实验一与实验二_血氧饱和度检测仪设计实验

实验一与实验二_血氧饱和度检测仪设计实验
实验一与实验二_血氧饱和度检测仪设计实验

第一部分综合实验箱简介2

第二部分实验项目4

实验一温度测试4

实验二心血管参数测试9

实验三肺功能参数测试22

实验四握力测试31

实验五血压测试36

实验六心电测试41

实验七血氧饱和度测试50

实验八脉搏波波速测试59

第三部分附录77

一、心血管参数测试77

二、肺功能参数测试79

三、血压测量81

四、接口器件--P D I U S B D12U S B84

五、软件及U S B驱动安装88

第一部分综合实验箱简介

YJ-02型医学电子教学仪器综合实验箱以高性能的W78E516单片机作为核心控制器件,配以外存储器、接口器件、模/数转换等电路实现模拟信号的采集、转换和处理,以及各种状态的检测和控制。

实验箱由温度测试、心血管功能测试、肺功能测试、握力测试、血压测试、心电测试、脉搏波波速测试、血氧饱和度测试等实验组成,实验箱采用模块设计。主板电路布局见图 1.1。主板包含血压测试、心电测试两个实验模块。所有实验均由单片机配合程序分别控制完成,实验数据通过USB 口上传到PC机。实验箱右侧上方有一个通讯指示灯(LED),当实验箱与PC机联机通讯成功时通讯指示灯点亮,表示实验箱与PC机处于联机通讯测试状态。实验箱应用软件应用于32位win9X或Win2000

或WinXP及Win7(32位及64位)平台,显示器屏幕推荐分辨率为1024*768,实验数据、曲线和参数均可在PC机上显示和保存。

图1.1 电路布局图

本实验箱供电电源为直流+10V~+18V/1A,由外部提供。在实验前,用导线将电源引入实验箱左上侧的两个标有+15V和GND字样的接线柱,正端接红色接线柱,负端接黑色接线柱。

打开PCB板上的电源开关,电源指示(绿色)灯亮,表明电源接通,可以正常操作。当出现异常时,应首先关闭电源,再检查相关电路,正常后再重新开启电源。实验前用USB连接线将实验箱的USB口与PC机USB口相连。在PC机退出联机通讯操作之前,不要关闭实验箱电源。

【实验时,严禁带电装卸集成电路或更换元器件。严禁在联机通讯状态带电拔USB通讯线。拔传感器时,不要用手直接拉传感器线,应握住传感器根部插头拔除。禁止将插线或其它导体放置于实验箱PCB板上,以免造成短路,损坏器件。】

第二部分实验项目

实验一血氧饱和度测量仪设计实验

一.实验目的

1.了解血氧饱和度测试的意义和无创伤测试基本原理。

2.掌握血氧饱和度测试的基本方法。

3.了解血氧探头的构成及特性。

二. 实验的意义和原理

1.血氧饱和度测定的意义

血氧饱和度是衡量人体血液携带氧能力的重要参数。由于氧通过呼吸进入细胞进而被血红蛋白所氧合是由多个环节组成,其中任何一个环节出现问题均可导致供氧障碍。监测动脉血氧饱和度可以对肺的氧合和血红蛋白携带能力进行估计,在临床上具有重要的意义。

在临床实践中,估计动脉氧合能力有多种方法,最常用的是取动脉血,但这种方法需要动脉穿刺或者插管,且不能连续监测。

无创伤检测动脉血氧饱和度的方法,是一种采用脉搏血氧测量法的动脉血氧饱和度测量方法,它的特点是能够在无创伤条件下实现连续测量动脉血氧饱和度,使用方便,应用前景广泛。

2.脉搏血氧测量法基本建模原理

脉搏血氧测量法的原理是基于光学定律-----朗伯特—比尔定律建立无创伤血氧饱和度测量的模型和基于光学脉搏容积描记法建立动脉组织的模型。

比尔定律认为:光通过物质时,它的强度会或多或少的减弱,这种现象叫做光的吸收。实验证明:当单色光通过溶液时,透射光的强度与溶液的浓度、厚度、入射光的波长有关。称为吸光度。换言之,如果我们测出吸光度,而厚度、入射光的波长已知,则可以计算出溶液的浓度。脉搏血氧测量正是利用了这一原理。

在脉搏血氧测量法中,假设忽略动脉血管中其它成份影响仅考虑氧合血红蛋白(HbO2)和还原血红蛋白(Hb),则血氧饱和度SpO2的定义是:

SpO2=

Hb

HbO HbO C C C 22

2HbO C 表示氧合血红蛋白含量;HB C 表示还原血红蛋白含量。

两种血红蛋白在红光谱区吸收差别很大,而在近红外光谱区,吸收差别较小,所以不同氧饱和度的血液光吸收程度主要与两种血红蛋白含量比例有关。也就是说由于在红光谱区和近红外光谱区里,氧合血红蛋白和还原血红蛋白有自已独特的吸收光谱,因此根据比尔定律可以决定血红蛋白含量的相对百分比,即血氧饱和度。

为了把问题简化,脉搏血氧测定法假设的组织模型由两部份组成:无血组织(皮肤,骨骼,静脉血等)表现为固定的光吸收,即直流成份。而动脉血管(由氧合血红蛋白和还原血红蛋白组成的动脉血液)则为脉动变化的光吸收,即交流变化的信号。假定光衰减量的变化完全是由于动脉容积搏动所引起,从而就可以从光的总衰减量中除去直流成份,用余下的交流成份进行分光光度分析,计算出动脉血氧饱和度。

SpO2=K1R+K2R+K3

式中,K1,K2,K3是经验常数,而R 是在某个很小的时间间隔上,两种光电信号幅度变化量之比。 3.动脉血氧探头

动脉血氧探头是由红光发光二极管、近红外发光二极管和高性能光敏二极管组成的混合光学传

感器。使用波长660nm的红光和940nm的近红外光作为射入光源,利用手指作为盛装血红蛋白的透明容器,测定通过手指的光传导强度,来计算血红蛋白浓度和血氧饱和度。一般认为SpO2正常应不低于94%。

探头上壁固定两个并列的发光二极管,下壁有一个光电检测器将透过手指的红光和红外光转换成电信号,它所检测到的信号越弱,表示光信号穿透指尖时,被那里的组织、血液吸收掉的越多。

4.电路实现原理

图2. 71 动脉血氧饱和度测试电路原理图

上图中,左上的标有(1)的部分是探头电路结构图。RED-LED是红光发光二极管,IR-LED是近红外发光二极管,其右边是光敏二极管。

右上的标有(2)的部分是发光管驱动电路。为了保证光源的稳定,发光二极管采用恒流源进行驱动。PC4,PC5是主板通过程序发出的控制信号,例如,当PC5=1时,Q14、Q10、Q15、Q17导通,+5V 通过Q10的集电极加到红外管的阳极,Q15的集电极加到红外管的阴极,向近红外二极管提供稳定的电流,使之发光。同理,当PC4=1时,红光二极管获得电流发光。这样,PC4和PC5交替控制相应的电路工作,形成产生控制红光、红外光发光的时序信号。

上图中下方标有(3)的部分是同步解调放大电路。负责将两路微弱的脉搏信号从干扰信号中检测出来,将信号同步解调还原,再从中分离出交流信号AC,直流信号DC和放大滤波到一定数值,提供

给计算机进行模数转换及处理。图中AD7是直流信号,AD6是交流信号。为了避免AD6出现负信号,在交流信号通道中,设有基准电平调整电路。

三、实验步骤和测试结果

图2.72 血氧饱和度测试电路布局图

1、将血

氧模板固定于主板上方,但模板上方的26芯插座(J5)与主板的26芯插座(J2)不连接。

图2.73 血氧探头驱动电路布局图

用连接线将模板PC4插孔及+5VA插孔与主板右侧的4.05V插孔相连。使模板获得电源,同时用连接线将模板右侧GND插孔与主板GND插孔相连,将模板下部GND插孔与PC5插孔相连。

装上血氧探头,取下短路器J7,使其开路。开启主板电源,用电流表测量I2(1)插孔与I2(2)插孔之间的电流,上面插孔I2(1)为正端,应为10mA左右,如果偏离,调整RW10。调整以后拔除连接线,插上J7。

用连接线将PC5插孔与主板左侧的4.05V插孔相连,同时用连接线将模板右侧GND插孔与主板GND插孔相连,模板的下部GND孔与PC4插孔相连。

取下短路器J6,使其开路。开启主板电源,用电流表测量I1(1)插孔与I1(2)插孔之间的电流,上面插孔I1(1)为正端,应为10mA左右,如果偏离,调整RW11。调整以后拔除连接线,插上J6。

