(教案)复数的四则运算

(教案)复数的四则运算
(教案)复数的四则运算

复数的四则运算

【第一课时】

【教学过程】

一、问题导入

预习教材内容,思考以下问题:

1.复数的加、减法运算法则是什么?运算律有哪些? 2.复数的加、减法的几何意义是什么? 二、新知探究

探究点1:

复数的加、减法运算

(1)计算:(5-6i )+(-2-i )-(3+4i );

(2)设z 1=x +2i ,z 2=3-y i (x ,y ∈R ),且z 1+z 2=5-6i ,求z 1-z 2. 解:(1)原式=(5-2-3)+(-6-1-4)i =-11i . (2)因为z 1=x +2i ,z 2=3-y i ,z 1+z 2=5-6i ,

所以(3+x )+(2-y )i =5-6i ,

所以???3+x =5,2-y =-6,所以???x =2,y =8,所以z 1-z 2=(2+2i )-(3-8i )=(2-3)+[2-(-8)]i

=-1+10i .

解决复数加、减运算的思路

两个复数相加(减),就是把两个复数的实部相加(减),虚部相加(减).复数的减法是加法的逆运算,两个复数相减,也可以看成是加上这个复数的相反数.当多个复数相加(减)时,可将

这些复数的所有实部相加(减),所有虚部相加(减).

探究点2:

复数加、减法的几何意义

已知平行四边形OABC 的三个顶点O ,A ,C 对应的复数分别为0,3+2i ,-2+4i .

(1)求AO

→表示的复数;

(2)求CA

→表示的复数.

解:(1)因为AO

→=-OA →,

所以AO →表示的复数为-(3+2i ),即-3-2i . (2)因为CA

→=OA →-OC →, 所以CA →表示的复数为(3+2i )-(-2+4i )=5-2i . 互动探究:

1.变问法:若本例条件不变,试求点B 所对应的复数.

解:因为OB →=OA →+OC →,所以OB →表示的复数为(3+2i )+(-2+4i )=1+6i .所以点B 所

对应的复数为1+6i .

2.变问法:若本例条件不变,求对角线AC ,BO 的交点M 对应的复数.

解:由题意知,点M 为OB 的中点,

则OM →=12OB →

,由互动探究1中知点B 的坐标为(1,6),得点M 的坐标为? ??

??12,3,所以点M

对应的复数为1

2+3i .

复数加、减法几何意义的应用技巧

(1)复数的加减运算可以转化为点的坐标或向量运算.

(2)复数的加减运算转化为向量运算时,同样满足平行四边形法则和三角形法则. 三、课堂总结

1.复数加、减法的运算法则及加法运算律

(1)加、减法的运算法则

设z 1=a +b i ,z 2=c +d i (a ,b ,c ,d ∈R )是任意两个复数,则z 1+z 2=(a +c )+(b +d )i ,z 1-z 2=(a -c )+(b -d )i .

(2)加法运算律 对任意z 1,z 2,z 3∈C ,有 ①交换律:z 1+z 2=z 2+z 1.

②结合律:(z 1+z 2)+z 3=z 1+(z 2+z 3). 2.复数加、减法的几何意义

如图所示,设复数z 1=a +b i ,z 2=c +d i (a ,b ,c ,d ∈R )对应的向量分别为OZ 1→,OZ 2

→,四边形OZ 1

ZZ 2

为平行四边形,则与z 1

+z 2

对应的向量是OZ →,与z 1

-z 2

对应的向量是Z 2Z 1

四、课堂检测

1.(6-3i )-(3i +1)+(2-2i )的结果为( ) A .5-3i B .3+5i C .7-8i

D .7-2i

解析:选C .(6-3i )-(3i +1)+(2-2i )=(6-1+2)+(-3-3-2)i =7-8i . 2.已知复数z 1=(a 2-2)-3a i ,z 2=a +(a 2+2)i ,若z 1+z 2是纯虚数,则实数a 的值为____________.

解析:由z 1+z 2=a 2-2+a +(a 2-3a +2)i 是纯虚数,得???

a 2-2+a =0,a 2-3a +2≠0?a =-2.

答案:-2

3.已知复数z 1=-2+i ,z 2=-1+2i . (1)求z 1-z 2;

(2)在复平面内作出复数z 1-z 2所对应的向量.

解:(1)由复数减法的运算法则得z 1-z 2=(-2+i )-(-1+2i )=-1-i .

(2)在复平面内作复数z 1

-z 2

所对应的向量,如图中OZ

→.

【第二课时】

【教学过程】

一、问题导入

预习教材内容,思考以下问题:

1.复数的乘法和除法运算法则各是什么? 2.复数乘法的运算律有哪些? 3.如何在复数范围内求方程的解? 二、新知探究

探究点1: 复数的乘法运算

(1)(1-i )? ????

-12+32i (1+i )=( )

A .1+3i

B .-1+3i

C .3+i

D .-3+i

(2)已知a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,则(a +b i )2=( ) A .5-4i B .5+4i C .3-4i

D .3+4i

(3)把复数z 的共轭复数记作z -,已知(1+2i ) z -=4+3i ,求z .

解:(1)选B .(1-i )? ??

??

-12+32i (1+i )

=(1-i )(1+i )? ????

-12+32i

=(1-i 2)? ??

??

-12+32i

=2? ??

??

-12+32i =-1+3i . (2)选D .因为a -i 与2+b i 互为共轭复数, 所以a =2,b =1,所以(a +b i )2=(2+i )2=3+4i . (3)设z =a +b i (a ,b ∈R ),则z -=a -b i ,

由已知得,(1+2i )(a -b i )=(a +2b )+(2a -b )i =4+3i ,由复数相等的条件知,

{a +2b =4,2a -b =3,解得a =2,b =1,

所以z =2+i .

