压力所用的仪器。 大气压力为101325Pa 。 直接测量压力是比较少的。测量真空度的办法通常是在气体中造成一定的物理现象,然后测量这个过程中与气体压力有关的某些物理量,再设法间接确定出真实压力来。 被测量气体多为混合气体,上述压力测量是指混合气体全压力测量,等于其各组成成分的分压力之和。 真空测量与检漏

现代分压力真空计都属于电离类。 有时只需知晓被测系统残余气体成分和相对含量,并不要求测出分压力值,所用仪器为残余气体分析仪。 正确的压力测量必须用标准真空计或能产生已知低压的校准装置对真空计进行校准。 真空计量器具分三类:计量基准器具、计量标准器具和工作计量器具。前两类用于复现和传递真空度量值,统一全国真空度量值;后一类是在现场应用。 真空测量与检漏

1.2 真空度的表征及单位 一般用压力来表示真空度。 根据真空度定义,真空度最好用分子密度n 表示,而以压力表示真空度与此并不矛盾。气体处于平衡态并满足麦克斯威速度分布定律,即p =nkT 成立。当温度T 一定时,所以气体压力p 正比于分子密度n ,也就是说,压力是分子密度的量度。 还可以用如下参数表示真空度: 粒子密度n 、分 子平均自由程λ、碰撞次数z 、覆盖时间τ。 单位:1Pa = 1Nm -2 真空度百分数: 当压力p >102 Pa 时,δ=(p 0-p )/p 0×100% 式中p —— 标准大气压力,Pa 。 真空测量与检漏

真空钎焊炉加工流程

高温真空钎焊炉操作规程 一、开炉前,保证水、电、气在工作状态。电压在380V,不得有10%的偏差。气压在0.6Mpa,水压达到最低值(0.5MPa)。达到上述要求后才可以通电,进行操作。 二、放料前,检查设备加热室,加热室必须干净,不得有杂物、灰尘、油污、水等。在检查所放得产品,同样干燥清洁,无水渍、油污等在放料前需清洁干净。 三、装料后,把旋钮打到“门关”位置。然后,启动“机械泵”和“粗抽阀”。对真空机组和炉膛抽气,同时打开真空计电源(一般情况真空计电源随总电源一起启动)。 四、当真空度高于1000Pa时,真空计监测点“J2”点亮。这个时候,可以开启“罗茨泵”。如条件不到,“罗茨泵”不会开启,点击按钮无反应。 五、当真空度高于7Pa时,真空计监测点“J1”点亮。这个时候,开启“前级阀”和“扩散泵”。对“扩散泵”进行预热。 六、待“扩散泵”预热时间达到90分钟时候(可观察触摸屏上计数器),关闭“粗抽阀”,打开“高阀”,对炉膛抽高真空。 七、当炉膛真空度达到工作真空度后(真空计监测点“J3”点亮,注意初始监测点设置较高,可以自行设定或者达到所需真空度时,自行开启加热),开加热,同时温控表自动启动运行(加热曲线需事先编好)。

八、升温,保温整个工艺流程结束后,“工艺结束”报警,同时,加热自动关闭。 九、如果选择自然冷却,让设备照常运行,待设备自然冷却到出炉温度,关闭“高阀”、“扩散泵”、“罗茨泵”,只留下“机械泵”和“前级阀”对“扩散泵”进行抽真空并冷却。同时可以把旋钮打到“门开”位置。在关闭“真空计”,打开“手动放气阀”,进行放气,待炉内气压和大气压平衡时,炉门自动打开,可以取料同时拧紧”手动放气阀”。待“扩散泵”温度冷却至室温(大约一小时),可关闭“机械泵”和“前级阀”。关闭水、电、气。完成整个工艺流程。 十、如选择强冷冷却,在第八步后,关闭“真空计”、“高阀”、“粗抽阀”、“扩散泵”,只留下“机械泵”和“前级阀”对扩散泵进行抽真空并冷却。在打开“充气阀”,向炉内充入氮气或者氩气至与大气基本平衡后(有压力表控制风机启动检测点和充气上限检测点),开启强冷风机,直至冷却至出炉温度(强冷过程中补气是自动控制)。关闭“充气阀”。冷却至出炉温度后,把旋钮打到“门开”位置。然后拧开“手动放气阀”充气至与大气平衡后,炉门自动打开,然后拧紧“手动放气阀”。然后在进行取料。关闭水、电、气。完成整个工艺流程。 注意: 一,在整个运行过程中,直至取料结束。水、气、电要一直保持在