2、断开电源,将模板J5与主板J2用扁平线相连,PC4接+5VA,PC5接GND。接通电源。

图2.74交直流信号调理电路布局图

将食指或中指放入血氧探头,用示波器观察V4输出,应有波形出现,其峰—峰值应为4V左右。如果不是,调整RW9,一般RW9阻值在 30K-35K范围,可用万用表测量,测量方法将表笔放入连接RW9两端标注为1和2的两个插孔。然后观测VAC波形,其基准应在0V以上,以适应A/D转换的需要,幅度为0~4.5V,若不符合,调整RW7,一般RW7的2与1之间电阻为6K左右,2与3之间电阻为4K左右。测量RW7须将模板与主板连接断开。

3、将手指放入血氧探头,用示波器观察VDC波形,调节RW8,使幅值为2.0V左右的直流信号,如前所述,这是从探头的输出信号中分离出来的直流分量,如果幅值过大或过小,可调整放大器的反馈电阻RW8,一般,RW8阻值在 4.5K~5.5K 之间。可预先调好,调整RW8的方法与RW9类似。

4、拔除PC4,PC5上的连线。在实验箱主板USB指示灯亮的情况下,点击计算机主菜单“血氧

饱和度实验”按钮进入血氧饱和度测试,显示如下:

图 2.75

5、测试者将探头夹住手指,不要说话、动作,在实验箱主板USB指示灯亮的情况下,点击“测试”按钮,血氧饱和度测试开始,此时从探头采集到的波形显示在屏幕上,其中显示的曲线分别为透射过来的红光波形和红外光波形。左边数码管显示血氧饱和度,右边数码管显示心率,且实时刷新。如下图所示:

此处插入测试图片

图 2.76

6、当显示的波形符合脉搏波形,可以点击“停止”按钮,此时屏幕上的波形停止滚动,显示当前的波形和当前的血氧饱和度及心率,若再点击“测试”按钮则继续测试,如下图所示:

此处插入测试图片

图 2.77

7、保存测试波形的方法:当测试结束(即点击“停止”按钮后,波形显示不再变化),点击“保存”按钮将测试的数据保存为文本文件,测试的波形将保存为“*.SP0”格式或者“*.txt”的文件。学生可在老师指导下编写计算机程序,调用文本文件。

8、点击“打开”按钮可以打开已保存的文件,方法如下:

图 2.78

例如:选择zq.SP0文件,打开后显示界面如下:

此处插入图片

图 2.79

9、实验完毕,插线除去。

四、实验总结

(1)实验原理总结

(2)实验过程总结

(3)实验心得与创新性设想

实验二脉搏波波速测试仪设计实验

一. 实验目的

1、了解脉搏波波速的测量意义和原理。

2、掌握脉搏波波速的测量方法。

二.实验的意义和原理

1、测量脉搏波波速的意义

心脑血管疾病是导致死亡的主要疾病之一,心脑血管疾病发病的主要原因与动脉的病

变有关,动脉病变是心脑血管疾病的病理基础。目前治疗的手段与方法中往往忽视了病变的关键——血管壁的改变,随着对心血管病变的研究逐渐深入,人们意识到血管壁的病变是各种心血管事件发生的基础。我们知道动脉弹性的改变早于结构改变,早期发现和干预血管病变的进展是延缓和控制心血管事件的根本措施,有研究表明,大动脉功能和结构的损害,是导致早期血管改变,发生包括高血压在内的许多心血管病的危险因素,而动脉僵硬度已被认为是心血管病独立的危险因子,已经成为研究的热点课题。

截止目前,用于评价大动脉的结构和功能的方法已有很多。如血管造影或其它成像技术等有创方法可精确评价动脉管腔或分心动脉壁结构,但是这些方法由于操作复杂、费用高昂,需要非常精密的设备,限制了其在临床中的应用;另外,还有一些无创检测方法,如超声技术(高分辨率超声、超声多普勒、超声示踪)和计算机分析图象信号和(或)超声信号,来研究某些动脉轴和位点的功能和结构,这些相对复杂的技术仅用于某些实验室。在无创方法中,脉搏波速度(PWV)的测定已经在较长的时间内广泛用于评价动脉壁扩张性和硬度的一种有效手段。该方法无创伤、操作简单、结果准确、重复性好,可广泛用于临床治疗和流行病学的研究,并且,该方法非常适合于家庭使用和社区医疗服务推广应用。作为判定心血管疾病的重要依据。

2、脉搏波波速与血管性能

健康人的血管是一个弹性腔,在每个心动周期中, 动脉内的压力及血管的充盈程度发生周期性的变化, 这种周期性变化不停地向外周血管传播。用压力传感器可以记录到表浅动脉的搏动,从而得到压力脉搏波。图2.80所示为压力传感器测得的桡动脉脉搏波,图中各个特征点的生理学意义分别为:a波:心房收缩波;b点:主动脉开放点;c点:主动脉压力最高点;d点:主动脉弹性扩张降压点;e点:左心射血停止点;e1点:左心舒张开始点;f 点:二尖瓣开放点。

图2.80

心室射血产生的压力波动沿动脉树传播,速度由动脉壁的弹性和几何性质及所含液体的特征(密度)决定。由于血液是含在弹性管道(动脉血管)中的不可压缩的液体,能量传播主要发生在动脉壁上而不是通过血液进行,因此动脉壁的性质、厚度和动脉腔径是影响脉搏波传导速度(PWV)的主要因素。事实上,已经证实弹性管道中的PWV与管壁弹性相关。

若血管出现了硬化现象,则血流的速度会加快。硬化程度越高,速度越快。通过分析两个不同地方的脉搏波的波形信息,可以得出两路波形的时间差,再测量出两个测量点之间的距离,就可以得到血流的速度。例如,上臂至心脏及踝关节到心脏动脉间的脉搏传播速度(baPWV),其标准是1400cm/S ,数值越高,大脑、心血管疾病的发病风险越大。测量方法是:首先同步检测上肢与脚踝部位的脉搏波,记录波形图,得出两个相同点上波形的延迟时间,并测出血管长度,利用公式baPWV=

时间

血管长度

来计算波速。

3、脉搏传感器

脉搏传感器采用了半导体应变片式压力传感器,它的感压结构采用带波纹的金属-橡胶膜片,这种特殊结构可尽量增加其位移/ 压力比;检测探头设计了一个液囊耦合腔,它不仅可以调节传感器的阻尼比,而且还可作为脉波信号传递的匹配介质,这样的设计可获得比较理想的动态特性。测量时,通过对传感器施加一定的预压力来获取被测点的脉搏波。

4、电路实现原理

由前置放大器、信号调理电路(滤波、放大)、A/D 转换电路等组成,单片机在程序控制下进行两路脉搏波同步采样;将其转换成数字量后由单片机通过USB 接口将脉搏波数据传送到计算机。经过以上的处理可得到完整性好、失真小、基线稳定、振幅适中的脉搏波形,专家系统根据输入的两个脉搏波测量点之间的距离、其他生理参数(血压、身高、体重)及脉搏波参数数据库中的数据,对人体动脉硬化程度进行检测,同时对其他心血管疾病做出诊断。在做出诊断的同时,能给用户提出相应的治疗和预防措施,得出所需要的结果。

图2。81 脉搏波波速测试电路原理图

5 PWV 的计算方法

本系统中利用压力传感器同时测量人体手腕动脉和脚腕动脉两个不同的脉搏波,将数据传送给计算机,计算机经过上述一系列处理然后,得到两路脉搏波波形的特征点。通过统计分析两组波形相邻最低点的时间差,如图2。82,便可以得到两路脉搏波传播的时间差△t ,然后分别测量出心脏到手腕测量点的距离La 和心脏到脚腕动脉测量点的距离Lb 输入计算机,脉搏波波速可计算为:

Lb La

PWV t

-=

? 上面求出的PWV 主要反应了脉搏波在下肢动脉血管中的传播速度,本系统中也是利用该PWV 来诊断动脉硬化,因此,主要反应了下肢主动脉的动脉硬化程度。使用者也可以测量其他任意一段动脉血管中脉搏波的传导速度,并可以记录每次测量的结果,通过系统给出的变化趋势图,能够很清楚的看出该段动脉血管的弹性变化情况。在测量时,测量点的选择要注意:测量点的脉搏要强烈并且在体表就能感觉到;两个测量点要有一定落差,身体左右部分同等高度的位置不要同时测量,比如说同时测量左右手腕的桡动脉,因为实际上从心脏到该点的距离是相等的,测出的PWV 接近于零。