复数乘法运算法则的应用

复数的乘法可以按照多项式的乘法计算,只是在结果中要将i 2换成-1,并将实部、虚部分别合并.多项式展开中的一些重要公式仍适用于复数,如(a +b i )2=a 2+2ab i +b 2i 2=a 2-b 2+2ab i ,(a +b i )3=a 3+3a 2b i +3ab 2i 2+b 3i 3=a 3-3ab 2+(3a 2b -b 3)i .

探究点2: 复数的除法运算

计算:

(1)(1+2i )2+3(1-i )2+i

(2)(1-4i )(1+i )+2+4i 3+4i

解:(1)(1+2i )2+3(1-i )2+i =-3+4i +3-3i

2+i

=i

2+i

=i (2-i )5=15+25i .

(2)(1-4i )(1+i )+2+4i 3+4i =5-3i +2+4i 3+4i =7+i 3+4i

=(7+i )(3-4i )(3+4i )(3-4i )

=21-28i +3i +425=25-25i 25=1-i .

复数除法运算法则的应用

复数的除法法则在实际操作中不方便使用,一般将除法写成分式形式,采用分母“实数化”的方法,即将分子、分母同乘分母的共轭复数,使分母成为实数,再计算.

探究点3: i 的运算性质

(1)复数z =1-i

1+i

,则ω=z 2+z 4+z 6+z 8+z 10的值为( ) A .1 B .-1 C .i

D .-i

(2)? ??

??1+i 1-i 2 019

等于________. 解析:(1)z 2=?

??

??1-i 1+i 2=-1,所以ω=-1+1-1+1-1=-1. (2)? ????1+i 1-i 2 019=??????(1+i )(1+i )(1-i )(1+i )2 019=? ????2i 22 019=i 2 019

=(i 4)504·i 3=1504·(-i )=-i .

答案:(1)B (2)-i

(1)i 的周期性要记熟,即i n +i n +1+i n +2+i n +3=0(n ∈N *). (2)记住以下结果,可提高运算速度. ①(1+i )2=2i ,(1-i )2=-2i .

②1-i 1+i =-i ,1+i 1-i =i . ③1

i =-i . 探究点4:

在复数范围内解方程

在复数范围内解下列方程. (1)x 2+5=0; (2)x 2+4x +6=0.

解:(1)因为x 2+5=0,所以x 2=-5,

又因为(5i )2=(-5i )2=-5, 所以x =±5i ,

所以方程x 2+5=0的根为±5i . (2)法一:因为x 2+4x +6=0, 所以(x +2)2=-2,

因为(2i )2=(-2i )2=-2, 所以x +2=2i 或x +2=-2i , 即x =-2+2i 或x =-2-2i ,

所以方程x 2+4x +6=0的根为x =-2±2i . 法二:由x 2+4x +6=0知Δ=42-4×6=-8<0, 所以方程x 2+4x +6=0无实数根.

在复数范围内,设方程x 2+4x +6=0的根为x =a +b i (a ,b ∈R 且b ≠0), 则(a +b i )2+4(a +b i )+6=0, 所以a 2+2ab i -b 2+4a +4b i +6=0,

整理得(a 2-b 2+4a +6)+(2ab +4b )i =0,

所以???a 2-b 2+4a +6=0,2ab +4b =0,

又因为b ≠0,

所以???a 2-b 2+4a +6=0,2a +4=0,

解得a =-2,b =±2. 所以x =-2±2i ,

即方程x 2+4x +6=0的根为x =-2±2i .

在复数范围内,实系数一元二次方程ax 2+bx +c =0(a ≠0)的求解方法 (1)求根公式法

①当Δ≥0时,x =-b ±b 2-4ac

2a .

②当Δ<0时,x =-b ±-(b 2-4ac )i

2a

(2)利用复数相等的定义求解

设方程的根为x=m+n i(m,n∈R),将此代入方程ax2+bx+c=0(a≠0),化简后利用复数相等的定义求解.

三、课堂总结

1.复数乘法的运算法则和运算律

(1)复数乘法的运算法则

设z1=a+b i,z2=c+d i(a,b,c,d∈R),

则z1·z2=(a+b i)(c+d i)=(ac-bd)+(ad+bc)i.

(2)复数乘法的运算律

2.复数除法的运算法则

设z1=a+b i,z2=c+d i(c+d i≠0)(a,b,c,d∈R),

则z1

z2=

a+b i

c+d i

ac+bd

c2+d2

bc-ad

c2+d2

i(c+d i≠0).

对复数除法的两点说明

(1)实数化:分子、分母同时乘以分母的共轭复数,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似.

(2)代数式:注意最后结果要将实部、虚部分开.

四、课堂检测

1.若复数(1+b i)(2+i)是纯虚数(i是虚数单位,b是实数),则b=()

A.-2 B.-1 2

C.1

2D.2

解析:选D.因为(1+b i)(2+i)=2-b+(2b+1)i是纯虚数,所以b=2.

2.已知i为虚数单位,则复数

i

2-i

的模等于()

A. 5 B. 3

C.

3

3D.

5

5

解析:选D.因为

i

2-i

i(2+i)

(2-i)(2+i)

i(2+i)

5=-

1

5+

2

5i,

所以|i

2-i |=|-

1

5+

2

5i|=(-

1

5)

2+(

2

5)

2=

5

5,故选D.

3.计算:(1)

2+2i

(1-i)2

?

?

?

?

?

2

1+i

2 018

(2)(4-i5)(6+2i7)+(7+i11)(4-3i).

解:(1)

2+2i

(1-i)2

?

?

?

?

?

2

1+i

2 018

=2+2i

-2i

?

?

?

?

?2

2i

1 009

=i(1+i)+

?

?

?

?

?1

i

1 009

=-1+i+(-i)1 009=-1+i-i=-1.

(2)原式=(4-i)(6-2i)+(7-i)(4-3i)=22-14i+25-25i=47-39i.

