扭矩传感器安装

扭矩传感器安装
扭矩传感器安装

一、应用范围:

KR系列扭矩传感器是一种测量各种扭矩、转速及机械功率的精密测量仪器。应用范围十分

广泛,主要用于:

1、电动机、发动机、内燃机等旋转动力设备输出扭矩及功率的检测;

2、风机、水泵、齿轮箱、扭力板手的扭矩及功率的检测;

3、铁路机车、汽车、拖拉机、飞机、船舶、矿山机械中的扭矩及功率的检测;

4、可用于污水处理系统中的扭矩及功率的检测;

5、可用于制造粘度计;

6、可用于过程工业和流程工业中。

二、基本原理:

扭矩的测量:采用应变片电测技术 ,在弹性轴上组成应变桥,向应变桥提供电源即可测得该

弹性轴受扭的电信号。将该应变信号放大后,经过压/频转换,变成与扭应变成正比的频率信号。如图1所示:

三、产品特点:

1.信号输出可任意选择波形─方波或脉冲波。

2.检测精度高、稳定性好、抗干扰性强。

3.不需反复调零即可;连续测量正反扭矩。

4.即可测量静止扭矩,也可测量动态扭矩。

5.体积小、重传感器可脱离二次仪表独立使用,只要按插座针号提供 +15V,-15V(200mA)的电源,即可输出阻抗与扭矩成正比的等方波或脉冲波频率信号。量轻、易于安装。

6.测量范围:0—10000Nm标准可选, 非标准2万Nm、3万Nm、5万Nm、8万Nm、10万Nm、15万Nm、20万Nm可定制,特殊量程定制。

1.根据轴的连接形式和扭矩传感器的长度,确定原动机和负载之间的距离,调节原动机和负载

的轴线相对于基准面的距离,使它们的轴线的同轴度小于Φ 0.03mm,固定原动机和负载在基准

面上。

2.将联轴器分别装入各自轴上。

3.调节扭矩传感器与基准面的距离,使它的轴线与原动机和负载的轴线的同轴度小于Φ

0.03mm,固定扭矩传感器在基准面上。

4.紧固联轴器,安装完成。

六、信号输出与信号采集:

1、扭矩信号输出基本形式:

?方波信号、脉冲信号。

?可根据用户需要制成电压模拟信号输出或电流模拟信号输出(单向、静止扭矩测量)。

2、扭矩信号处理形式:

?扭矩传感器输出的频率信号送到频率计或数字表,直接读取与扭矩成正比的频率信号或电压、电流信号。

?扭矩传感器的扭矩与频率信号送给单片机二次仪表,直接显示实时扭矩值、转速及输出功率值及 RS232通讯信号。

?直接将扭矩与转速的频率信号送给计算机或 PLD进行处理。

七、维护与保养:

1.每隔一年应给扭矩传感器两端轴承加润滑脂。加润滑脂时,仅将两端轴承盖打开,将润滑脂加入轴承,然后装上两端盖。

2.应储存在干燥、无腐蚀、室温为 -20℃——70℃的环境里。

八、注意事项:

1.安装时,不能带电操作,切莫直接敲打、碰撞扭矩传感器。

2.联轴器的紧固螺栓应拧紧 ,联轴器的外面应加防护罩,避免人身伤害。

3.信号线输出不得对地 ,对电源短路,输出电流不大于10mA?屏蔽电缆线的屏蔽层必须与+15V电源的公共端(电源地)连接。

九、安装使用:

1、使用环境:扭矩传感器应安装在环境温度为0℃~ 60℃,相对湿度小于90%,无易燃、易爆品的环境里。不宜安装在强电磁干扰的环境中。

2、安装方式:

(1) 水平安装:如图11所示:

(2) 垂直安装:图12所示:

3、连接方式:扭矩传感器与动力设备、负载设备之间的连接

(1)弹性柱销联轴器连接如图13所示,此种连接方式结构简单,加工容易,维护方便。能够微量补偿安装误差造成的轴的相对偏移,同时能起到轻微减振的作用。适用于中等载荷、起动频繁的高低速运转场合,工作温度为-20-70℃。

(2)刚性联轴器连接如图14所示,这种连接形式结构简单,成本低,无补偿性能,不能缓冲减振,对两轴的安装精度较高。用于振动很小的工况条件。

4、安装要求:

(1)扭矩传感器可水平安装,也可垂直安装。

(2)如图11、12所示,动力设备、扭矩传感器、负载设备应安装在稳固的基础上,以避免过大的震动,否则可能发生数据不稳,降低测量精度,甚至损坏扭矩传感器。

(3)采用弹性柱销联轴器或刚性联轴器连接。

(4)动力设备、扭矩传感器、负载设备轴线的同心度应小于Φ0.05mm。

盘式扭矩传感器

盘式扭矩传感器 一、工作原理采用应变片电测技术,在弹性轴上组成应变桥,向应变桥提供电源即可测得该弹性轴受扭的电信号。将该应变信号放大后,经过压/频转换,变成与扭应变成正比的频率信号。使用于轴向空间比较短的需要测量扭矩转速的场合。 二、主要性能指标 扭矩示值误差: < 0、5 % F S 灵敏度: 10、2 mv / V 非线性: <0、25 % F S 重复性: <0、2% F S 零点温飘: <0、5 % F S /10℃输出阻抗:1KΩ3Ω 绝缘阻抗: >500MΩ 静态超载:120 % 断裂负载:200 % 使用温度: 0 ~60℃ 储存温度: -20 ~70℃ 电源电压: +15V5%,-15V5%