图2。82 两路脉搏波波形三、实验步骤与实验结果

图2.83 脉搏波波速测试电路布局图

1.将脉搏波模板固定于主板上方,但模板上方的26芯插座(J5)与主板的26芯插座(J2)不连接。用万用表测量RW7-RW10的阻值,应符合以下数值。RW7,RW9为6.5K左右,RW8,RW10在7K-8K之间。

图2.84 放大增益电位器布局图

调整方法为:虚线位置不插信号连接线,用万用表笔插在对应的1和2两个信号连接

孔进行测量。

图2.85 基线调整电位器布局图

同样,调整方法为:虚线位置不插信号连接线,用万用表笔插在对应的1和2两个信

号连接孔进行测量。

2.电位器阻值调整好以后,用信号连接线将虚线所示连接起来。并将模板与主板连接起来,

开启主板电源。

图2.86 脉搏波波速测试电路布局图

插入两个传感器,这时用示波器观察PW1Vc 和PW2Vc 点波形,可以看见是一条直线,即基线,基线波形幅度应为1.5V 左右,如果过小,调整RW8和RW10。两路测试电路是完全对称的,其对应点的波形应完全一样。将主板与计算机相连,在实验箱USB 指示灯亮的情况下,点击菜单上的“脉搏波速实验”按钮进入脉搏波速测试,显示如下:

图 2.87

3.测试者坐在椅子上,将sensor1(左边)探头用绑带绑在手腕部,sensor2(右边)探头用绑带绑

在脚腕部,不要说话、动作,在实验箱USB指示灯亮的情况下,点击“测试”按钮,脉搏波速测试开始,此时从探头采集到的波形显示在屏幕上,其中显示的蓝色和绿色曲线分别为手腕动脉脉搏波,脚腕动脉脉搏波。如下图所示:

此处插入图片

图 2.88

4、当显示的波形符合脉搏波形,可以点击“停止”按钮,此时屏幕上的波形停止刷新,请等

待数秒显示当前的波形,通过点击“测试”按钮继续测试,如下图所示:

此处插入图片

图 2.89

5、点击“计算”按钮可以计算脉搏波速,提示您:“您是否已经输入个人信息?选是则继续计

算,选否则重新输入。”如下图所示:

此处插入图片

图 2.90

选“是”则用您早前输入的人体信息参与计算脉搏波速,显示如下:

此处插入图片

图 2.91

选“否”则重新输入人体信息后计算脉搏波速,如下图所示:

图 2.92

6、可以手动取点来计算脉搏波速:在打开脉搏波速文件或停止测试后,界面上显示脉搏波形时,先选中一部分波形将之放大,左键单击上图蓝色的波形,自左向右,自上而下的拖动鼠标至下图绿色的波形上,此时出现虚线的窗口,如下图所示:

放开左键,则窗口中显示您选中的放大后的部分波形,显示如下:

如若重新选择要放大的波形,则右键点击上图的波形出现菜单:“清除描点”,之后重新选

择波形,或者直接在波形的其他区域内选择,显示如下:

图 2.95

在放大的波形窗口中,左键单击蓝色波形窗口,出现蓝色的虚线,该线则为您选中的波形起始处,可单击其他点来最终确认波形起始点;左键单击绿色波形窗口,用同样的方法确定波形起始点,该线为绿色的虚线,显示如下:

右键点击原始的波形窗口出现菜单:“计算”,显示如下:

提示您:“您是否已经输入个人信息?选是则继续计算,选否则重新输入。”如下图所示:

血氧饱和度测量仪的设计要点

血氧饱和度测量仪 的设计

目录 摘要 (3) 第一章绪论 (4) 1.1血氧饱和度的基本概念 (4) 1.2血氧饱和度测量仪课程设计的意义 (3) 1.3血氧饱和度测量仪课程设计的技术要求 (4) 1.4基本步骤 (5) 1.4.1 理论依据 (5) 1.4.2 硬件电路的设计 (6) 1.4.3 软件设计 (6) 1.4.4 仿真及数值定标 (6) 第二章实验方案设计及论证 (6) 2.1 设计理论依据 (6) 2.2. 双波长法的概念 (6) 2.3 光电脉搏传感器 (7) 2.4 传感器可能受到的干扰 (9) 2.5实验方案设计 (10) 第三章硬件电路的设计 (10) 3.1硬件原理框图 (10) 3.2各部分电路的设计 (11) 第四章软件模块设计 (13) 4.1主程序流程图 (14) 4.2子程序流程图 (14) 4.3硬件调试 (16) 第五章设计收获及心得体会 (17) 第六章参考文献 (19) 附录程序清单 (20)

摘要 氧是维持人体组织细胞正常功能,生命活动的基础。人体的绝大多数组织细胞的能量装换均需要氧的参加。所以,实时监护人体组织中氧的代谢具有重要的意义。 人体的新陈代谢过程是生物氧化过程。氧通过呼吸系统进入人体血液,与血液红细胞中的血红蛋白(Hb)结合成氧合血红蛋白(2HbO ),再输送到人体各部分组织细胞中去。在全部血液中,被氧结合的2HbO 容量占全部可结合容量的百分比称为血氧饱和度2O Sa 。许多临床疾病会造成氧供给的缺乏,这将直接影响细胞的正常新陈代谢,严重的还会威胁人的生命,所以动脉血氧浓度即2O Sa 。 的实时监测在临床救护中非常重要。 在本次关于血氧饱和度测量仪的设计中,是基于MCS —51单片机的设计,需要选测合适的光电脉搏传感器采集数据,并利用4为LED 数码显示测量值,利用键盘切换显示脉搏跳动的频率。 关键词:51单片机 血氧饱和度 比尔—朗伯定理

血氧仪的测试原理

血红蛋白是血细胞的重要组成部分,它负责将氧气从肺部输送到身体的其它组织。血红蛋白在任一时刻所含的氧气量被称为血氧饱和度(即SpO2)。血氧饱和度是反映人体呼吸功能及氧含量是否正常的重要生理参数,它是显示我们人体各组织是否健康的一个重要生理参数。严重缺氧会直接导窒息、休克、死亡等悲剧的发生。 在肺部,氧气附着在受红细胞约束的蛋白质上,称为血色素(符号Hb),血液中的血色素有两种形态:氧合血红蛋白(HbO2)和还原血红蛋白(Hb),则 血氧饱和度SpO2= (HbO2x100)/( HbO2+Hb)x100% 血氧仪的测试原理是:氧合血红蛋白和还原血红蛋白在可见光和接近红外线的频谱范围内具有不同的吸收特性,还原血红蛋白吸收较多的红色频率光线,吸收较少的红外频率光线;而氧合血红蛋白吸收较少的红色频率光线,吸收较多的红外频率光线。这个区别是SpO2测量系统的最基本依据。 为测量人体对红光和红外光线的吸收。红色和红外线发光二极管位置相互靠得尽可能近,发射的光线可透过人体内的单组织点。先由响应红色和红外光线的单个光电二极管接收光线,然后由互阻放大器产生正比于接收光强的电压。红色和红外LED通常采用时间复用的方式,因此相互间不会干扰。环境光线经估计将从每个红色和红外光线中扣除。测量点包括手指、脚趾和耳垂。 脉搏血氧仪提供了以无创方式测量血氧饱和度或动脉血红蛋白饱和度的方法。脉搏血氧仪的工作原理基于动脉搏动期间光吸收量的变化。分别位于可见红光光谱(660纳米)和红外光谱(940纳米)的两个光源交替照射被测试区(一般为指尖或耳垂)。在这些脉动期间所吸收的光量与血液中的氧含量有关。微处理器计算所吸收的这两种光谱的比率,并将结果与存在存储器里的饱和度数值表进行比较,从而得出血氧饱和度。 典型的血氧仪传感器有一对LED,它们通过病人身体的半透明部位(通常是指尖或耳垂)正对着一个光电二极管。其中一个LED是红光的,波长为660nm;另一个是红外线的,波长是940nm。血氧的百分比是根据测量这两个具有不同吸收率的波长的光通过身体后计算出的。 图1:基于ADI的ADuC7024的血氧仪电路框图。