复数概念及公式总结

数系的扩充和复数概念和公式总结 1.虚数单位i: 它的平方等于-1,即21 i=- 2.i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i 3.i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1 4.复数的定义:形如(,) a bi a b R +∈的数叫复数,a叫复数的实部,b叫复数的虚部全体复数所成的集合叫做复数集,用字母C表示复数通常用字母z表示,即(,) =+∈ z a bi a b R 5.复数与实数、虚数、纯虚数及0的关系:对于复数(,) +∈,当且仅当b=0时, a bi a b R 复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi 叫做纯虚数;a≠0且b≠0时,z=bi叫做非纯虚数的纯虚数;当且仅当a=b=0时,z就是实数0. 5.复数集与其它数集之间的关系:N Z Q R C. 6.两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等如果a,b,c,d∈R,那么a+bi=c+di?a=c,b=d 一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小当两个复数不全是实数时不能比较大小 7.复平面、实轴、虚轴: 点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴 数 (1)实轴上的点都表示实数 (2)虚轴上的点都表示纯虚数 (3)原点对应的有序实数对为(0,0) 设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数, 8.复数z1与z2的加法运算律:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i. 9.复数z1与z2的减法运算律:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i.

复数概念及公式总结教学内容

复数概念及公式总结

数系的扩充和复数概念 1.虚数单位i:它的平方等于-1,即21 i=- 2. i与-1的关系: i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i; 3. i的周期性: 4.复数的定义:形如(,) +∈的数叫复数,a叫复数的实部,b叫复数的虚部全体复数所成 a bi a b R 的集合叫做复数集,用字母C表示复数通常用字母z表示,即 z a bi a b R =+∈ (,) 5. 复数与实数、虚数、纯虚数及0的关系:对于复数(,) +∈,当且仅当b=0时,复数 a bi a b R a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;a≠0且b≠0时,z=bi叫做非纯虚数的纯虚数;当且仅当a=b=0时,z就是实数0. 5.复数集与其它数集之间的关系:N___Z___Q___R___C. 6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等如果a,b,c,d∈R,那么a+bi=c+di?a=c,b=d 一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较当两个复数不全是实数时不能比较大小 7. 复平面、实轴、虚轴:

点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面, x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数 (1)实轴上的点都表示____________ (2)虚轴上的点都表示____________ (3)原点对应的有序实数对为(0,0) 设z 1=a +bi ,z 2=c +di (a 、b 、c 、d ∈R )是任意两个复数, 8.复数z 1与z 2的加法运算律:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i . 9.复数z 1与z 2的减法运算律:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i . 10.复数z 1与z 2的乘法运算律:z 1·z 2= (a +bi )(c +di )=(ac -bd )+(bc +ad )i . 11.复数z 1与z 2的除法运算律: 12.共轭复数: 通常记复数z 的共轭复数为z 。例如z =3+5i 与z =3-5i 互为共轭复数 13. 共轭复数的性质 (1)实数的共轭复数仍然是它本身 (2)22Z Z Z Z ==? (3)两个共轭复数对应的点关于实轴对称 14.复数的两种几何意义: 15几个常用结论 (1)()i i 212=+,(2)()i i 212-=- (3)i i -=1, (4) i i i =-+11 16.复数的模: (5) i i i -=+-11 复数bi a Z +=的模22b a Z += (6)()()22b a bi a bi a +=-+ 点),(b a Z 向量OZ 一一对应 一一对应 一一对应 复数()R b a bi a Z ∈+=,

复数的定义

第十四章 复数 一 、复数的概念 1. 虚数单位:i 规定:(1)21i =-;(2)虚数单位i ,可以与实数进行四则运算,在进行四则运算时,原有的加法,乘法运算律仍然成立。 2. 复数:形如a bi +,,a R b R ∈∈的数叫做复数,a 叫实部,b 叫虚部。 3. 复数集:所有复数构成的集合,复数集{},,C x x a bi a R b R ==+∈∈. 4. 分类:0b =时为实数;0b ≠时为虚数,0,0a b =≠时为纯虚数,且R üC . 5. 两个复数相等:a bi c di a c +=+?=且(,,,)b d a b c d R =∈ 例1 下面五个命题 ①34i +比24i +大; ②复数32i -的实部为3,虚部为2i -; ③1Z ,2Z 为复数,120Z Z ->,那么12Z Z >;④两个复数互为共轭复数,则其和为实数; ⑤两个复数相等:a bi c di a c +=+?=且(,,,)b d a b c d R =∈. 例2 已知:(1)(1),Z m m i m R =++-∈求Z 为(1)实数;(2)虚数;(3)纯虚数时,求m 的值。 例3 已知2226()x y i y x i +-=+-,求实数,x y 的值。 二 、复数的几何意义:,,,Z a bi a R b R =+∈∈与点(,)a b 一一对应。 1.复平面:x 轴叫实轴;y 轴叫虚轴。x 轴上点为实数,y 轴上除原点外的点为纯虚数。 2.Z a bi =+;连接点(,)a b 与原点,得到向量OZ ,点(,)Z a b ,向量OZ ,Z a bi =+之间一一对应。 3.模:2Z a bi OZ a =+== 注:Z 的几何意义:令(,)Z x yi x y R =+∈,则Z =Z 的点到原点的距离就是Z 的几何意义;12Z Z -的几何意义是复平面内表示复数1Z ,2Z 的两点之间的距离。