总消耗电流: <130mA频率信号输出:5KHz—70℃的环境里3、保证数字扭矩仪的循环工作,可以增加内部温度。可以提高仪表的林敏度4、设置温度上下限报警指示灯,当窗口显示上下限温度时该等亮。及时做好应对措施。 5、测量扭矩时,应在转换器上设置保温措施,以免因杂质通过导致转换器接口而发生沉淀。 五、功能特点:1、无轴承结构,可高速运转。 2、信号输出可任意选择波形─方波或脉冲波。 3、检测精度高、稳定性好、抗干扰性强。 4、不需反复调零即可;连续测量正反扭矩。 5、即可测量静止扭矩,也可测量动态扭矩六、外形尺寸图:盘式变送器的截面图以圆形呈现,传递信号时与旋转,转速和转向无关。安装时不需要考虑方位,可按具体情况任意方向安装。 六、常见故障:1、仪表指示突然变化不正常。多半是由于仪器本身补偿导线断路变送器失灵造成的2、工艺操作发生变化,多半是由于调节器、测控设备损坏引起的。3、硬件环境不满足要求,会直接引起硬件设置的损坏。换件环境的操作系统,办公软件使用不正确,导致变送器的显示范围不正确。4、安装不正确,显示器的屏幕数字不发生变化。正负极接反,会直接烧坏显示仪表。5、扭矩仪表出现快速振动的现象,肯定是由于控制参数调整不当引起的。七、扭矩信号处理形式:扭矩传感器输出的频率信号送到

应变式扭矩传感器简单设计报告

基于电阻应变式扭矩传感器与MSP430的扭 矩测量系统设计

2.应变式扭矩传感器 2.1 金属应变计工作原理 电阻应变片的工作原理是基于金属的应变效应[4]。金属丝的电阻随着它所受的机械变形的大小而发生相应的变化的现象称为金属的电阻应变效应。 例如,一段金属丝的电阻R 与丝的长度L ,横截面A 有如下关系: L R A ρ = (2-1) 若金属丝受到拉力F 作用伸长,伸长量设为l ?,横截面积相应减少A ?,电阻率的变 化设为ρ?,则电阻的相对变化量为: R l A R l A ρρ????=-+ (2-2) 又因为对金属丝来说2 22,2, 2A r r r A r A rdr A r r ππππ???=?===于是有: 2R l r R l r ρ ρ????=-+ (2-3) 由材料力学知,弹性限度内材料的泊松系数为//r r l l μ?=-?,则有 0(12)R l l K R l l ρμρ????=++= (2-4) 式中0/12/K l l ρρ μ?=++ ?为金属丝的灵敏度系数,它越大表明单位应变引起的电阻相对变化越大。若令l l ε?=为金属丝的轴向相对应变,则 (12)R R ρρμεε ??=++ (2-5) 从上式可知,灵敏度系数受两个因素影响:一个是受力后材料的几何尺寸的 变化,即12μ+;另一个是受力后材料晶格畸变引起电阻率发生的变化及 ρ ρε ?。对金属材料电阻丝来说,灵敏度系数表达式中12μ+的值要比 ρ ρ ε ?大得多。因此

在相当的范围内,电阻的相对变化与金属丝的纵向应变ε成正比,也及金属丝有着不错的线性度。 2.2 扭矩测量原理 弹性体是扭矩传感器的关键部件,它直接与被测对象接触(例如电机转轴)并引起应变片产生形变。 弹性轴在受到扭转时发生形变(如图),轴上会有应力和应变产生。其横截面会受到一个剪应力,该剪应力按照直线规律变化,在轴的中心处为零,轴的表面达到最大[4]。 (1)弹性轴横截面剪应力 (2)弹性走表面法向张力 图2.1 弹性轴横截面与表面手里分析 现在从弹性轴的径向表面上取一个单元进行研究,如图,在其与杆轴成45度与135度的斜面上,受到法向应力,此法向应力为主应力,其数值等于横截面上的剪应力τ[4]。图中,此应力在一个方向上受拉伸,另一个方向上受压缩。

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

传感器原理及其应用考试重点

传感器原理及其应用 第一章传感器的一般特性 1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 2)传感器又称变换器、探测器或检测器,是获取信息的工具 广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 3)传感器的组成: 敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。 基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。 4)传感器的静态性能指标 (1)灵敏度 定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比, 传感器输出曲线的斜率就是其灵敏度。 ①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。(2)线性度 定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。 线性度又可分为: ①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。 ②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。 端基直线定义:实际平均输出特性首、末两端点的连线。 ③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。 ④独立线性度:以最佳直线作为参考直线的线性度。 ⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。 (3)迟滞 定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。 即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 (4)重复性 定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输