血氧饱和度模拟仪的工作原理和技术指标

血氧饱和度模拟仪工作原理和技术指标 郑州市先达电子技术有限公司 一、LFIG-2血氧饱和度模拟仪的工作原理 LFIG-2血氧饱和度模拟仪(图左侧)的光学模拟指(图中间)被脉搏血氧仪(图右侧)的血氧指夹(图中间)夹住后,就接收到了血氧仪发出的红光脉冲和红外脉冲,并将其转化为电脉冲,然后再把预存的标准的人体血氧饱和度R曲线数据加载上去,形成电调制信号,这个信号通过发光管把它变成光调制信号并输出。血氧仪接收到这个包含血氧饱和度信息的光调制信号后,进行了测量和计算,最终得到了血氧饱和度的测量值。这样我们既有血氧饱和度的标准值,也有血氧饱和度值的测量,二者数值比相比较即可得到血氧仪的测量误差。 依据JJF1542-2015《血氧饱和度模拟仪》校准规范,利用当今领先的ARM微处理器、现代光电技术和模拟数字混合技术,我们成功研制了了LFIG-2血氧饱和度模拟仪(或称脉搏血氧饱和度模拟仪,简称血氧模拟仪)。LFIG-2血氧饱和度模拟仪能提供血氧模拟,报警测试等检测项目,这为计量检测部门、生产厂家和医院等单位对脉搏血氧仪进行检定和校验提供了质优价优的技术保障。 LFIG-2血氧饱和度模拟仪也符合JJG1163-2019《多参数监护仪》检定规程中对血氧部分的技术要求,可对多参数监护仪的血氧模块进行检定。 二、LFIG-2血氧饱和度模拟仪的技术指标 1、血氧饱和度范围:30%~100%, 分辨力(或步长): 1 %, 重复性: 1 %, 最大允许误差:±2%,在75%~100%范围;

±3%,在30%~ 74%范围。 2、脉率范围:20~300次/分, 分辨力(或步长): 1次/分, 最大允许误差:±1次/分。 3、脉搏信号幅度范围:0~20%, 分辨力(或步长):0.01%。 4、传输控制(或手指模拟):深色手指、胖手指、中等手指、浅色手指、瘦手指、新生儿脚趾。 5、具有10种预装R曲线如BCI、 Nellcor、Masimo、HP (Philips)、 OxiMax 和Ohmeda等。具有10种自创建R曲线如Mindray。 6、具有8种预设的病态血氧饱和度模拟。 7、可模拟50Hz/60Hz和阳光环境下的光干扰。 三、LFIG-2血氧饱和度模拟仪产品特点 1、采用彩色液晶显示,采用触摸屏和物理按键双操作,用户界面友好。 2、具有光学模拟手指,可方便连接各种脉搏血氧仪。 3、具有接收红光和红外光强指示功能。 4、具有血氧、脉率、脉幅和无脉搏报警测试功能。 5、具有10种可编程自动测试程序。 6、仪器内部自带锂电池,轻巧耐用,方便现场检定。采用低功耗设计,续 航能力强。 7、符合JJF1542-2015《血氧饱和度模拟仪》校准规范。 8、符合JJG1163-2019《多参数监护仪》规程中脉搏血氧部分的技术要求。

血氧饱和度监护仪产品技术要求mairui

2性能指标 2.1安全 a)应满足《GB 9706.1-2007 医用电气设备第1 部分:安全通用要求》的要求。 b)应满足《YY 0709-2009 医用电气设备第1-8 部分:安全通用要求并列标准:通 用要求医用电气设备和医用电气系统中报警系统的测试和指南》的要求。 c)应满足《YY 0784-2010 医用电气设备医用脉搏血氧仪设备基本安全和主要性能专 用要求》的要求。 2.2电磁兼容性 a)应满足《YY 0505-2012 医用电气设备第1-2 部分:安全通用要求并列标准:电磁 兼容要求和试验》的要求; b)应满足YY 0784-2010 的要求; c)传导发射应满足GB 4824-2013 中1 组B 类的要求; d)辐射发射应满足GB 4824-2013 中1 组B 类的要求。 2.3监护参数 2.3.1应满足YY 0784-2010 的要求。 2.3.2血氧饱和度参数 测量范围应为:0%~100%; a) 在70%~100%范围内,测量精度为±2%(成人); b) 在0%~69%范围内,测量误差不予定义; c)分辨率:1%。 2.3.3脉率参数 测量范围应为:20 bpm~300bpm,测量精度为±3 bpm,分辨率:1 bpm。 2.3.4报警设置范围及报警误差 a)提供脉搏血氧饱和度和脉率上限与下限报警; b)脉搏血氧饱和度上限报警设置范围:(脉搏血氧饱和度下限+1%)~100%; c)脉搏血氧饱和度下限报警设置范围:50%~(脉搏血氧饱和度上限-1%); d)报警误差为设置值的±1%。 e)脉率上限报警设置范围:(下限+1 bpm)~300 bpm;

反射式血氧饱和度测试仪的设计

科技信息 1、前言 无创伤血氧饱和度检测已经广泛应用于临床患者的监护和手术中 的麻醉监护。随着人们健康意识的不断提高,日常的健康监护、康复监 护甚至有些运动员的体征检测和在高危环境下作业人员的体征检测都 需要用到血氧饱和度数据。所以血氧饱和度的研究具有广泛的研究价 值和应运前景。目前在临床上我们广泛使用的血氧饱和度检测工具基 本上都是生命参数测试仪,这类仪器体积庞大携带不方便而且需要固 定电源,虽然这些年也出现了大量便携式的透射光法血氧计,并且技术 已经相对成熟,国内外很多研究机构都对其软件和硬件做了充分的探 讨,并且已经出现大量成熟的产品,但由于透射式血氧饱和度测试仪一 般只能夹在手指上,测试位置比较单一,不能测试人体多个位置的血氧 饱和度甚至很多时候都会影响到被测试者的日常活动,很不方便。根 据这些局限我们设计出了一种基于Zigbee的反射式血氧饱和度测试 仪,并对以往的透射式的血氧饱和度测试仪电路进行了改进,使电路更 简单,功耗更小,并通过Zigbee网络使血氧饱和度数据能够实现无线数 据传输和远程监护的目的。 2、反射式血氧饱和度的检测原理 透射式血氧饱和度检测中,光检测器与发光二极管分别置于被检 测部位的两侧,通过发光二极管发出的光透过人体组织然后被光检测 器接收,通过接收到的光强度来计算血氧饱和度值。而反射式血氧饱 和度检测仪的光检测器和发光二极管是在同一侧的,光波在通过人体 组织时除了一部分被人体组织吸收以外,还会有另外一部分散射出 来。根据光的传播理论,光子的传播可用组织光学特性参数来描述,这 些特性参数定量的描述了组织光学效应。反射式血氧饱和度检测仪就 是通过这部分散射光对血氧饱和度进行计算的,反射式血氧饱和度检 测原理如图1所示: 图1反射式血氧饱和度检测原理 由于透射式和反射式都是利用人体对于光的吸收和未吸收量的比 例来计算人体血氧饱和度值的,所以本质上没有太大差别,根据Lan- bert—Beer定律我们得到的透射式血氧饱和度计算公式在原理上与反 射式的推导公式是相同的。所以根据透射光推导方式同样可以得到反 射式血氧饱和度的计算公式,反射式血氧饱和度的计算公式如式(1)所 示: SpO2=A-B?I λ1 AC /Iλ1DC I2AC/I2DC (1) 3、反射式血氧饱和度检测仪的硬件设计 基于微型化、低功耗、便携式和网络化的要求我们设计的反射式血氧饱和度检测仪采用CC2530芯片作为检测仪的主控芯片,它主要具有数据采集和处理,功耗控制,无线数据传输和组网的功能。为了使检测仪更微型化,电路更加简单,准确性更高我们放弃了传统的光电接收器而采用数字光频转换接收器,这样省去了大量的模拟器件,使电路大大简化,并且数字化的信号采集器件使得信号受到的电磁干扰更少,可靠性得到了提高。整个系统主要包括电源管理电路,反射式血氧探头,探头驱动电路,自动增益控制电路,Zigbee无线发送模块等,其系统框架如图2所示: 图2反射式血氧饱和度检测仪结构框图 3.1反射式探头的设计 发光管我们采用常用的血氧饱和度发光管,光接收器采用的是TSL235光频转换器,它是一种高度集成的器件,内部包含了光电二极管、放大器、限幅器、积分电路、带通滤波器、比较器等,它可以直接将光信号转换成频率信号输出,与传统的光信号采集电路相比省去了放大滤波等电路,使电路得到了很大的简化,并且可靠性得到了进一步的提高,有利于小型化和低功耗的设计。TSL235光频转化在600nm到900nm光频范围内的响应率相对较高很适合应用到血氧饱和度的采集中。 3.2LED驱动电路的设计 LED驱动电路作为血氧饱和度测试仪的重要组成部分,驱动电路的设计对于整个系统的工作性能有很大的影响。为了使系统达到微型化和低功耗的目的,我们要使电路尽量的简单和使用低功耗的器件。此处我们采用660nm和905nm双波长的LED灯,两个波长的LED灯交替发光。并且在此驱动电路中我们加入了自动增益控制模块,能根据不同的测试者自动的调节发射光强度,使其达到最适合血氧饱和度测量的条件,并且可以使LED灯消耗的能量达到最小,节省了功耗。驱动电路如图3所示: 图3红光、红外光驱动电路 3.3无线收发模块 本检测仪的设计是基于Zigbee网络的,所以具有组成Zigbee网络的能力,网络化是该检测仪的最大特点。在设计中我们采用CC2530芯片作为主控芯片,它包含了一个增强型工业标准的8051内核为系统提供数据处理,自动增益控制,驱动控制等功能,并且还包含一颗CC2530射频收发器,其工作频率范围为2.4-2.4835GHz,采用IEEE802.15.4规范要求的直接序列扩频方式,采用O-QPSK调制方式,灵敏度达到-94dBm。这样使系统具有很高集成度的同时也使系统的功耗得到 反射式血氧饱和度测试仪的设计 重庆邮电大学生物医学工程研究中心李章勇刘亚东姜瑜王伟 [摘要]反射式血氧饱和度测试仪是利用人体血液对特定波长光的吸收强度的关系结合扩散传输理论得出反射式血氧饱和度的计算公式,据此研究出一种基于Zigbee网络的血氧饱和度检测系统。本文通过硬件和软件的改进大大降低了系统的功耗,并且通过加入相应的滤波算法,使得系统在简单电路下便能达到理想的滤波效果。最后通过对Zigbee网络的应用使得本文设计的反射式血氧饱和度的应用范围得到了进一步的扩展。 [关键词]反射式血氧饱和度低功耗Zigbee CC2530 基金项目:本文受工信部重大项目(2011)353和重庆市教委KJ100502项目支持。 — —75