复数知识点精心总结

复数知识点 考试内容: 复数的概念. 复数的加法和减法. 复数的乘法和除法. 数系的扩充. 考试要求: (1)了解复数的有关概念及复数的代数表示和几何意义. (2)掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算. (3)了解从自然数系到复数系的关系及扩充的基本思想. 1. ⑴复数的单位为i ,它的平方等于-1,即1i 2-=. ⑵复数及其相关概念: ① 复数—形如a + b i 的数(其中R b a ∈,); ② 实数—当b = 0时的复数a + b i ,即a ; ③ 虚数—当0≠b 时的复数a + b i ; ④ 纯虚数—当a = 0且0≠b 时的复数a + b i ,即b i. ⑤ 复数a + b i 的实部与虚部—a 叫做复数的实部,b 叫做虚部(注意a ,b 都是实数) ⑥ 复数集C —全体复数的集合,一般用字母C 表示. ⑶两个复数相等的定义: 00==?=+∈==?+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且. ⑷两个复数,如果不全是实数,就不能比较大小. 注:①若21,z z 为复数,则ο1若021φz z +,则21z z -φ.(×)[21,z z 为复数,而不是实数] ο2若21z z π,则021πz z -.(√) ②若C c b a ∈,,,则0)()()(222=-+-+-a c c b b a 是c b a ==的必要不充分条件.(当22)(i b a =-, 0)(,1)(22=-=-a c c b 时,上式成立) 2. ⑴复平面内的两点间距离公式:21z z d -=. 其中21z z ,是复平面内的两点21z z 和所对应的复数,21z z d 和表示间的距离. 由上可得:复平面内以0z 为圆心,r 为半径的圆的复数方程:)(00φr r z z =-. ⑵曲线方程的复数形式: ①00z r z z 表示以=-为圆心,r 为半径的圆的方程.

复数的基本概念与基本运算

复数的基本概念与基本运算 一、《考试说明》中复数的考试内容(1)数的概念的发展,复数的有关概念(实数、虚数、纯虚数、复数相等、共轭复数、模);(2)复数的代数表示与向量表示;(3)复数的加法与减法,复数的乘法与除法,复数的三角形式,复数三角形式的乘法与乘方,复数三角形式的除法与开方;(4)复数集中解实系数方程(包括一元二次方程、二项方程)。二、考试要求(1)使学生了解扩充实数集的必要性,正确理解复数的有关概念.掌握复数的代数、几何、三角表示及其转换;(2)掌握复数的运算法则,能正确地进行复数的运算,并理解复数运算的几何意义;(3)掌握在复数集中解实数系数一元二次方程和二项方程的方法.(4)通过内容的阐述,带综合性的例题和习题的训练,继续提高学生灵活运用数学知识解题的能力.(5)通过数的概念的发展,复数、复平面内的点及位置向量三者之间的联系与转换的复习教学,继续对学生进行辩证观点的教育.三、学习目标(1)联系实数的性质与运算等内容,加强对复数概念的认识;?(2)理顺复数的三种表示形式及相互转换:z = r(cosθ+isinθ) , OZ(Z(a,b)) , z=a+bi (3)正确区分复数的有关概念;(4)掌握复数几何意义,注意复数与三角、解几等内容的综合;复(5)正确掌握复数的运算:复数代数形式的加、减、乘、除;三

角数实数集集形式的乘、除、乘方、开方及几何意义;虚数单位i及1的立方虚根纯虚数集ω的性质;模及共轭复数的性质;(6)掌握化归思想——将复数问题实数化(三角化、几何化);(7)掌握方程思想——利用复数及其相等的有关充要条件,建立相应的方程,转化复数问题。四、本章知识结构与复习要点1.知识体系表解 1 1/16页2.复数的有关概念和性质:(1)i称为虚数单位,规定2i,,1,形如a+bi的数称为复数,其中a,b?R.(2)复数的分类(下面的a,b均为实数) (3)复数的相等设复数,那么的充要zz,zabizabiababR,,,,,,(,,,)121112221122条件是:.abab,,且1122 (4)复数的几何表示复数z=a+bi(a,b?R)可用平面直角坐标系内点Z(a,b)来表示.这时称此平面为复平面,x轴称为实轴,y轴除去原点称为虚轴.这样,全体复数集C与复平面上全体点集是一一对应的. 2 2/16页复数 z=a+bi.在复平面内还可以用以原点O为起点,以点Z(a,b) abR,,,,向量所成的集合也是一一对应的(例外的是复数0对应点O,看成零向量).(7)复数与实数不同处?任意两个实数可以比较大小,而任意两个复数中至少有一个不是实数时就不能比较大小.?实数对于四则运算是通行无阻的,但不是任何实数都可以开偶次方.而复数对四则运算和开方均通行无阻.3.有关计算:?**n4k,rrkNrN,,,nN,ii,i怎样计算?(先求n被4除所得的余数,),,,,1313?,,,,i、,,,,i

高中数学复数的知识点总结

高中数学复数的知识点总结 高中数学复数的知识点总结 定义 数集拓展到实数范围内,仍有些运算无法进行。比如判别式小于0的一元二次方程仍无解,因此将数集再次扩充,达到复数范围。形如z=a+bi的数称为复数(complexnumber),其中规定i为虚数单位,且i^2=i*i=-1(a,b是任意实数)我们将复数z=a+bi中的实数a称为复数z的实部(realpart)记作Rez=a实数b称为复数z的虚部(imaginarypart)记作Imz=b.已知:当b=0时,z=a,这时复数成为实数当a=0且b≠0时,z=bi,我们就将其称为纯虚数。 运算法则 加法法则 复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。 即(a+bi)+(c+di)=(a+c)+(b+d)i. 乘法法则 复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i^2=1,把实部与虚部分别合并。两个复数的积仍然是一个复数。 即(a+bi)(c+di)=(ac-bd)+(bc+ad)i.

除法法则 复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算, 即(a+bi)/(c+di) =[(a+bi)(c-di)]/[(c+di)(c-di)] =[(ac+bd)+(bc-ad)i]/(c^2+d^2). 开方法则 若z^n=r(cosθ+isinθ),则 z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=0,1,2,3……n-1) 复数中的难点 (1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明. (2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练. (3)复数的辐角主值的求法. (4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的.模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.