法兰式扭矩传感器ZJ-A型

法兰式扭矩传感器ZJ-A型

产品特点: 1.信号输出可任意选择波形一方波或脉冲波。 2.检测精度高、稳定性好、抗干扰性强。 3.不需反复调零即可连续测量正反扭矩。 4.即可测量静止扭矩,也可测量动态扭矩。 5.体积小、重量轻、易于安装。传感器可脱离二次仪表独立使用,只要按插座针号提供 ±15VDC(200mA)的电源,即可输出阻抗与扭矩成正比的等方波或脉冲波频率信号。 6.测量范围:0-500000Nm标准可选,特殊量程定制。 应用范围: 1.电动机、发动机、内燃机等旋转动力设备输出扭矩及功率的检测; 2.风机、水泵、齿轮箱、扭力扳手的扭矩及功率的检测; 3.铁路机车、汽车、拖拉机、飞机、船泊、矿山机械中的扭矩及功率的检测; 4.可用于污水处理系统中的扭矩及功率的检测; 5.可用于制造粘度计; 6.可用于过程工业和流程工业中; 基本原理: 转矩的测量:采用应变片电测技术,在弹性轴上组成应变桥,向应变桥提供电源即可测得 该弹性轴受扭的电信号。将该应变信号放大后,经过压/频转换,变成与扭应变成正比的频 率信号。 工作过程: 将专用的扭矩应变片用应变胶粘帖在被测弹性轴上并组成应变桥,向应变桥提供电源即可 测得该弹性轴受扭的电信号。将扭矩传感器应变信号放大后,经过压/频转换,变成与扭应 变成正比的频率信号。本系统的能源输入及信号输出是由两组带间隙的特殊环形变压器承 担的,因此实现了无接触的能源及信号传递功能。 向传感器提供±15VDC电源,激磁电路中的晶体振荡器产生400Hz的方波,经过功率放大 器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次 级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放 大器的工作电源;由基准电源与双运放组成的高精度稳压电源产生±4.5V的精密直流电源,该电源及作为电桥电源,有座位放大器即V/F转换器的工作电源。 当弹性轴受扭时应变桥检测得到的mV级的应变信号通过仪表放大器放大成1.5v±1v的强 信号,再通过V/F转换器变换成频率信号,通过信号环形变压器T2从旋转的初级线圈传

动态扭矩传感器

本产品是通用型数字扭矩传感器,通过弹性或刚性联轴器将传感器安装在动力设备与负载设备之间。转速测量采用光电码盘设计。主要用于航天、航空、汽车、建筑、化工、机械行业等领域: 1、风机、水泵、电动机、发动机、内燃机等旋转动力设备输出扭矩及功率的检测; 2、齿轮箱、扭力板手的扭矩及功率的检测; 3、大型机车、飞机、船舶、矿山机械中的扭矩及功率的检测; 4、可用于制造面粉粘度计; 技术特点是: 1.可以测量静态旋转扭矩及动态过程的旋转扭矩。 2. 测量正向,反向扭矩时不需要调零,输出信号为频率信号。 3. 结合电子技术实现非接触电源供电输入与扭矩信号输出。

4. 扭矩的测量与旋转速度,方向无关。 5. 数字化处理信号输出,抗干扰能力强,性能稳定可靠,使用寿命长。 6. 扭矩的频率输出的范围:(正反向)。 7. 输入电源极性,幅值保护,输出信号保护。 8. 体积小,重量轻,安装方便。 9. 可测量正反向扭矩,转速及功率。 安装注意事项是: 1.使用两组联轴器,将传感器安装在动力设备与负载之间。一端用法兰盘或连接套与被测设备相连,另一端固定或施力 2.分别调整动力设备、负载、传感器的中心高度和同轴度,要求小于0.05mm,然后将其固定,并紧固可靠,不允许有松动,使用小量程或高转速传感器时,更要严格保证连接的中心高和同轴度。否则可能造成测量误差及传感器的损坏。 3.连接时可选用刚性或弹性联轴器,在震动较大或同轴度无法保证安装要求时(大于0.05mm,小于0.2mm),建议选用弹性联轴器(会影响测量精度),

安装同轴度超过0.2mm时,严禁使用。 使用中如有疑问请及时与郑州沐宸自动化科技有限公司联系,保修期之内不得自行拆卸,如果传感器不能满足您的要求,传感器本体及外壳没有任何损伤的前提下可以进行更换处理。

JN338智能数字式转矩转速传感器及其应用.

-56- 《国外电子元器件》 2003年第 11期 2003年 11月 JN338智能数字式转矩转速传感器及其应用 孟臣 , 李敏 (黑龙江八一农垦大学信息技术学院 , 黑龙江密山 158308 J N338A p titude Di g ital Tor q ue and R otational S p eed Sensor and Its A pp lication MENG Chen LI M in 摘要 :介绍了 JN338智能数字式转矩转速传感器的特性参数和工作原理 , 该传感器使用两组旋转变压器实现了电源及信号的非接触传递 , 同时其信号输出为频率量。文中给出了基于 JN338的智能转矩转速测量仪的硬件电路结构框图 , 同时指出了 JN338的应用注意事项。关键词 :JN338; 数字式 ; 转矩转速传感器分类号 :T P212文献标识码 :B文章编号 :1006-6977(2003 11-0056-03 表 1 J N338传感器主要技术参数参数指标转矩准确度 >0. 5%过载能力150%F.S 绝缘电阻≥ 200M Ω工作温度 -20~60℃重复性≤ 0. 5%F. S 滞后≤ 0. 5%F. S 线性≤ 0. 5%F. S 相对湿度≤ 90%RH ● 新特器件应用 1概述