人体组织血氧饱和度绝对量检测设备及其方法的制作方法

图片简介: 本技术提供一种人体组织血氧饱和度绝对量检测装置,包括电源模块、采集控制模块、光源驱动模块、探测机构以及放大/滤波模块,其中:该电源模块与采集控制模块电性连接;该采集控制模块与该光源驱动模块电性导通并包括光源选择计数器、同步触发器、多路开关A/D转换器以及数据处理器;该光源驱动模块连接并驱动所述探测机构以及该探测机构经所述放大/滤波模块与该采集控制模块电性导通,藉由前述结构或其构造的结合,实现了该检测装置,从而达成了血氧饱和度的绝对值检测、无创测量以及实时、便携、造价低廉以及使用快速、测量准确的良好效果。 技术要求 1.一种人体组织血氧饱和度绝对量检测装置,包括电源模块、采集控制模块、光源驱动模块、探测机构以及放大/滤波模块,其特征在于:该电源模块与采集控制模块电性连接; 该采集控制模块与该光源驱动模块电性导通并包括光源选择计数器、同步触发器、多路 开关A/D转换器以及数据处理器;该光源驱动模块连接并驱动所述探测机构以及该探测机构经所述放大/滤波模块与该采集控制模块电性导通。 2.如权利要求1所述人体组织血氧饱和度绝对量检测装置,其特征在于:所述探测机构包括光源及若干光敏传感器。

个至少可发出三个波长近红外光的LED灯组成,其中单一LED灯配套2组光敏传感器并呈三角状布设。 4.如权利要求2所述人体组织血氧饱和度绝对量检测装置,其特征在于:所述光源为若干个至少可发出三个波长近红外光的LED灯组成,其中单一LED灯配套4组光敏传感器并呈X 状布设。 5.如权利要求1所述人体组织血氧饱和度绝对量检测装置,其特征在于:所述光源选择计数器、同步触发器、多路开关A/D转换器以及数据处理器通过电路集成一体,其中该光源选择计数器和该同步触发器分别与所述光源驱动模块电性导通并向该光源驱动模块传递指令信号;所述多路开关A/D转换器与所述放大/滤波模块电性连接并接受该放大/滤波模块传递的信号。 6.如权利要求1所述人体组织血氧饱和度绝对量检测装置,其特征在于:该检测装置进一步包括记忆/显示单元,该记忆/显示单元连通所述采集控制模块并包括储存模块和显示模块。 7.如权利要求1所述人体组织血氧饱和度绝对量检测装置,其特征在于:所述采集控制模块还包括与电脑导通的连接端口。 8.一种适于如权利要求1所述人体组织血氧饱和度绝对量检测装置的方法,包括将该探测机构附着于人体被检测部位,所述光源照射到人体皮层上,由所述光敏传感器探测经过人体皮层反射回来的光强信号的变化,从而间接地反映出人体血氧饱和度的的状况,其特征在于,该方法包括的步骤是:所述探测机构是以柔性带状组件为载体,并以阵列形式布设光源及光敏传感器于该柔性带状组件上;由光驱动模块控制探测机构的光源并由光敏传感器同步采集局部血氧饱和度绝对量检测的光强信号,经放大/滤波模块输入到采集控制模块,通过采集控制模块的数据处理器运算,得出可识别的数据参数并导入至记忆/显示单元。

血氧饱和度测量仪的设计

血氧饱和度测量仪的设计

血氧饱和度测量仪 的设计

目录 摘要 (3) 第一章绪论 (4) 1.1血氧饱和度的基本概念 (4) 1.2血氧饱和度测量仪课程设计的意

义 (3) 1.3血氧饱和度测量仪课程设计的技术要求 (4) 1.4基本步骤 (5) 1.4.1理论依据 (5) 1.4.2硬件电路的设计 (6) 1.4.3软件设计 (6) 1.4.4仿真及数值定标 (6) 第二章实验方案设计及论证 (6)

2.1设计理论依据 (6) 2.2.双波长法的概念 (6) 2.3光电脉搏传感器 (7) 2.4传感器可能受到的干扰 (9) 2.5实验方案设计 (10) 第三章硬件电路的设计 (10) 3.1硬件原理框图 (10) 3.2各部分电路的设

计....................................................................................1 1 第四章软件模块设计.......................................................................................1 3 4.1主程序流程图..........................................................................................1 4 4.2子程序流程图..........................................................................................1 4 4.3硬件调试 (16) 第五章设计收获及心得体会 (17) 第六章参考文献 (19) 附录程序清单…………………………………………………

心电、脉搏血氧饱和度(SpO2)监测技术操作流程

心电、脉搏血氧饱和度(S p O2)监测技术操作流程 1、操作者着装整齐、洗手、戴手套。 2、环境评估: 1)、操作者用手势示意(关闭门窗,遮挡病人)。 2)、大声说:“病房安静、室温22℃!” 3、病情判断、解释: 1)、核对病人,评估病情。大声说:_床×××,_疾病(疾病诊断),根据病情需要安置心电监护! 2)、上前小声对病人说:您好,请问您是_床×××吗?我是X护士,根据您的病情需要观察您的心电变化和机体组织缺氧状况,现在为您进行心电监护,这项操作没有什么痛苦,请您不要紧张,请您配合! 4、准备病人: 1)、病人取水平仰卧位。 2)、解开衣扣,暴露胸部。 3)、清洁皮肤。 4)、同时使用安慰用语:“现在请您放松,平卧,我要在您的皮肤上贴上电极板。现在我帮您解开衣扣清洁皮肤,可能感觉有点凉,请不要紧张。” 5、连接: 1)、接通电源。 2)、开机,进入备用状态。 3)、将连接好导联线的5个电极板贴到病人胸壁的相应部位上。 RA(白色):右锁骨中线锁骨下 LA(黑色):左锁骨中线锁骨下 LL(红色):胸骨左缘左锁骨中线第六肋间 RL(绿色):胸骨右缘右锁骨中线第六肋间 Y(棕色):剑突下方偏左心前区) 4)、将血氧饱和度导线与多功能参数监护仪相连接。 协助病人整理好上衣,盖好被子。 6、报告监护参数: 1)、监测心率: a、选择清楚的Ⅱ导联。 b、显示屏上出现心电图波,示窦性心律,律齐,心率110次/min。 c、大声说:心率110次/min! 2)、监测血压: a、缠绕血压袖带。 b、告知用语:现在为您测量血压,测量时会感觉上臂发紧,请你不要紧张。 c、启动无创测压键,测量首次血压。 d、显示屏上显示血压为110/70mmHg。 e、大声说:血压为110/70mmHg! 3)、监测S p O2: a、确认传感器性能(将探头夹在自己手指上,确认正常数值处于96%~98%)。 b、清洁指甲,把探头安放在患者左手示指上,指夹完全夹住左手示指末端,