数系的扩充和复数的概念

《数系的扩充和复数的概念》教学设计 1.了解解方程等实际需要也是数系发展的一个主要原因,数集的扩展过程以及复数的 分类表; 2.理解复数的有关概念以及符号表示; 3.掌握复数的代数表示形式及其有关概念; 4.在问题情境中了解数系得扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.【教学重点】引进虚数单位i的必要性、对i的规定以及复数的有关概念. 【教学难点】复数概念的理解. 【教学过程】 1.对数集因生产和科学发展的需要而逐步扩充的过程进行概括(教师引导学生进行简 明扼要的概括和总结) 自然数整数有理数无理数实数 2.提出问题 我们知道,对于实系数一元二次方程,没有实数根.我们能否将实数集进行扩充,使 得在新的数集中,该问题能得到圆满解决呢? 3.组织讨论,研究问题 我们说,实系数一元二次方程没有实数根.实际上,就是在实数范围内,没有一个实数的平方会等于负数.解决这一问题,其本质就是解决一个什么问题呢? 组织学生讨论,引导学生研究,最后得出结论:最根本的问题是要解决-1的开平方问 题.即一个什么样的数,它的平方会等于-1. 4.引入新数,并给出它的两条性质 根据前面讨论结果,我们引入一个新数,叫做虚数单位,并规定: (1); (2)实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立.有了前面的讨论,引入新数,可以说是水到渠成的事.这样,就可以解决前面提出的问题(-1可以开平方,而且-1的平方根是). 5.提出复数的概念 根据虚数单位的第(2)条性质,可以与实数b相乘,再与实数a相加.由于满足乘法交换律及加法交换律,从而可以把结果写成这样,数的范围又扩充了,出现了形如的数, 我们把它们叫做复数. 全体复数所形成的集合叫做复数集,一般用字母C表示,显然有: N* N Z Q R C. 【巩固练习】 下列数中,哪些是复数,哪些是实数,哪些是虚数,哪些是纯虚数?并分别指出这些复 数的实部与虚部各是什么? 例1.实数m分别取什么值时,复数z=m+1+(m-1)i是 (1)实数?(2)虚数?(3)纯虚数? 分析:因为m∈R,所以m+1,m-1都是实数,由复数z=a+bi是实、虚数、纯虚数与 零的条件可以确定实数m的值.

复数知识点总结

复数知识点总结 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

《复数》知识点总结 1、复数的概念 形如(,)a bi a b R +∈的数叫做复数,其中i 叫做虚数单位,满足21i =-,a 叫做复数的实部,b 叫做复数的虚部. (1)纯虚数:对于复数z a bi =+,当00a b =≠且时,叫做纯虚数. (2)两个复数相等:,()a bi c di a b c d R ++∈、、、相等的充要条件是=a c b d =且. (3)复平面:建立直角坐标系来表示复数的平面叫做复平面,横轴为实轴,竖轴除去原点为虚轴. (4)复数的模:复数z a bi =+可以用复平面内的点Z(,)a b 表示,向量OZ 的模 叫做复数z a bi =+的模,表示为:||||z a bi =+ (5)共轭复数:两个复数的实部相等,虚部互为相反数时,这两个复数叫做共轭复数. 2、复数的四则运算 (1)加减运算:()()()()a bi c di a c b d i +±+=±++; (2)乘法运算:()()()()a bi c di ac bd ad bc i +?+=-++; (3)除法运算:2222()()()()(0)ac bd bc ad a bi c di i c di c d c d +-+÷+=++≠++; (4)i 的幂运算:41n i =,41n i i +=,421n i +=-,43n i i +=-.()n Z ∈ (5)22||||z z z z == 3、 规律方法总结 (1)对于复数(,)z a bi a b R =+∈必须强调,a b 均为实数,方可得出实部为a ,虚部为b

高一数学复数的四则运算知识点分析

高一数学复数的四则运算知识点分析 复数的概念: 形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复 数所成的集合叫做复数集,用字母C表示。 复数的表示: 复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫 做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。 复数的几何意义: (1)复平面、实轴、虚轴: 点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点 Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原 点外,虚轴上的点都表示纯虚数 (2)复数的几何意义:复数集C和复平面内所有的点所成的集合 是一一对应关系,即 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。 这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。 复数的模: 复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距 离叫复数的模,记为|Z|,即|Z|= 虚数单位i: (1)它的平方等于-1,即i2=-1;

(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立 (3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。 (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。 复数模的性质: 复数与实数、虚数、纯虚数及0的关系: 对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时, z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。 复数集与其它数集之间的关系: 复数的运算: 1、复数z1与z2的和的定义: z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i; 2、复数z1与z2的差的定义:z1-z2=(a+bi)-(c+di)=(a-c)+(b- d)i; 3、复数的乘法运算规则:设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i,其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中 把i2换成-1,并且把实部与虚部分别合并,两个复数的积仍然是一个复数。 4、复数的除法运算规则: 。 复数加法的几何意义: 设 为邻边画平行四边形

【高中数学】《复数》考试知识点

【高中数学】《复数》考试知识点 一、选择题 1.已知复数z 满足 121i z i i +?=--(其中z 为z 的共轭复数),则z 的值为( ) A .1 B .2 C D 【答案】D 【解析】 【分析】 按照复数的运算法则先求出z ,再写出z ,进而求出z . 【详解】 21(1)21(1)(1)2 i i i i i i i ++===--+Q , 1222(2)121i i z i i z i z i i i i i +-∴?=-??=-?==--=---, 12||z i z ∴=-+?== 故选:D 【点睛】 本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题. 2.已知复数21i z = -+,则( ) A .2z = B .z 的实部为1 C .z 的虚部为1- D .z 的共轭复数为1i + 【答案】C 【解析】 分析:由题意首先化简复数z ,然后结合z 的值逐一考查所给的选项即可确定正确的说法. 详解:由复数的运算法则可得:()()()()21211112i i z i i i ----= ==---+--, 则z =,选项A 错误; z 的实部为1-,选项B 错误; z 的虚部为1-,选项C 正确; z 的共轭复数为1z i =-+,选项D 错误. 本题选择C 选项. 点睛:本题主要考查复数的运算法则,复数的几何意义等知识,意在考查学生的转化能力和计算求解能力.