转矩传感器在电动机、发动机、发电机、风机、搅 拌机、卷扬机、中及数控机械加工中心、。 , 并采用导电滑环来耦合电源输入及应变信号输出 , 由于导电滑环属于磨擦接触 , 因此不可避免地存在着磨损和发热 , 这样不但限制了旋转轴的转速及导电滑环的使用寿命 , 同时由于接触不可靠 , 也不可避免地会引起测量信号的波动及误差的增加。因此 , 如何在旋转轴上进行能源及信号的可靠耦合已成为转矩传感器最棘手的问题 , 而 JN338数字式转矩转 速传感器则巧妙地解决了这个问题。 JN338是北京三晶创业集团公司的产品 , 该传感器采用两组特殊环形旋转变压器来实现能源的输入及转矩信号的输出 , 从而解决了旋转动力传递系统中能源及 信号可靠地在旋转部分与静止部分之间的传递问题。该传感器还可同时实现旋转轴转速的测量 , 从而可方便地计算出轴输出功率 , 因此 , 利用该传感器可实现转矩、转速及轴功率的多参数输出。 2主要特性及参数 2. 1JN338的主要特性 JN338的主要特性如下 : ● 检测手段为应变电测技术 ; ● 测量精度高 , 信号检出、处理均用数字技术 ; ● 抗干扰能力强 , ; ● ; , ; , 也能测量过渡过程的动态; ● 无需反复调零即可连续测量正反转矩; ● 无集流环、电刷等磨损件 , 可高速超长运行; ● 转矩信号的传递与是否旋转、转速大

传感器原理与应用作业参考答案

《传感器原理与应用》作业参考答案 作业一 1.传感器有哪些组成部分在检测过程中各起什么作用 答:传感器通常由敏感元件、传感元件及测量转换电路三部分组成。 各部分在检测过程中所起作用是:敏感元件是在传感器中直接感受被测量,并输出与被测量成一定联系的另一物理量的元件,如电阻式传感器中的弹性敏感元件可将力转换为位移。传感元件是能将敏感元件的输出量转换为适于传输和测量的电参量的元件,如应变片可将应变转换为电阻量。测量转换电路可将传感元件输出的电参量转换成易于处理的电量信号。 2.传感器有哪些分类方法各有哪些传感器 答:按工作原理分有参量传感器、发电传感器、数字传感器和特殊传感器;按被测量性质分有机械量传感器、热工量传感器、成分量传感器、状态量传感器、探伤传感器等;按输出量形类分有模拟式、数字式和开关式;按传感器的结构分有直接式传感器、差分式传感器和补偿式传感器。 3.测量误差是如何分类的 答:按表示方法分有绝对误差和相对误差;按误差出现的规律分有系统误差、随机误差和粗大误差按误差来源分有工具误差和方法误差按被测量随时间变化的速度分有静态误差和动态误差按使用条件分有基本误差和附加误差按误差与被测量的关系分有定值误差和积累误差。 4.弹性敏感元件在传感器中起什么作用 答:弹性敏感元件在传感器技术中占有很重要的地位,是检测系统的基本元件,它能直接感受被测物理量(如力、位移、速度、压力等)的变化,进而将其转化为本身的应变或位移,然后再由各种不同形式的传感元件将这些量变换成电量。 5.弹性敏感元件有哪几种基本形式各有什么用途和特点 答:弹性敏感元件形式上基本分成两大类,即将力变换成应变或位移的变换力的弹性敏感元件和将压力变换成应变或位移的变换压力的弹性敏感元件。 变换力的弹性敏感元件通常有等截面轴、环状弹性敏感元件、悬臂梁和扭转轴等。实心等截面轴在力的作用下其位移很小,因此常用它的应变作为输出量。它的主要优点是结构简单、加工方便、测量范围宽、可承受极大的载荷、缺点是灵敏度低。空心圆柱体的灵敏度相对实心轴要高许多,在同样的截面积下,轴的直径可加大数倍,这样可提高轴的抗弯能力,但其过载能力相对弱,载荷较大时会产生较明显的桶形形变,使输出应变复杂而影响精度。环状敏感元件一般为等截面圆环结构,圆环受力后容易变形,所以它的灵敏度较高,多用于测量较小的力,缺点是圆环加工困难,环的各个部位的应变及应力都不相等。悬臂梁的特点是结构简单,易于加工,输出位移(或应变)大,灵敏度高,所以常用于较小力的测量。扭转轴式弹性敏感元件用于测量力矩和转矩。 变换压力的弹性敏感元件通常有弹簧管、波纹管、等截面薄板、波纹膜片和膜盒、薄壁圆筒和薄壁半球等。弹簧管可以把压力变换成位移,且弹簧管的自由端的位移量、中心角的变化量与压力p成正比,其刚度较大,灵敏度较小,但过载能力强,常用于测量较大压力。波纹管的线性特性易被破坏,因此它主要用于测量较小压力或压差测量中。 作业二 1.何谓电阻式传感器它主要分成哪几种 答:电阻式传感器是将被测量转换成电阻值,再经相应测量电路处理后,在显示器记录仪上显示或记