真空钎焊炉的真空检漏与维修

真空钎焊炉的真空检漏与维修 一、概述 真空钎焊炉是热处理的大型设备,能够进行真空钎焊、真空退火、真空时效等多种加工。可编多个不同程序,能控制和编入上百个热处理曲线点,分上、下、左右、前后六区控温,有多点和单点温度记录仪以及过温保护装置,炉温均匀性可控制在士3℃以内,另配有高纯氮高流量强冷装置。该设备具有装炉量大、效率高,对复杂零件和有特殊要求的零件无需作补充工艺处理产品。 用途:主要用于铝合金热交换器等铝制品真空钎焊,不锈钢、钛合金、硬质合金、高温合金、有色金属的钎焊及高速钢、工模具钢、轴承钢、不锈钢等材料的真空回火,以及有色金属的时效和退火处理以及不锈钢换热器、机油冷却器、不锈钢保温杯的真空钎焊。 技术特点: 1、采用分区式加热器布置,使加热区内温度均匀性一致。 2.真空氛围中钎焊的,可保持工件的清洁和光亮。 二、真空钎焊炉真空系统的工作原理 设备真空系统主要由真空室、泵系统和各控制阀及热交换器组成。其中泵系统由机械泵、维持泵、罗茨泵、扩散泵构成。阀门包括前级阀(碟阀)、旁路阀(碟阀)、维持泵阀(碟阀)和高阀(板阀)组成,各阀门均为气动阀,由PLC控制气动阀进行控制。 真空钎焊炉由下列零部件组成: 1.KT-800型油扩散泵 2.ZJ-600型罗茨真空泵 3.2X-70型旋片式真空泵 4.2XZ-8型旋片式真空泵 5.DN800高真空气动挡板阀 6.DN800水冷挡板 7.DN150高真空气动挡板阀 8.DN100高真空气动挡板阀 9.DDC-JQ80型电磁带放气阀

10.DDC-JQ32型电磁带放气阀 金属波纹管,真空管路等 真空炉加热室主要零部件由下列设备组成: 1. 保温层(硅酸铝毡+炭毡+钼屏) 2. 石墨加热器 3. 水冷电极组件 4. 石墨电极及石墨连接件 5. 钼拉杆 6. 绝缘陶瓷件 7. 石墨炉床 8. 石墨喷嘴 9. 铂热电偶 加热室主要由不锈钢加热室壳体、不锈钢反射屏、石墨加热器加热器、陶瓷绝缘件、水冷电极、炉床等组成。采用多温区闭环独立加热控温方案。共设前门、后门、顶面、底面、左侧、右侧六个大区,共18个小区。电路与炉体绝缘性能良好,所采用的绝缘元件能防金属化,又便于拆卸清理更换。炉胆设有冷却气体循环,均匀冷却工件,炉胆便于清理。 真空炉强制气冷装置: 1.风机电机(45kW) 2.密封引线电极 3.高效热交换器(紫铜) 4.离心风机 5.导风装置 6.水冷电机座及罩体

真空检漏技术在电厂中的应用

真空检漏技术在电厂中 的应用 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

真空检漏在电厂中的应用 随着社会的发展,市场化的逐渐形成,发电厂在重视机组运行运行的前提下,现在正越来越重视机组运行的经济性,稳定性。因为它不仅关系到电厂的经济效益,还关系到电厂的生存。而影响电厂经济性的原因有很多,诸如高加投入率、给水温度、凝汽器真空等,其中凝汽器真空是很重要的一项,因为凝汽器真空的高低不仅涉及机组的经济性,还涉及机组的安全性。 凝汽器在现代大型电站凝汽机组热力循环中起着冷源作用,主要任务是一是将汽轮机排气凝结成水,而且这种凝结水的品质纯净,最适合作为锅炉给水用,二是在汽轮机排气口建立与维持一定的真空度,使进入汽轮机的蒸汽在汽轮机内能膨胀到远低于大气压的压力,使蒸汽所含的热量尽可能多的转变成机械功,以提高汽轮机的工作效率。所以汽轮机的真空度的高低对机组运行有很大的关系。 凝汽器真空受多方面影响,如设计制造,系统搭配,安装检修、运行调整等等,但主要原因一般有四条:1、漏入的空气量增多;2、凝汽器热交换效率下降;3、循环水量不足或进水温度偏高。4、抽气系统效率下降。 一、低真空的危害 1对经济性的影响:当机组真空很低时,会降负荷,甚至停机,因此提高机组真空,已成为电厂节能降耗、经济活动分析的热点。汽轮机运行时凝汽器真空的恶化,对汽轮机的经济性影响甚大,如果汽轮机在最有利的真空下运行,其经济性最高,若真空偏离设计设计值幅度过大,此时汽轮机若仍带原负荷,势必得改变进汽量,进汽量的变化,势必得改变汽机的进汽量,进汽量的变化,也改变了机组的汽耗率、热耗率。