血氧饱和度测量仪的设计

' 血氧饱和度测量仪 的设计 " $ >

目录 摘要 (3) ~ 第一章绪论 (4) 血氧饱和度的基本概念 (4) 血氧饱和度测量仪课程设计的意义 (3) 血氧饱和度测量仪课程设计的技术要求 (4) 基本步骤 (5) 理论依据 (5) 硬件电路的设计 (6) 软件设计 (6) - 仿真及数值定标 (6) 第二章实验方案设计及论证 (6) 设计理论依据 (6) . 双波长法的概念 (6) 光电脉搏传感器 (7) 传感器可能受到的干扰 (9) 实验方案设计 (10) 第三章硬件电路的设计 (10) ( 硬件原理框图 (10) 各部分电路的设计 (11) 第四章软件模块设计 (13) 主程序流程图 (14) 子程序流程图 (14) 硬件调试 (16) 第五章设计收获及心得体会 (17) 第六章参考文献 (19) ? 附录程序清单 (20) ^

) 摘要 氧是维持人体组织细胞正常功能,生命活动的基础。人体的绝大多数组织细胞的能量装换均需要氧的参加。所以,实时监护人体组织中氧的代谢具有重要的意义。 人体的新陈代谢过程是生物氧化过程。氧通过呼吸系统进入人体血液,与血液红细胞中的血红蛋白(Hb)结合成氧合血红蛋白(2HbO ),再输送到人体各部分组织细胞中去。在全部血液中,被氧结合的2HbO 容量占全部可结合容量的百分比称为血氧饱和度2O Sa 。许多临床疾病会造成氧供给的缺乏,这将直接影响细胞的正常新陈代谢,严重的还会威胁人的生命,所以动脉血氧浓度即2O Sa 。 的实时监测在临床救护中非常重要。 在本次关于血氧饱和度测量仪的设计中,是基于MCS —51单片机的设计,需要选测合适的光电脉搏传感器采集数据,并利用4为LED 数码显示测量值,利用键盘切换显示脉搏跳动的频率。 关键词:51单片机 血氧饱和度 比尔—朗伯定理 %

心电监护仪——血氧饱和度监测的注意事项

心电监护仪——血氧饱和度监测的注意事项 一、血氧饱和度的定义 血氧饱和度(SpO2)是血液中被氧结合的氧合血红蛋白(HbO2)的容量占全部可结合的血红蛋白(Hb)容量的百分比,即血液中血氧的浓度,它是呼吸循环的重要生理参数。常用动脉血氧定量技术,它测定的是从传感器光源一方发射的光线有多少穿过患者组织到达另一方接收器,这是一种无创伤测定血氧饱和度的方法。血氧饱和度读数变化是报告患者缺氧最及时、最迅速的警告。计算公式如下:SpO2 = HbO2/(HbO2+Hb)×100%。氧饱的正常值为95%-100%,氧饱与氧分压直接相关。 二、血氧饱和度的测定方法 血氧饱和度的测量通常分为电化学法和光学法两类。 1、电化学法即行人体采动脉血,再用血气分析仪测出血氧饱和度值,这是一种有创的测量方法,且不能进行连续的监测。 2、光学测量法是采用光电传感器的无创方法,是基于动脉血液对光的吸收量随动脉搏动而变化的原理进行测量的,该方法使用最多的就是脉搏血氧饱和度仪。仪器探头的一侧安装了两个发光管,分别发出红光和红外光,另一侧安装一个光电检测器,将检测到的透过手指动脉血管的红光和红外光转换成电信号。由于皮肤、肌肉、脂肪、静脉血、色素和骨头等对这两种光的吸收系数是恒定的,只有动脉血流中的HbO2和Hb浓度随着血液的动脉周期性的变化,从而引起光电检测器输出的信号强度随之周期性变化,将这些周期性变化的信号进行处理,就可测出对应的血氧饱和度,同时也计算出脉率。 三、SpO2报警值的设置 SpO2正常值,吸空气时SpO2测得值≥95%~97%。低氧血症:SpO2<95%者为去氧饱和血症,SpO2<90%为轻度低氧血症,SpO2<85%为重度低氧血症。一般报警低限的设置应高于90%。 四、血氧饱和度监测中的常见问题 1、信号跟踪到脉搏,屏幕上无氧饱和度和脉率值。

脉搏血氧饱和度

脉搏血氧饱和度的测量 一、测量值:脉搏血氧饱和度、脉率 二、测量原理:以两路光线(红光vs,红外光ir)高频交替照射被测部位,两路透射光经光电转换得到两路变化的光电流信号,两路光电流信号经过放大、去直流、去工频干扰得到两路信号的交流部分,交流部分的平均功率之比即为动脉血的含氧量,通过线性拟合得到脉搏血氧饱和度;其中任何一路信号交流部分即为脉搏波,测得其周期可计算出脉率。 三、测量电路及其参数。电路包括三部分:探头驱动电路、光电流放大和去直流电路、计算电路。探头驱动电路实现两路光线由对称的两组三极管构成,与计算电路的两个IO端口和两个DA端口相连,分别控制两路光线的交替开关和幅值。光电流放大和去直流电路由两级运放构成,一级运放将光电流信号放大为电压信号,这个电压信号包含交流分量和较大的直流分量(分别对应着测量部位的动脉血和其他成分),因此需要二级运放去直流处理。计算电路接受两个运放的输出,作为反馈为探头驱动电路和去直流电路提供参考电压幅值。 探头接口说明:1为地线,6、7分别为外屏蔽和内屏蔽线,2为红外光输入正极,红光输入负极,3为红光输入正极,红外光输入负极,9为光电管输出正极,5为光电管输出负极。 四、测量流程 基本测量流程如下图。200Hz定时器中断,两路LED交替通断,即1秒内两路光各有100次采样。以红外光这一路为例:每次开启红外光LED,根据OA0输出改变LED的幅度ir_LED_level(Q3 的基极),根据OA1输出改变去直流电路的直流参考电压ir_dc_offset (OA1的正向输入端),得到的OA1的输出作为计算电路的输入,关灯,原始信号去工频处理后得到ir_heart_signal,数字去直流后得到ir_heart_signal_ac,该信号进入脉搏波周期判断的队列group_caculate[64],同时计算ir_heart_signal_ac信号的平方和,并且采样计数,同时进行脉

血氧饱和度监测的常见问题及护理

血氧饱和度监测的常见问题及护理 主讲人: 参加时间: 参加人员: 血氧饱和度即SpO2被定义为氧合血红蛋白占血红蛋白的百分比值。常用动脉血氧定量技术,它测定的是从传感器光源一方发射的光线有多少穿过患者组织到达另一方接收器,这是一种无创伤测定血氧饱和度的方法。血氧饱和度读数变化是报告患者缺氧最及时、最迅速的警告。 一、血氧饱和度监测中的常见问题: 1、信号跟踪到脉搏,屏幕上无氧饱和度和脉率值。原因: (1)患者移动过度,过于躁动,使血氧饱和度参数找不到一个脉搏形式;(2)患者可能灌注太低,如肢体温度过低、末梢循环太差,使氧饱和度参数不能测及血氧饱和度和脉率; (3)传感器损坏; (4)传感器位置不准确(接头线应置手背,指甲面朝上); (5)血液中有染色剂(如美蓝、荧光素)、皮肤涂色或手指甲上涂有指甲油,也会影响测量精度; (6)环境中有较强的光源。如手术灯、荧光灯或是其他光线直射时,会使探头的光敏元件的接受值偏离正常范围,因此需要避强光。必要时探头需遮光使用; (7)探头戴的时间过长以后,可能影响血液循环,使测量精度受影响; (8)另外,同侧手臂测血压时,会影响末梢循环而使测量值有误差。 2、氧饱和度迅速变化,信号强度游走不定可能由于患者移动过度或由于手术装置干扰操作性能。 3、氧饱和度显示传感器脱落 (1)传感器如在位且性能良好,应注意连接是否正常,临床最常出现此种情况即液体溅进传感器接头处; (2)血氧探头正常工作,开机自检后探头内发出较暗红光或红光较亮且闪烁不定。 二、血氧饱和度监测中常见问题的处理: 1、信号跟踪到脉搏,屏幕上无氧饱和度和脉率值时的处理 (1)密切观察患者病情; (2)使患者保持不动或将传感器移到活动少的肢体,使传感器牢固适当或进行健康人测试,必要时更换传感器; (3)必要时对所测患者注意保暖; (4)需要避强光; (5)时间过长可换另一手指测量; (6)尽量避免同侧手臂测血压。 2、氧饱和度迅速变化,信号强度游走不定时的处理尽量使患者保持安静少动,