各种传感器的分类、比较和应用

传感器的定义传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。 传感器把某种形式的能量转换成另一种形式的能量。有两类:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。 无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能,传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,它将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。 传感器原理结构在一段特制的弹性轴上粘贴上专用的测扭应片并组成变桥,即为基础扭矩传感器;在轴上固定着:(1)能源环形变压器的次级线圈,(2)信号环形变压器初级线圈,(3)轴上印刷电路板,电路板上包含整流稳定电源、仪表放大电路、V/F变换电路及信号输出电路。在传感器的外壳上固定着: (1)激磁电路,(2)能源环形变压器的初级线圈(输入),(3) 信号环形变压器次级线圈(输出),(4)信号处理电路 工作过程 向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测得到的mV级的应变信号通过仪表放大器AD620放大成 1.5v±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2 从旋转的初级线圈传递至静止次级线圈,再经过外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动--静环之间只有零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。 传感器分类倾角传感器 倾角传感器在军事、航天航空、工业自动化、工程机械、铁路机车、消费电子、海洋船舶等领域得到广泛运用。辉格公司为国内用户提供全球最全面、最专业的产品方案和服务。提供超过500种规格的伺服型、电解质型、电容型、电感型、光纤型等原理的倾角传感器。 加速度传感器(线和角加速度)

压力传感器原理及应用-称重技术

压力传感器是压力检测系统中的重要组成部分,由各种压力敏感元件将被测压力信号转换成容易测量的电 信号作输出,给显示仪表显示压力值,或供控制和报警使用。 压力传感器的种类繁多,如压阻式压力传感器、应变式压力传感器、压电式压力传感器、电容式压力传感 器、压磁式压力传感器、谐振式压力传感器及差动变压器式压力传感器,光纤压力传感器等。 一、压阻式压力传感器 固体受力后电阻率发生变化的现象称为压阻效应。压阻式压力传感器是基于半导体材料(单晶硅)的压阻效应原理制成的传感器,就是利用集成电路工艺直接在硅平膜片上按一定晶向制成扩散压敏电阻,当硅膜片 受压时,膜片的变形将使扩散电阻的阻值发生变化。 压阻式具有极低的价格和较高的精度以及较好的线性特性。 1、压阻式压力传感器基本介绍 压阻式传感器有两种类型:一种是利用半导体材料的体电阻做成粘贴式应变片,称为半导体应变片,因此 应变片制成的传感器称为半导体应变式传感器,另一种是在半导体材料的基片上用集成电路工艺制成的扩 散电阻,以此扩散电阻的传感器称为扩散型压阻传感器。 半导体应变式传感器半导体应变式传感器的结构形式基本上与电阻应变片传感器相同,也是由弹性敏感元件等三部分组成,所不同的是应变片的敏感栅是用半导体材料制成。半导体应变片与金属应变片相比,最 突出的优点是它的体积小而灵敏高。它的灵敏系数比后者要大几十倍甚至上百倍,输出信号有时不必放大 即可直接进行测量记录。此外,半导体应变片横向效应非常小,蠕变和滞后也小,频率响应范围亦很宽, 从静态应变至高频动态应变都能测量。由于半导体集成化制造工艺的发展,用此技术与半导体应变片相结 合,可以直接制成各种小型和超小型半导体应变式传感器,使测量系统大为简化。但是半导体应变片也存 在着很大的缺点,它的电阻温度系统要比金属电阻变化大一个数量级,灵敏系数随温度变化较大它的应变 —电阻特性曲线性较大,它的电阻值和灵敏系数分散性较大,不利于选配组合电桥等等。 扩散型压阻式传感器扩散型压阻传感器的基片是半导体单晶硅。单晶硅是各向异性材料,取向不同时特性不一样。因此必须根据传感器受力变形情况来加工制作扩散硅敏感电阻膜片。 利用半导体压阻效应,可设计成多种类型传感器,其中压力传感器和加速度传感器为压阻式传感器的基本 型式。 硅压阻式压力传感器由外壳、硅膜片(硅杯)和引线等组成。硅膜片是核心部分,其外形状象杯故名硅杯,在硅膜上,用半导体工艺中的扩散掺杂法做成四个相等的电阻,经蒸镀金属电极及连线,接成惠斯登电桥 再用压焊法与外引线相连。膜片的一侧是和被测系数相连接的高压腔,另一侧是低压腔,通常和大气相连,也有做成真空的。当膜片两边存在压力差时,膜片发生变形,产生应力应变,从而使扩散电阻的电阻值发 生变化,电桥失去平衡,输出相对应的电压,其大小就反映了膜片所受压力差值。

MH-803动态扭矩传感器

MH-803动态扭矩传感器 二、基本原理: 扭矩的测量:采用应变片电测技术 ,在弹性轴上组成应变桥,向应变桥提供电源即可测得该弹性轴受扭的电信号。将该应变信号放大后,经过压/频转换,变成与扭应变成正比的频率信号。如图1所示: 三、产品特点:

2.将联轴器分别装入各自轴上。 3.调节扭矩传感器与基准面的距离,使它的轴线与原动机和负载的轴线的同轴度小于Φ 0.03mm,固定扭矩传感器在基准面上。 4.紧固联轴器,安装完成。 七、信号输出与信号采集: 1、扭矩信号输出基本形式: ?方波信号、脉冲信号。 ?可根据用户需要制成电压模拟信号输出或电流模拟信号输出(单向、静止扭矩测量)。 2、扭矩信号处理形式: ?扭矩传感器输出的频率信号送到频率计或数字表,直接读取与扭矩成正比的频率信号或电压、电流信号。 ?扭矩传感器的扭矩与频率信号送给单片机二次仪表,直接显示实时扭矩值、转速及输出功率值及 RS232通讯信号。 ?直接将扭矩与转速的频率信号送给计算机或 PLD进行处理。 八、维护与保养: 1.每隔一年应给扭矩传感器两端轴承加润滑脂。加润滑脂时,仅将两端轴承盖打开,将润滑脂加入轴承,然后装上两端盖。 2.应储存在干燥、无腐蚀、室温为 -20℃——70℃的环境里。 九、注意事项: 1.安装时,不能带电操作,切莫直接敲打、碰撞扭矩传感器。 2.联轴器的紧固螺栓应拧紧 ,联轴器的外面应加防护罩,避免人身伤害。 3.信号线输出不得对地 ,对电源短路,输出电流不大于10mA?屏蔽电缆线的屏蔽层必须与 +15V 电源的公共端(电源地)连接。 十、安装使用: 1、使用环境:扭矩传感器应安装在环境温度为0℃~ 60℃,相对湿度小于90%,无易燃、易爆品的环境里。不宜安装在强电磁干扰的环境中。 2、安装方式: (1) 水平安装:如图11所示:

扭矩传感器样本

工作原理: 传感器扭矩测量采用应变电测技术。在弹性轴上粘贴应变计组成测量电桥,当弹性轴受扭矩产生微小变形后引起电桥电阻值变化,应变电桥电阻的变化转变为电信号的变化从而实现扭矩测量。下面为扭矩测量的主要工作原理框图,由于采用了能源与信号的无接触传输,完美的解决了旋转状态下的扭矩测量。 电源 当测速码盘连续旋转时,通过光电开关输出脉冲信号,根据码盘的齿数和输出信号的频率,即可计算出对应的转速。 技术指标: 1.测量范围:0.5N·m--5万N·m(分若干档) 2.非线性度:±0.1%--±0.3%(F·S) 3.重复性:±0.1%--±0.2%(F·S) 4.精度:±0.2%--±0.5%(F·S) 5.环境温度:-40℃--70℃ 6.过载能力:150% 7.频率响应:100 μs 8.输出信号: 频率方波 (标准产品),也可以为4-20毫安电流或电压信号 零扭矩: 10 KHz 正向满量程: 15 KHz 反向满量程: 5 KHz 9.输出电平:5V (可以根据客户的要求作出调整),负载电流<10mA 10.信号插座: (1)0. (2)+12V. (3)-12V. (4)转速. (5)扭矩信号. 11.绝缘电阻:大于200MΩ 12.相对湿度:≤90%RH 量程选择: 转矩转速传感器的量程选择应以实际测量的最大转矩来确定,通常情况下应留有一定余量,防止出现过载以至于损坏传感器。 计算公式:M=9550*P/N 1

M:转矩单位(牛.米)P:电机功率单位(千瓦)N:转速单位(转/分钟) 如您使用的电机为三相感应电机,转矩量程应选择为额定扭矩的2-3倍,这是由于电动机的启动转矩较大的缘故。 型号选择 C系列转速转矩传感器 代号类型 4 常规动态测试 5 静态(适用于非旋转场合) 6 小量程(10牛米以下) 4A 为4型换代产品 6A 为6型换代产品 7 可以同时测量轴向力 量程测量范围(NM) 0.5 0—0.5 1 0—1 2 0—2 5 0—5 10 1—10 20 2—20 50 5—50 100 10—100 200 20—200 300 30—300 500 50—500 700 70—700 1000 100—1000 2000 200—2000 5000 500—5000 10000 1000—10000 20000 2000—20000 50000 5000—50000 代号输出形式 1 频率输出 2 4-20mA 3 电压输出 代号精度等级 A 0.2 B 0.5 2

JN338智能数字式转矩转速传感器及其应用

JN338 智能数字式转矩转速传感器及其应用 摘要介绍了 338 智能数字式转矩转速传感器的特性参数和工作原理, 该传感器使用两组旋转变压器实现了电源及信号的非接触传递,同时其信 号输出为频率量。 文中给出了基于 338 的智能转矩转速测量仪的硬件电路结构框图,同 时指出了 338 的应用注意事项。 关键词 338;数字式;转矩转速传感器1 概述转矩传感器在电动机、 发动机、 发电机、 风机、 搅拌机、 卷扬机、 钻探机械等众多的旋转动力测试系统中及数控机械加工中心、自动机床等 机电一体化设备中已获得广泛的应用。 传统的转矩传感器通常采用电阻应变桥来检测转矩信号,并采用导电 滑环来耦合电源输入及应变信号输出,由于导电滑环属于磨擦接触,因此 不可避免地存在着磨损和发热,这样不但限制了旋转轴的转速及导电滑环 的使用寿命,同时由于接触不可靠,也不可避免地会引起测量信号的波动 及误差的增加。 因此,如何在旋转轴上进行能源及信号的可靠耦合已成为转矩传感器 最棘手的问题,而JN338数字式转矩转速传感器则巧妙地解决了这个 问题。 范文先生网收集整理JN338是北京三晶创业集团公司的产品,该