3.已知复数(2)z i i =-,其中i 是虚数单位,则z 的模z = ( ) A B C .3 D .5 【答案】B 【解析】 (2)2z i i i i =-=-==B . 4.a 为正实数,i 为虚数单位, 2a i i +=,则a=( ) A .2 B C D .1 【答案】B 【解析】 【分析】 【详解】 ||220,a i a a a i +==∴=>∴=Q ,选B. 5.若z C ∈且342z i ++≤,则1z i --的最大和最小值分别为,M m ,则M m -的值等于( ) A .3 B .4 C .5 D .9 【答案】B 【解析】 【分析】 根据复数差的模的几何意义可得复数z 在复平面上对应的点的轨迹,再次利用复数差的模的几何意义得到,M m ,从而可得M m -的值. 【详解】 因为342z i ++≤, 故复数z 在复平面上对应的点P 到134z i =--对应的点A 的距离小于或等于2, 所以P 在以()3,4C --为圆心,半径为2的圆面内或圆上, 又1z i --表示P 到复数21z i =+对应的点B 的距离, 故该距离的最大值为222AB +==, 最小值为22AB -=,故4M m -=. 故选:B. 【点睛】

高中数学复数专题知识点整理和总结人教版

【1】复数的基本概念 (1)形如a + b i 的数叫做复数(其中R b a ∈,);复数的单位为i ,它的平方等于-1,即1i 2-=.其中a 叫做复数的实部,b 叫做虚部 实数:当b = 0时复数a + b i 为实数 虚数:当0≠b 时的复数a + b i 为虚数; 纯虚数:当a = 0且0≠b 时的复数a + b i 为纯虚数 (2)两个复数相等的定义: 00==?=+∈==?+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且 (3)共轭复数:z a bi =+的共轭记作z a bi =-; (4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi =+,对应点坐标为(),p a b ;(象限的复习) (5)复数的模:对于复数z a bi =+,把z =z 的模; 【2】复数的基本运算 设111z a b i =+,222z a b i =+ (1) 加法:()()121212z z a a b b i +=+++; (2) 减法:()()121212z z a a b b i -=-+-; (3) 乘法:()()1212122112z z a a b b a b a b i ?=-++ 特别22z z a b ?=+。 (4)幂运算:1i i =21i =-3i i =-41i =5i i =61i =-?????? 【3】复数的化简 c di z a bi +=+(,a b 是均不为0的实数);的化简就是通过分母实数化的方法将分母化为实数:()()22 ac bd ad bc i c di c di a bi z a bi a bi a bi a b ++-++-==?=++-+ 对于()0c di z a b a bi +=?≠+,当c d a b =时z 为实数;当z 为纯虚数是z 可设为c di z xi a bi +==+进一步建立方程求解 【例4】 若复数 ()312a i z a R i +=∈-(i 为虚数单位),

苏教版数学高二-选修2-2导学案 3.2《复数的四则运算》(1)

3.2 复数的四则运算 导学案(1) 教学目标 1、理解复数代数形式的四则运算法则。 2、能运用运算律进行复数的四则运算。 教学习重难点 重点 复数的加、减、乘法运算 难点 复数的加、减、乘法运算 教学过程 一、复习回顾 1.虚数单位i 的引入; 2.复数有关概念: 复数的代数形式: (,)z a bi a R b R =+∈∈ 复数的实部a ,虚部b 。 实数:()0;b a R =∈ 虚数:()0;b a R ≠∈ 纯虚数:0 0a b =??≠? 复数相等a bi c di +=+?a c b d =??=? 特别地,a+bi=0?a=b=0。 问题1:a=0是z=a+bi(a 、b ∈R)为纯虚数的必要不充分条件 问题2:一般地,两个复数只能说相等或不相等,而不能比较大。思考:对于任意的两个复数到底能否比较大小? 当且仅当两个复数都是实数时,才能比较大小。虚数不可以比较大小。 二、问题引入 我们知道实数有加、减、乘等运算,且有运算律: a b b a +=+ ab ba =

()()a b c a b c ++=++ ()()ab c a bc = ()a b c ab ac +=+ 那么复数应怎样进行加、减、乘运算呢?你认为应怎样定义复数的加、减、乘运算呢?运算律仍成立吗? 注意到i =-2 1,虚数单位i 可以和实数进行运算且运算律仍成立,所以复数的加、减、乘运算我们已经是自然而然地在进行着,只要把这些零散的操作整理成法则即可了! 三、知识新授 1、复数加减法的运算法则 (1) 运算法则: 设复数z 1=a+bi,z 2=c+di ,那么:z 1+z 2=(a+c)+(b+d)i; z 1-z 2=(a-c)+(b-d)i 。 即:两个复数相加(减)就是实部与实部,虚部与虚部分别相加(减)。 (2)复数的加法满足交换律、结合律 即对任何z 1,z 2,z 3∈C ,有:z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3)。 2、复数的乘法 (1)复数乘法的法则 复数的乘法与多项式的乘法是类似的,但必须在所得的结果中把i 2换成-1,并且把实部合并。即:(a+bi)(c+di)=ac+bci+adi+bdi 2=(ac-bd)+(bc+ad)i 。 (2)复数乘法的运算定理 复数的乘法满足交换律、结合律以及乘法对加法的分配律. 即对任何z 1,z 2,z 3有: z 1z 2=z 2z 1;(z 1z 2)z 3=z 1(z 2z 3);z 1(z 2+z 3)=z 1z 2+z 1z 3。 3. 共轭复数的概念、性质 (1)定义:实部相等,虚部互为相反数的两个复数互为共轭复数。复数z=a+bi 的共轭复数记作,=-z z a bi 即。 (2)共轭复数的性质: 思考:设z=a+bi (a,b ∈R ),那么?+=z z ?-=z z 2-2.z z a z z bi +==; 另外不难证明: 12121212,z z z z z z z z +=+-=- 四、例题应用 例1、计算 (56)(2)(34)i i i -+---+