实验一与实验二_血氧饱和度检测仪设计实验

第一部分综合实验箱简介2 第二部分实验项目4 实验一温度测试4 实验二心血管参数测试9 实验三肺功能参数测试22 实验四握力测试31 实验五血压测试36 实验六心电测试41 实验七血氧饱和度测试50 实验八脉搏波波速测试59 第三部分附录77 一、心血管参数测试77 二、肺功能参数测试79 三、血压测量81 四、接口器件--P D I U S B D12U S B84 五、软件及U S B驱动安装88 第一部分综合实验箱简介 YJ-02型医学电子教学仪器综合实验箱以高性能的W78E516单片机作为核心控制器件,配以外存储器、接口器件、模/数转换等电路实现模拟信号的采集、转换和处理,以及各种状态的检测和控制。 实验箱由温度测试、心血管功能测试、肺功能测试、握力测试、血压测试、心电测试、脉搏波波速测试、血氧饱和度测试等实验组成,实验箱采用模块设计。主板电路布局见图 1.1。主板包含血压测试、心电测试两个实验模块。所有实验均由单片机配合程序分别控制完成,实验数据通过USB 口上传到PC机。实验箱右侧上方有一个通讯指示灯(LED),当实验箱与PC机联机通讯成功时通讯指示灯点亮,表示实验箱与PC机处于联机通讯测试状态。实验箱应用软件应用于32位win9X或Win2000

或WinXP及Win7(32位及64位)平台,显示器屏幕推荐分辨率为1024*768,实验数据、曲线和参数均可在PC机上显示和保存。 图1.1 电路布局图 本实验箱供电电源为直流+10V~+18V/1A,由外部提供。在实验前,用导线将电源引入实验箱左上侧的两个标有+15V和GND字样的接线柱,正端接红色接线柱,负端接黑色接线柱。 打开PCB板上的电源开关,电源指示(绿色)灯亮,表明电源接通,可以正常操作。当出现异常时,应首先关闭电源,再检查相关电路,正常后再重新开启电源。实验前用USB连接线将实验箱的USB口与PC机USB口相连。在PC机退出联机通讯操作之前,不要关闭实验箱电源。 【实验时,严禁带电装卸集成电路或更换元器件。严禁在联机通讯状态带电拔USB通讯线。拔传感器时,不要用手直接拉传感器线,应握住传感器根部插头拔除。禁止将插线或其它导体放置于实验箱PCB板上,以免造成短路,损坏器件。】 第二部分实验项目 实验一血氧饱和度测量仪设计实验 一.实验目的 1.了解血氧饱和度测试的意义和无创伤测试基本原理。 2.掌握血氧饱和度测试的基本方法。

便携血氧监测仪的研制~

分类号密级 U D C 编号 本科毕业论文(设计) 题目:便携血氧检测仪的研制 学院 专业名称 年级 学生姓名 学号 指导教师 二〇一七年五月 摘要

人体的血氧信息和脉搏信号是衡量人体健康状况的两个重要参数,是维持人体生命活动的重要前提。因此不管是在突发的紧急情况还是医疗领域甚至运动保健等生活中的常见场景下,对血氧和脉搏信号的测量和监测都显得至关重要。 本设计以51单片机为核心,主要包括光电传感器采集模块,数模转换器模块,LED显示模块和蓝牙模块以及手机端。单片机是一种集成多种功能的微控制器,在我们日常生活中的各个领域的应用都相当普遍。指套式光电式传感器的物理基础是光电效应,精度高、反应快且非接触,能在各种光电检测系统中实现光电转化。由发光二极管和光敏二极管组成,能够有效采集人体信号,为人体的血氧和脉搏信息的提取和分析提供良好的数据来源。 通过单片机结合光带传感器测量人体的血氧和脉搏数据,并且能够实现在手机端的实时监测,这一设计将会对患有血管或呼吸系统疾病的病人、60岁以上的老年人、进行极限运动长期酗酒等人群带来福音,及早发现危险,减少意外发生。 关键词:单片机血氧检测仪 Abstract

The blood oxygen information and pulse signal of human body are two important parameters to measure the health status of human beings, and they are the important premise to maintain the human life. Therefore, the measurement and monitoring of blood oxygen and pulse signals are very important, whether in emergency situations or in the medical field, or even in the common situations of sports, health care and so on. The design of the 51 single-chip microcomputer as the core, including photoelectric sensor acquisition module, digital to analog converter module, LED display module and Bluetooth module, as well as mobile terminals. SCM is a micro controller integrated with various functions. It is widely used in every field of our daily life. The physical basis of the fingertip photoelectric sensor is the photoelectric effect, high precision, fast response and non-contact, can realize photoelectric conversion in photoelectric detection system. It is composed of light emitting diode and photosensitive diode, which can effectively collect human signals, and provide a good data source for the extraction and analysis of human blood oxygen and pulse information. With the band sensor measuring the body's oxygen saturation and pulse data through the microcontroller, and can achieve real-time monitoring in the mobile phone terminal, the design will have vascular or respiratory disease patients, 60 years of age or older, extreme sports long-term drinking crowd to bring the gospel, early detection of risk, reduce accidents. Key words:Single chip, Oximeter

血氧饱和度探头检测的基本原理

血氧饱和度探头检测的基本原理 氧是维系人类生命的基础,心脏的收缩和舒张使得人体的血液脉动地流过 肺部,一定量的还原血红蛋白(HbR)与肺部中摄取的氧气结合成氧和血红蛋白(HbO2),另有约2%的氧溶解在血浆里。这些血液通过动脉一直输送到毛细血管,然后在毛细血管中将氧释放,以维持组织细胞的新陈代谢。血氧饱和度(血氧探头)(SO2)是血液中被氧结合的氧合血红蛋白(HbO2)的容量占全部可结合的血红 蛋白(Hb)容量的百分比,即血液中血氧的浓度,它是呼吸循环的重要生理参数。而功能性氧饱和度为HbO2浓度与HbO2 Hb浓度之比,有别于氧合血红蛋白所占百分数。因此,监测动脉血氧饱和度(血氧探头)(SaO2)可以对肺的氧合和血红 蛋白携氧能力进行估计。 1、血氧饱和度检测分类 血氧浓度的测量通常分为电化学法和光学法两类。 传统的电化学法血氧饱和度测量要先进行人体采血(最常采用的是取动脉血),再利用血气分析仪进行电化学分析,在数分钟内测得动脉氧分压(PaO2),并计算出动脉血氧饱和度(SaO2)。由于这种方法需要动脉穿刺或者插管,给病 人造成痛苦,且不能连续监测,因此当处于危险状况时,就不易使病人得到及 时的治疗。电化学法的优点是测量结果精确可靠,缺点是比较麻烦,且不能进 行连续的监测,是一种有损伤的血氧测定法。 光学法是一种克服了电化学法的缺点的新型光学测量方法,它是一种连续 无损伤血氧测量方法,可用于急救病房、手术室、恢复室和睡眠研究中。目前 采用最多的是脉搏血氧测定法(Pulse Oximetry),其原理是检测血液对光吸收 量的变化,测量氧合血红蛋白(Hb02)占全部血红蛋白(Hb)的百分比,从而直接 求得SO2。该方法的优点是可以做到对人体连续无损伤测量,且仪器使用简单 方便,所以它已得到越来越普遍的重视。缺点是测量精度比电化学法低,非凡 是在血氧值较低时产生的误差较大。先后出现了耳式血氧计,多波长血氧计及 新近问世的脉搏式血氧计。最新的脉搏式血氧计的测量误差已经可以控制在1%

脑血氧饱和度监测仪动态监测新生儿脑氧情况.