传感器采用两组特殊环形旋转变压器来实现能源的输入及转矩信号的输 出,从而解决了旋转动力传递系统中能源及信号可靠地在旋转部分与静止 部分之间的传递问题。 该传感器还可同时实现旋转轴转速的测量,从而可方便地计算出轴输 出功率,因此,利用该传感器可实现转矩、转速及轴功率的多参数输出。 2 主要特性及参数2.1JN338的主要特性JN338的主要特性 如下●检测手段为应变电测技术;●测量精度高 信号检出、处理均用数字
技术;●抗干扰能力强,无需调零即可工作;●可靠性高、信噪比高,工作 寿命长; ●既可以测量静止扭矩, 也可测量旋转转矩; ●能够测量稳态扭矩, 也能测量过渡过程的动态转矩;●无需反复调零即可连续测量正反转矩;● 无集流环、电刷等磨损件,可高速超长运行; ●转矩信号的传递与是否旋 转、转速大小及旋转方向无关;●测量弹性体强度大,可承受150%过 载;●体积小,重量轻,安装方便,有套装式、卡装式、联轴式等多种安 装方式;●输出信号以频率形式给出,便于和计算机进行接口。 2.2传感器的主要技术参数传感器的主要技术参数如表1所列,表 2所列是该传感器产品的规格参数。 表 1338 传感器主要技术参数参数指标转矩准确度>05 过载能力 150 绝缘电阻≥200Ω 工作温度-20~60℃重复性≤05 滞后≤05 线性≤05 相对湿度 ≤90 表 2 传感器产品规格参考规格转矩测量范围最高转速 10010 ~ 100600020020 ~ 300500050050 ~ 70040001000100 ~ 150030002000200~300025005000500~500020002. 3插座引脚及功能J

压力传感器工作原理

压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 1、应变片压力传感器原理与应用: 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 1.1、金属电阻应变片的内部结构:它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 1.2、电阻应变片的工作原理:金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m)

扭矩传感器设计说明书

扭矩测量仪设计说明书

目录 一、设计背景 (3) 二、设计题目与设计要求 (3) 三、扭矩测量及应变片的原理 (3) 1、扭矩测量的原理 (4) 2、应变片的原理 (4) 四、总体方案确定 (5) 五、具体方案设计 (5) 1、扭矩传感器的设计 (6) 2、信号的中间变换与传输 (7) 3、试验数据采集系统设计 (10) 六、测量误差分析及数据处理 (11) 七、参考文献 (12) 八、附件 1、CAD图 2、感想

一、设计背景 不久前,市场研究机构Darnell Group在一份报告中指出,2010年扭矩测量仪价格预计将与现有模拟产品持平。扭矩测量仪的平均价格已经从几年前的6美元降到了目前的3美元以下,预计2010年将跌破2美元。Darnell表示,随着数字与模拟控制器解决方案价格趋同,更多、更符合具体应用的第二代扭矩测量仪推出,软件开发环境持续改善,以及市场更加了解扭矩测量技术等因素的推动,扭矩测量产品生命周期的“引入”阶段接近结束,扭矩测量仪市场将迎来加速增长。 现在,中国已成为全球最大的数字式控制产品应用市场。汽车电子和工业电子成为维持中国数字是控制器市场增长的关键推动因素。此外,监控、马达控制和测量仪器市场的增长也对中国市场有较大贡献,特别是安全系统、马达控制、电力机车、安全与控制以及车载娱乐系统将成为扭矩测量仪的新驱动力。 扭矩传感器,分为动态和静态两大类,其中动态扭矩传感器又可叫做转矩传感器、转矩转速传感器、非接触扭矩传感器、旋转扭矩传感器等。扭矩传感器是对各种旋转或非旋转机械部件上对扭转力矩感知的检测。扭矩传感器将扭力的物理变化转换成精确的电信号。扭矩传感器可以应用在制造粘度计,电动(气动,液力)扭力扳手,它具有精度高,频响快,可靠性好,寿命长等优点。 二、设计题目与设计要求 1、设计题目:设计一款扭矩仪及扭矩传感器。 2、设计要求: 1)精度高,频响快,可靠性好,寿命长; 2)体积小、质量轻,便于安装使用; 4)没有导电环等磨损件,可以高速长时间运行; 3、使用条件: 由于扭矩测量仪一般用在机器之间的传动轴上,振动大,灰尘、油雾、水污比较多,故要求传感器封闭,只留下两个轴端在外面,工作温度在0~60度。 三、扭矩测量及应变片的原理 1、扭矩测量的基本原理 根据第九章相关内容。(P145~146) 扭矩测量的基本原理如下: 电阻应变式转矩仪是根据应变原理来测量扭矩的。处于动力机械和负荷之间