真空铝钎焊炉作业指导书

真空铝钎焊炉 作业指导书 1.操作程序 (2) 2.维修与保养 (3) 3.注意事项 (6)

1、操作程序 1.1开炉准备 1.1.1检查各电接头是否紧固,各组成部分是否清洁、正常。 1.1.2打开水冷系统总开关及各分开关,保证水压0.1~ 0.3MPa。 1.1.3打开压缩空气开关。 1.1.4打开充气系统总开关。(如工艺不需要,可不开)。 1.1.5电源总开关合闸。 1.1.6将电控箱上的各路开关合闸。 1.1.7调节控制仪表,使其符合真空钎焊工艺要求。 1.1.8油扩散泵加热:当扩散泵为真空状态时,打开维持阀,启动维持泵,对扩散泵抽真空延时,对油扩散泵提前加热。 1.2开炉步骤 1.2.1打开炉门,将工件送入炉内,然后关闭炉盖。 1.2.2打开旁路阀,启动滑阀泵,对炉子抽真空。 1.2.3当炉内真空度≤670 Pa时,注意观察罗茨泵轴基本不转,启动罗茨泵。 1.2.4当炉内真空度达到10 Pa时,且扩散泵加热到温(约90~120分钟),关旁路阀,关维持阀,停维持泵。打开主路阀,打开扩散泵上的高真空阀。由扩散泵对炉体抽真空。 1.2.5当炉内真空度达到工艺规定值时,即可通电加热,炉子开始升温、保温(按设定的工艺曲线程控进行)。

1.2.6钎焊加热工艺结束后炉子断电停止加热。 1.2.7关闭高真空阀。停扩散泵加热并加强泵体的冷却。 1.2.8停罗茨泵,打开维持阀,启动维持泵。延时关主路阀,停滑阀泵。 1.2.9加强炉体冷却(此项按需要)。 1.2.10当炉内温度降至可出炉温度时(由钎焊工艺定)做出炉准备(或按工艺要求提前充入高纯氮气,加速降温)。 1.2.11打开炉体放气阀,使炉内压强恢复至大气压力,关闭炉体放气阀。 1.2.12打开炉门取出工件。 1.3停炉 1.3.1关闭充气系统总开关。 1.3.2当油扩散泵油温低于50℃时,关维持阀,停维持泵。此时应打开旁路阀,启动滑阀泵,使炉内保持在1×10-1Pa(真空计显示值)的真空状态,再关旁路阀,停滑阀泵。 1.3.3关闭压缩空气开关。 1.3.4关闭水冷系统总开关。 1.3.5断开电源总开关。 2、维修与保养 2.1炉子及控制柜外表面应经常擦拭,保持清洁干净,清理设备时应切断设备电源和压缩空气。 2.2炉内不干净或有灰尘时,要用丙酮或无水酒精浸湿过的