脑血氧饱和度监测仪动态监测新生儿脑氧情况 作者:李虹,杨光时间:2007-11-22 14:31:00 【关键词】脑血 用脑血氧饱和度监测仪动态观察出生新生儿的脑氧情况变化,国内外对此报道较少。本文通过研究利用脑血氧饱和度监测仪动态观察和掌握新生儿脑血氧情况及变化,指导临床医生,使脑缺氧患儿在尚未出现临床症状之前,及时了解脑供氧情况,减少脑缺氧所引起并发症的严重后果。现将研究结果报告如下。 1 对象与方法 1.1 研究对象 我院2004年8月18日~2005年2月25日共出生新生儿1873例,男975例,女898例;早产儿157例,足月儿1708例,过期产儿8例;双胞胎儿12例;体重<2500g 127例;2500~4000g 1623例;>4000g 123例。分娩方式:自然分娩835例,剖宫分娩955例,胎吸分娩54例,臀牵助产10例,产钳助产19例。 1.2 使用仪器及检测方法 采用美国产INVOS3100A型脑血氧监测仪,探头置于右或左前额,发射光点位于眉上2~2.5cm,探头边缘旁开额中线1cm,婴儿仰卧位,在安静状态下受检,全部新生儿均于生后24h内检测,均由同一人操作。 1.3 医学原理及诊断标准 利用血红蛋白对可见红外光,在810nm处有特异最大吸收峰值,所测定的是脑组织混合氧饱和度(包括30%动脉血和70%静脉血),连续动脉监测 20min。标准是>65%为正常脑供需平衡,59%~65%为Ⅰ度脑缺氧,54%~59%为Ⅱ度脑缺氧,<54%为Ⅲ度脑缺氧。 2 结果

1873例新生儿中,有1612例脑氧监测为脑氧供需平衡,229例为Ⅰ度脑缺氧占12.23%,19例为Ⅱ度脑缺氧占1.01%,13例为Ⅲ度脑缺氧占0.69%。 2.1 Ⅰ度脑缺氧新生儿 经给氧(鼻导管或面罩吸氧)治疗,其中95例于24~48h后复查脑氧监测,均恢复正常;诊断为新生儿窒息、新生儿肺炎、新生儿缺氧缺血性脑病等疾病的新生儿,经过吸氧及相关治疗后,复查结果均正常。 2.2 Ⅱ度、Ⅲ度、脑缺氧新生儿 均给予面罩吸氧或高压氧舱治疗,同时治疗原发病,其中死亡7例。余 48h复查脑氧监测,结果Ⅱ度脑缺氧患儿中有2例转为Ⅰ度脑缺氧,余均恢复正常。Ⅲ度脑缺氧患儿中有6例转为Ⅰ度脑缺氧,余均恢复正常。 2.3 产科因素对脑血氧饱和度的影响 (1)胎儿宫内窘迫107例,观察脑血氧变化,其中Ⅰ度脑缺氧53例占49.53%,Ⅱ度脑缺氧7例占6.54%,Ⅲ度脑缺氧3例占2.80%。(2)脐带绕颈打结138例,观察脑血氧变化,Ⅰ度脑缺氧24例占17.39%,Ⅱ度脑缺氧5例占3.62%,Ⅲ度脑缺氧3例占2.17%。(1)羊水浑浊26例,观察脑血氧变化,Ⅰ度脑缺氧6例占23.08%,Ⅱ度脑缺氧3例,Ⅲ度脑缺氧3例,各占11.54%。 (4)出生发绀102例,Ⅰ度脑缺氧19例占18.63%,Ⅱ度脑缺氧3例占2.94%。(5)孕母合并妊高征25例,Ⅰ度脑缺氧9例占36.00%。(6)孕母有糖尿病、贫血等18例,Ⅰ度脑缺氧6例占33.33%。(7)早破水24例,Ⅰ度脑缺氧1例占4.17%。(8)巨大儿123例,Ⅰ度脑缺氧22例占17.89%。(9)早产儿157例,Ⅰ度脑缺氧72例占45.86%,Ⅱ度脑缺氧14例占8.92%,Ⅲ度脑缺氧6例占3.82%。(10)胎头吸引术54例,Ⅰ度脑缺氧12例占22.22%,Ⅱ度脑缺氧3例占5.56%。(11)产钳助产19例,Ⅰ度脑缺氧7例占36.84%,Ⅱ度脑缺氧2例占10.53%。 3 讨论 新生儿脑缺氧主要发生于宫内和分娩过程中,与分娩方式、孕母及胎儿情况有密切的关系。本组研究显示,在分娩方式中,胎头吸引术和产钳助产共73例,Ⅰ度脑缺氧19例占26.03%,Ⅱ度脑缺氧5例占6.85%;孕母有疾病44例,Ⅰ度脑缺氧15例占34.09%;脐带绕颈、羊水浑浊、宫内窘迫的新生儿中脑缺氧者占多数,且缺氧程度较重;早产儿中胎龄越小,缺氧程度越重,因而产前检查、产时指导、做好孕期保健非常重要,及时发现和解除脑缺氧因素,改善胎儿缺氧状态,以减少脑缺氧所引起的一系列症状和严重后果。 大脑是消耗能量最活跃的器官,儿童于生长发育期在基础代谢条件下,大脑耗氧量占其全身耗氧量的50%,由于脑内主要依靠有氧代谢维持神经元的正

血氧饱和度

昆明理工大学信息工程与自动化学院学生实验报告 ( 2016 —2017 学年第一学期) 课程名称:医用传感器开课实验室:信自104 实验日期:2016-12-30 一、实验原理 (一)实验原理 1、血氧测量原理 氧是维系人类生命的基础,心脏的收缩和舒张使得人体的血液脉动地流过肺部,一定量的还原血红蛋白(HbR)与肺部中摄取的氧气结合成氧和血红蛋白(HbO2),另有约2%的氧溶解在血浆里。这些血液通过动脉一直输送到毛细血管,然后在毛细血管中将氧释放,以维持组织细胞的新陈代谢。血氧饱和度 (SO2)是血液中被氧结合的氧合血红蛋白(HbO2)的容量占全部可结合的血红蛋白(Hb)容量的百分比,即血液中血氧的浓度,它是呼吸循环的重要生理参数。而功能性氧饱和度为HbO2浓度与HbO2 Hb浓度之比,有别于氧合血红蛋白所占百分数。因此,监测动脉血氧饱和度(SaO2)可以对肺的氧合和血红蛋白携氧能力进行估计。 血氧饱和度是衡量人体血液携带氧的能力的重要参数。血氧饱和度的测量目前广泛应用有透射法(或反射法)、双波长(红光R:660nm和红外光IR:940nm)光电检测技术,检测红光和红外光通过动脉血的光吸收引起的交变成分之比IIR/IR和非脉动组织(表皮、肌肉、静脉血等)引起光吸收的稳定分量(直流)值,通过计算可得到血氧饱和度值SPO2,这里采用透射法双波长光电检测技术。由于光电信号的脉动规律与心脏搏动的规律一致,所以根据检出信号的周期可同时确定脉率,因而亦称该方法为脉搏血氧饱和度测量。这种测量方法用指套式血

氧饱和度传感器测量红光(660nm)和红外光(940nm)波长光强度经过手指后的变化,计算其中的脉动量与直流量后,查表可以计算出血氧饱和度值。 2、光源切换 实验采用双波长透射光电检测方法来测量血氧饱和度,所以必须使无光、660nm的红光和940nm的红外光交替产生并采集得到各不同光时段的信号,通过减去无光时光电信号可以去除环境光的影响,并得到红光与红外光去除环境光影响后通过动脉血的光吸收引起的交变成分之比。这里各种光的交替切换通过对单片机的PF0,PF1端口编程得到。 3、电流电压转换 血氧传感器输出信号为微弱电流信号,输出电流在1uA左右,经过I-V转换电路后为电压信号。其中AD795具有很好的直流特性,它的输入偏置电流只有1pA,是精准的电流电压转换放大芯片,满足电流放大要求。C1与R3并联,起低通滤波作用并防止振荡;后接C6,R7进行高通滤波,滤除直流分量;再接二阶低通滤波以滤除杂波,此时660nm和940nm的光信号已经转为滤波后的电压信号。 4、电压放大 经过电流电压转换和高通低通滤波后所得的电压信号由AD620R采集并进行 放大。放大倍数为:G=49.4/2+1=25.7 5、调零及滤波 因光电的直流分量较大,高通滤波截止频率过低会影响正确信号的波形,这里由加法电路的原理设计了调零电路来去除部分直流分量,并进行低通滤波和放大来改善波形。 6、电压跟随器的应用 经过有源二阶低通滤波后所得的信号可能不是很稳定,在这里我们应用了电压跟随器,它的作用是限制最大输出电压、加大电流输出和减小输出阻抗等。 7、50HZ工频滤波 本功能模块电路的输出信号同样需要经过50HZ工频滤波,电路的输出信号送至模数转换器,经模数转换后送至单片微处理器进行处理,最后送至LCD显示。 二、实验内容及步骤 1. 功能板安装。先关电,把血氧功能板通过上下两个板间插件固定在主

相关文档
最新文档