复数的概念与运算

复数的概念与运算 【知识点精讲】 1. 虚数单位i :i 2=–1,实数可以与它进行四则运算,原有的加、乘运算律仍成立;i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i ;I 具有周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =1(n ∈N ). 2. 复数的代数形式:z=a+bi (a,b ∈R ), a 叫实部,b 叫虚部.掌握复数(集C )的分类: ()?? ??????+=≠==+=≠====∈+=为非纯虚数的虚数时为纯虚数时为虚数时为实数时其中为实数时复数bi a z a bi z a bi a z b ,z b a a z b R b a bi a z 000000),( NZQRC 3.复数相等:设a,b,c,d ∈R ,则a+bi=c+di ?a=c,b=d ;a+bi=0?a=b=0;利用复数相等的条件转化为实数问题是解决复数问题的常用方法; 4.共轭复数:实部相等,虚部互为相反数的两个复数.如:a+bi 和a –bi (a,b ∈R ); 5.复数的模:2||||||z a bi OZ a =+==,两个复数不能比较大小,但它们的模可以比较大小; 6.复平面、实轴、虚轴:点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数 对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z =0+0i =0表示是实数.故除了原点外,虚轴上的点都表示纯虚数 7.掌握复数的和、差、积、商运算法则:z 1±z 2=(a +bi ) ±(c +di )=(a ±c )+(b ±d )i ;(a +bi )(c +di )=(ac -bd )+(bc +ad )i ;(a +bi )÷(c +di )= 2222d c ad bc d c bd ac +-+++ i (实际上是分子分母同乘以分母的共轭复数,并化简). 复数运算满足加、乘的交换律、结合律、分配律. 【例题选讲】 例1 计算:(1)i i -22;(2)i i 3232-+. 解:(1)i 5 452+- ;(2)i 56251+-. 例2 已知z 是复数,z+2i 、 i z -2均为实数,且复数(z+ai)2在复平面上对应的点在第一象限,求实数a 的取值范围. 优化设计P222典例剖析例1,解答略。

(完整版)复数知识点归纳

精心整理 复数 【知识梳理】 一、复数的基本概念 1、虚数单位的性质 i叫做虚数单位,并规定:①i可与实数进行四则运算;②i2 1 ;这样方程x21就有解了,解 为x i或x i 2、复数的概念 (1)定义:形如a bi (a, b€ R)的数叫做复数,其中i叫做虚数单位,a叫做,b叫做。全体复数所成的集合C叫做复数集。复数通常用字母z表示,即z a bi (a,b€ R) 对于复数的定义要注意以下几点: ①z a bi (a,b€ R)被称为复数的代数形式,其中bi表示b与虚数单位i相乘 ②复数的实部和虚部都是实数,否则不是代数形式 (2)分类: 例题:当实数m为何值时,复数(m 5m 6) (m2 3m)i是实数?虚数?纯虚数? 二、复数相等 也就是说,两个复数相等,充要条件是他们的实部和虚部分别相等 注意:只有两个复数全是实数,才可以比较大小,否则无法比较大小 例题:已知(x y 3) (x 4)i 0求x,y的值 三、共轭复数 a bi 与c di 共轭a c, b d(a,b,c,d R) z a bi的共轭复数记作z a bi,且z z a2b2 四、复数的几何意义 1、复平面的概念 建立直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点

都表示实数;除了原点外,虚轴上的点都表示纯虚数。 页脚内容

2、复数的几何意义 复数z a bi 与复平面内的点Z(a,b)及平面向量OZ (a,b)(a,b R)是一一对应关系(复数的实质 是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量) 相等的向量表示同一个复数 例题:(1)当实数m 为何值时,复平面内表示复数z (m 2 8m 15) (m 2 5m 14)i 的点 ①位于第三象限;②位于直线y x 上 (2) 复平面内AB (2,6),已知CD//AB ,求CD 对应的复数 3、复数的模: 向量0Z 的模叫做复数z a bi 的模,记作|Z 或|a bi|,表示点(a,b)到原点的距离,即 z a bi| Va 2 b 2, z 若召 a bi , z 2 c di ,则忆 z 2 |表示(a,b)到(c,d)的距离,即 |z ) z 2 | J(a c)2 ―(b —dp 例题:已知z 2 i ,求|z 1 i|的 值 五、复数的运算 (1)运算法则:设 Z 1 = a + bi ,z 2= c + di , a , b , c ,d € R ① z ,九 a bi c di (a c) ( b d)i ② 召 z 2 (a bi) (c di) (ac bd) (bc ad)i (a bi)(c di) (ac bd) (bc ad)i ---------------------------- = (c di) (c di) c 2 d 2 (2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行 ?如图给出 的平行四边形0Z 1ZZ 2可以直观地反映出复数加减法的几何意义,即=+ ,二一 六、常用结论 (1) i ,i 2 1,i 3 i ,i 4 1 求i n ,只需将n 除以4看余数是几就是i 的几次 例题:严 (2) (1 i)2 2i ,(1 i)2 2i ),1 3、3 4 1 '3 3 . (3) ( i ) 1 ,( i) 1 2 2 2 2 【思考辨析】 判断下面结论是否正确(请在括号中打“V”或“X” ) (1) 方程X 2 + x + 1 = 0没有解.( ) ③互 (a bi) Z 2 (c di)