真空钎焊炉

2008年03月14日 技术条件书 客户名:珠海格力空调 品名:真空铝钎焊炉 型号:VAB—350 数量: 1 套 =

VAB—350真空铝钎焊炉 1、设备名称:真空铝钎焊炉 2、数量:一台(套) 3、设备用途:该设备主要用于铝及合金等材料的真空钎焊工艺等。 4、供货范围: 4.1 设备供货范围:真空铝钎焊炉一台(套)。 4.2 伴随服务要求:卖方在按上述供货范围提供设备的同时,提供与之相应的伴随服务,包括:技术资料、安装、调试、现场试运行、技术支持、技术培训等。 5、基本要求: 5.1 设备结构设计先进合理,能够满足用户为完成上述用途的使用要求。设备具备国际先进水平的可靠的全自动化控制、监控、跟踪及自诊断等功能。其配套产品和功能元器件具有国际先进水平,能够适应长期、稳定、安全、可靠的生产需求。设备的节能效果好。使用、操作、维修方便简捷,造型美观,安全可靠,售后服务优良。 5.2 设备的设计、制造应符合相应的国家标准GB1096 6.3-89和GB9452-88及行业标准和规范。 5.3 设备所有零部件和各种仪表的计量单位应全部采用国际单位(SI)标准。 6、VAB—350真空铝钎焊炉的主要构成 真空炉主机为卧式、单室结构,它由真空炉体、前后炉盖、加热室、真空系统、充气系统、气动系统、水冷系统、电气控制系统等组成。 ●炉体为双层圆筒结构,夹层内通入冷却水; ●加热系统包括不锈钢外壳、全金属隔热屏、加热器和料台; ●真空系统依据极限真空度的要求采用进口真空泵设计配制; ●闭式冷却水循环系统; ●气动系统为本设备的各个气动阀门提供工作动力; ●控制系统通过可编程序控制器对各部件实施准确可靠的控制; ●炉外装出料采用电动液压叉车。 设备的构成及特点 6.1真空炉体、炉盖及运行机构: 真空炉体、炉盖是按真空容器标准设计的,采用双层圆筒结构,夹层内通入冷却水,进、排水设计避免了温度死区。 炉体内壁采用不锈钢材料1Cr18Ni9Ti,厚度12mm,炉体外壁采用优质碳素钢Q235A制造,厚度10mm。 炉盖为手动开启旋转的开启形式。 炉体上分别有真空系统、温度测量系统、加热电源电流汇流排等接口。 6.2加热系统: 加热室为全不锈钢组成的矩形框架结构,底部有六个轮子可以延炉体内轨道水平移动,便于加热室维护。 隔热屏由4层不锈钢(1Cr18Ni9Ti)制成。 第一层:0.6mm不锈钢(1Cr18Ni9Ti)为最里层; 第二、三层:0.6mm不锈钢(1Cr18Ni9Ti); 第四层:1.0mm不锈钢(1Cr18Ni9Ti)为最外层。 加热元件采用宽带状镍铬带(Cr20Ni80),加热均匀,热损失小。 加热区分为14区(前后炉盖各1区)。

真空检漏技术在电厂中的应用

真空检漏在电厂中的应用 随着社会的发展,市场化的逐渐形成,发电厂在重视机组运行运行的前提下,现在正越来越重视机组运行的经济性,稳定性。因为它不仅关系到电厂的经济效益,还关系到电厂的生存。而影响电厂经济性的原因有很多,诸如高加投入率、给水温度、凝汽器真空等,其中凝汽器真空是很重要的一项,因为凝汽器真空的高低不仅涉及机组的经济性,还涉及机组的安全性。 凝汽器在现代大型电站凝汽机组热力循环中起着冷源作用,主要任务是一是将汽轮机排气凝结成水,而且这种凝结水的品质纯净,最适合作为锅炉给水用,二是在汽轮机排气口建立与维持一定的真空度,使进入汽轮机的蒸汽在汽轮机内能膨胀到远低于大气压的压力,使蒸汽所含的热量尽可能多的转变成机械功,以提高汽轮机的工作效率。所以汽轮机的真空度的高低对机组运行有很大的关系。 凝汽器真空受多方面影响,如设计制造,系统搭配,安装检修、运行调整等等,但主要原因一般有四条:1、漏入的空气量增多;2、凝汽器热交换效率下降; 3、循环水量不足或进水温度偏高。 4、抽气系统效率下降。 一、低真空的危害 1对经济性的影响:当机组真空很低时,会降负荷,甚至停机,因此提高机组真空,已成为电厂节能降耗、经济活动分析的热点。汽轮机运行时凝汽器真空的恶化,对汽轮机的经济性影响甚大,如果汽轮机在最有利的真空下运行,其经济性最高,若真空偏离设计设计值幅度过大,此时汽轮机若仍带原负荷,势必得改变进汽量,进汽量的变化,势必得改变汽机的进汽量,进汽量的变化,也改变了机组的汽耗率、热耗率。当凝汽器真空降低时,有其在夏季循环水温度高的情况下,有的真空较差的厂,必须开两台射水泵和循环泵。 据测算,一台100MW以上机组,真空每提高1kPa ,发电煤耗将降低2g/kw·h 左右(另有资料表明,当凝汽器真空下降1%,则影响机组输出功率减少约0.7-1%),

相关文档
最新文档