扭矩传感器的测量方法

采用应变片电测技术,在弹性轴上组成应变桥,向应变桥提供电源即可测得该弹性轴受扭的电信号。将该应变信号放大后,经过压/频转换,变成与扭应变成正比的频率信号扭矩传感器是对各种旋转或非旋转机械部件上对扭转力矩感知的检测。扭矩传感器将扭力的物理变化转换成精确的电信号。 扭矩传感器可以应用在制造粘度计,电动(气动,液力)扭力扳手,它具有精度高,频响快,可靠性好,寿命长等优点。将专用的测扭应变片用应变胶粘贴在被测弹性轴上,并组成应变桥,若向应变桥提供工作电源即可测试该弹性轴受扭的电信号。这就是基本的扭矩传感器模式。但是在旋转动力传递系统中,最棘手的问题是旋转体上的应变桥的桥压输入及检测到的应变信号输出如何可靠地在旋转部分与静止部分之间传递,通常的做法是用导电滑环来完成。 由于导电滑环属于磨擦接触,因此不可避免地存在着磨损并发热,因而限制了旋转轴的转速及导电滑环的使用寿命。及由于接触不可靠引起信号波动,因而造成测量误差大甚至测量不成功。为了克服导电滑环的缺陷,另一个办法就是采用无线电遥测的方法:将扭矩应变信号在旋转轴上放大并进行v/f转换成频率信号,通过载波调制用无线电发射的方法从旋转轴上发射至轴外,再用无线电接收的方法,就可以得到旋转轴受扭的信号。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/7411105064.html,/

传感器原理及应用试题库

一:填空题(每空1分) 1.依据传感器的工作原理,传感器分敏感元件,转换元件, 测量电路三个部分组成。 2.半导体应变计应用较普遍的有体型、薄膜型、扩散型、外延型等。 3.光电式传感器是将光信号转换为电信号的光敏元件,根据光电效应可以分为 外光电效应,光电效应,热释电效应三种。 4.亮电流与暗电流之差称为光电流。 5.光电管的工作点应选在光电流与阳极电压无关的饱和区域。 6.金属丝应变传感器设计过程中为了减少横向效应,可采用直线栅式应变计 和箔式应变计结构。 7.反射式光纤位移传感器在位移-输出曲线的前坡区呈线性关系,在后坡区与 距离的平方成反比关系。 8.根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感 器。 9.画出达林顿光电三极管部接线方式: U CE 10.灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为:传 感器输出量的变化值与相应的被测量的变化值之比,用公式表示k(x)=Δy/Δx 。 11.线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一 种度量。按照所依据的基准之线的不同,线性度分为理论线性度、端基线性度、独立线性度、最小二乘法线性度等。最常用的是最

小二乘法线性度。 12.根据敏感元件材料的不同,将应变计分为金属式和半导体式两大 类。 13.利用热效应的光电传感器包含光---热、热---电两个阶段的信息变换过程。 14.应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿 法、计算机补偿法、应变计补偿法、热敏电阻补偿法。 15.应变式传感器一般是由电阻应变片和测量电路两部分组成。 16.传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 17.在光照射下,电子逸出物体表面向外发射的现象称为外光电效应,入 射光强改变物质导电率的物理现象称为光电效应。 18.光电管是一个装有光电阴极和阳极的真空玻璃管。 19.光电管的频率响应是指一定频率的调制光照射时光电输出的电流随频率变 化的关系,与其物理结构、工作状态、负载以及入射光波长等因素有关。多数光电器件灵敏度与调制频率的关系为Sr(f)=Sr。/(1+4π2f2τ2) 20.光电效应可分为光电导效应和光生伏特效应。 21.国家标准GB 7665--87对传感器下的定义是:能够感受规定的被测量并按照 一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。 22.传感器按输出量是模拟量还是数字量,可分为模拟量传感器和数字量传感器 23.传感器静态特性的灵敏度用公式表示为:k(x)=输出量的变化值/输入量的变 化值=△y/△x 24.应变计的粘贴对粘贴剂的要求主要有:有一定的粘贴强度;能准确传递应变;

压电式压力传感器原理及应用

压电式压力传感器原理及应用 自动化研1302班王民军 压电式压力传感器是工业实践中最为常用的一种传感器。而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也叫压电式压电传感器。压电式压力传感器可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。 一、压电式传感器的工作原理 1、压电效应 For personal use only in study and research; not for commercial use 某些离子型晶体电介质(如石英、酒石酸钾钠、钛酸钡等)沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。当外力去掉后,它又会重新回到不带电的状态,此现象称为“压电效应”。压电式传感器的原理是基于某些晶体材料的压电效应。 2、压电式压力传感器的特点 压电式压力传感器是基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式压力传感器用于测量力和能变换为力的非电物理量,如压力、加速度等(见

压电式压力传感器、加速度计)。压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系:Q=k*S*p。 For personal use only in study and research; not for commercial use 式中Q为电荷量;k为压电常数;S为作用面积;p为压力。通过测量电荷量可知被测压力大小。 压电式压力传感器的工作原理与压电式加速度传感器和力传感器基本相同,不同的是弹性元件是由膜片等把压力转换成集中力,再传给压电元件。为了保证静态特性及稳定性,通常多采用压电晶片并联。在压电式压力传感器中常用的压电材料有石英晶体和压电陶瓷,其中石英晶体应用得最为广泛。 For personal use only in study and research; not for commercial use 二、压电压力传感器等效电路和测量电路 在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料

相关文档
最新文档