1.1 数系的扩充和复数的概念

第三章数系的扩充与复数的引入 本章概览 教材分析 复数在数学、力学、电学等其他学科中都有广泛的应用,复数与向量、平面解析几何、三角函数等都有密切的联系,也是进一步学习数学的基础. 本章内容分为两节:3.1数系的扩充和复数的概念,3.2复数代数形式的四则运算. 教材通过问题情境:“方程x2+1=0在实数集中无解,如何设想一种方法使该方程有解?”引出扩充数系的必要性,从而引入虚数、复数的概念.复数实际上是一对有序数对,即a+bi (a,b),类比实数可以用数轴上的点表示,复数就可以在直角坐标系中用点或向量表示,从而有了复数的几何意义,使数和形得到了有机的结合. 复数代数形式的四则运算可以类比代数式运算中的“合并同类项”“分母有理化”等,利用i2=-1,将复数代数形式的四则运算归结为实数的四则运算,体现了化虚为实的化归思想. 复数的加法、减法运算还可以通过向量的加法、减法的平行四边形或三角形法则来进行,这不仅又一次看到了向量这一工具的功能,也把复数及其加、减运算与向量及其加、减运算完美地统一起来. 教材每节设置了“思考”“探究”,让学生通过类比思想,并借助于具体实例对数系进行了扩充,研究了复数代数形式的几何意义和复数加、减法的运算及几何意义,体现了《课标》以学生为主体的教学理念,有利于培养学生的思想素质和激发学习数学的兴趣和欲望.本章的重点是复数的概念及复数代数形式的四则运算,本章的难点是复数的引入和复数加、减法的几何意义. 课标要求 (1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系. (2)理解复数的基本概念以及复数相等的充要条件. (3)了解复数的代数表示法及其几何意义. (4)能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义. 教学建议 (1)数的概念的发展与数系的扩充是数学发展的一条重要线索.数系扩充的过程体现了数学的发现和创造过程,也体现了数学发生、发展的客观需求.建议教学时详细介绍从自然数系逐步扩充到实数系的过程,使数系的扩充与复数的引入更为自然,让学生充分领略数系扩充过程中所蕴涵的数学思想和科学发展思想. (2)在讲解复数的相关概念时,在“复数相等”环节,可以类比“相反数”的概念. (3)学习复数代数形式时的加、减、乘等运算时,可设置研究问题:用第二章“类比推理”思想,将多项式的运算法则与之进行类比. (4)删减的内容不必再补.对于弱化的部分,建议也只是在其出现的地方作适当延伸,不必重点讲解. 课时分配 本章教学时间大约需5课时,具体分配如下(仅供参考)

复数的概念、几何意义及运算

高考数学一轮复习专题训练(40) 复数的概念、几何意义及运算 班级________姓名____________学号______成绩______日期____月____日 一、填空题 1. 复数z= 1 1-i 的虚部是________. 2. 设z=(2-i)2(i为虚数单位),则复数z的模为________. 3. 若复数a+i 1+i 为纯虚数,则实数a的值是________. 4. 若复数z=2-i 3-4i ,则z的共轭复数为z=________. 5. 在复平面内,复数1-i 2+i +i2 019对应的点位于第 ________象限. 6. 若复数z= 1 a-2 +(a2-4)i(a∈R)是实数,则a= ________.

7. 已知i是虚数单位,则满足z-i=|3+4i|的复数z在复平面上对应点在第________象限. 8. 满足条件|z-i|=|z+3|的复数z在复平面上对应点的轨迹是________. 9. 已知i是虚数单位,a、b∈R,则“a=b=1”是“(a +b i)2=2i”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”) 10. 若复数(m2-3m-4)+(m2-5m+6)i表示的点在虚轴上,则实数m的值为________. 11. 设a∈R,若复数a+i 1+i (i为虚数单位)的实部和虚部相 等,则a=________. 12. 已知方程x2+(4+i)x+4+a i=0(a∈R)有实根b,且z=a+b i,则复数z=________. 13. 若复数(x-2)+y i(x,y∈R)的模为3,则y x的最大值

高考复数知识点精华总结

1.复数的概念: (1)虚数单位i ; (2)复数的代数形式z=a+bi ,(a, b ∈R); (3)复数的实部、虚部、虚数与纯虚数。 2.复数集 整 数有 理 数实数(0)分 数复 数(,)无理数(无限不循环 小数)纯 虚 数(0)虚 数(0)非 纯 虚 数(0)b a bi a b R a b a ??????=????? +∈??? ?≠?≠??=?? 3.复数a+bi(a, b ∈R)由两部分组成,实数a 与b 分别称为复数a+bi 的实部与虚部,1与i 分别是实数单位和虚数单位,当b=0时,a+bi 就是实数,当b ≠0时,a+bi 是虚数,其中a=0且b ≠0时称为纯虚数。 应特别注意,a=0仅是复数a+bi 为纯虚数的必要条件,若a=b=0,则a+bi=0是实数。 4.复数的四则运算 若两个复数z1=a1+b1i ,z2=a2+b2i , (1)加法:z1+z2=(a1+a2)+(b1+b2)i ; (2)减法:z1-z2=(a1-a2)+(b1-b2)i ; (3)乘法:z1·z2=(a1a2-b1b2)+(a1b2+a2b1)i ; (4)除法:11212211222222()()z a a b b a b a b i z a b ++-=+; (5)四则运算的交换率、结合率;分配率都适合于复数的情况。 (6)特殊复数的运算: ① n i (n 为整数)的周期性运算; ②(1±i)2 =±2i ; ③ 若ω=-21 +23i ,则ω3=1,1+ω+ω2=0. 5.共轭复数与复数的模 (1)若z=a+bi ,则z a bi =-,z z +为实数,z z -为纯虚数(b ≠0).

复数概念及公式总结00820

数系的扩充和复数概念 1.虚数单位i:它的平方等于-1,即21i =- 2.i 与-1的关系:i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i ; 3.i 的周期性: 4.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做 复数集,用字母C 表示复数通常用字母z 表示,即(,)z a bi a b R =+∈ 5.复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当b =0时,复数a +bi (a 、b ∈R )是实数a ;当b ≠0时,复数z =a +bi 叫做虚数;当a =0且b ≠0时,z =bi 叫做纯虚数;a ≠0且b ≠0时,z =bi 叫做非纯虚数的纯虚数;当且仅当a =b =0时,z 就是实数0. 5.复数集与其它数集之间的关系:N___Z___Q___R___C . 6.两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等如果a ,b ,c ,d ∈R ,那么a +bi =c +di ?a =c ,b =d 一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小当两个复数不全是实数时不能比较大小 7.复平面、实轴、虚轴: 点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数 (1)实轴上的点都表示____________ (2)虚轴上的点都表示____________ (3)原点对应的有序实数对为(0,0) 设z 1=a +bi ,z 2=c +di (a 、b 、c 、d ∈R )是任意两个复数, 8.复数z 1与z 2的加法运算律:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i . 9.复数z 1与z 2的减法运算律:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i .

相关文档
最新文档