焊接应力的分类

焊接应力的分类
焊接应力的分类

1.焊接应力的分类

焊接过程是一个先局部加热,然后再冷却的过程。焊件在焊接时产生的变形称为热变形,焊件冷却后产生的变形称为焊接残余变形,这时焊件中的应力称为焊接残余应力。

焊接应力包括沿焊缝长度方向的纵向焊接应力,垂直于焊缝长度方向的横向焊接应力和沿厚度方向的焊接应力。2.焊接残余应力对结构性能的影响

(1)对结构静力强度的影响:焊接应力不影响结构的静力强度。

(2)对结构刚度的影响:焊接残余应力降低结构的刚度。

(3)对受压构件承载力的影响:焊接残余应力降低受压构件的承载力。

(4)对低温冷脆的影响:增加钢材在低温下的脆断倾向。

(5)对疲劳强度的影响:焊接残余应力对结构的疲劳强度有明显不利影响。

焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭曲变形等。

焊接过程中,对焊件进行不均匀加热和冷却,是产生焊接应力和变形的根本原因。

减少焊接应力与变形的工艺措施主要有:

1.预留收缩变形量。根据理论计算和实践经验,在焊件备料及加工时预先考虑收缩余量,以便焊后工时预先考虑收缩余量,以

便焊后工件达到所要求的形状、尺寸。

2.反变形法。根据理论计算和实践经验,预先估计结构焊接变形的方向和大小,然后在焊接装配时给予一个方向相反、大小相等的预置变形,以抵消焊后产生的变形。

3. 刚性固定法。焊接时将焊件加以刚性固定,焊后待焊件冷却到室温后再去掉刚性固定,可有效防止角变形和波浪变形。此方法会增大焊接应力,只适用于塑性较好的低碳钢结构。

4. 选择合理的焊接顺序。尽量使焊缝自由收缩。焊接焊缝较多的结构件时,应先焊错开的短焊缝,再焊直通长焊缝,以防在焊缝交接处产生裂纹。如果焊缝较长,可采用逐步退焊法和跳焊法,使温度分布较均匀,从而减少了焊接应力和变形。

5. 锤击焊缝法。在焊缝的冷却过程中,用圆头小锤均匀迅速地锤击焊缝,使金属产生塑性延伸变形,抵消一部分焊接收缩变形,从而减小焊接应力和变形。

6. 加热“减应区”法。焊接前,在焊接部位附近区域(称为减应区)进行加热使之伸长,焊后冷却时,加热区与焊缝一起收缩,可有效减小焊接应力和变形。

7. 焊前预热和焊后缓冷。预热的目的是减少焊缝区与焊件其他部分的温差,降低焊缝区的冷却速度,使焊件能较均匀地冷却下来,从而减少焊接应力与变形。工件达到所要求的形状、尺寸。在制造过程中的工艺措施和方法:

1.采用线能量小的工艺参数和焊接方法,或强制冷却措施

2.选择合理的焊接顺序和方法,调整残余应力分布

2.1先焊收缩量大的焊缝和受力较大的焊缝

2.2焊缝叉时,先焊短焊缝,后焊直通长焊缝

3.采取降低焊缝拘束度的工艺措施,补偿焊缝收缩量

4.锤击多层焊缝中间各层,使之延展,降低应力和拘束

5.预拉伸补偿焊缝收缩(机械拉伸和加热拉伸)

6.局部加热,在构件相应部位形成可补偿焊缝收缩的变形

7.低应力无变形焊接法(LSND焊接法)

焊后消除应力处理:

1、整体热处理:消除应力的程度主要决定于材质的成分、组

织、加热温度和保温时间。低碳钢及部分低合金钢焊接构件在650度,保温20~40h,可基本消除全部残余应力。另外还有爆炸消除应力。

2、局部热处理:大型焊接结构,受加热炉的限制或要求不高时采用这种方法。可采用火焰、红外、电阻、感应等加热方式,应保持均匀加热并具有一定的加热宽度。低合金高强钢,一般在焊缝两侧各100~200mm。

3. 机械拉伸、水压试验、温差拉伸、振动法等这几种方法只能消除20~50%的残余应力,前两种方法在生产上广泛应用。

焊接后进行去应力处理,有自然时效处理(时间长,去应力不彻底,)、震动时效(效率高,费用低,只能去除焊接应力的70%

左右)人工加热时效(时间短费用较高,能100%去除焊接应力,同时能进行去氢处理)。

采用大型燃油退火炉,进行焊后退火处理。采用多点加热、多点温度控制方式,温控采用热电偶自动控制仪表控制加热,使炉内各部温度均匀的控制在退火温度,保证工件的退火,同时能去除焊接过程中渗入焊缝中的H原子,消除了焊接件的氢脆。

在冷热加工过程中,产生残余应力,高者在屈服极限附近。构件中的残余应力大多数表现出很大的有害作用;如降低构件的实际强度,降低疲劳极限,造成应力腐蚀和脆性断裂。并且由于残余应力的松弛,使零件产生翘曲,大大的影响了构件的尺寸精度。因此降低构件的残余应力,是十分必要的。传统的时效方法有:热时效、振动时效、自然时效、静态过载时效、热冲击时效等。后两种方法应用较少,这里不作介绍

自然时效(NSR)是将工件长时间露天放置(一般长达六个月至一年左右),利用环境温度的季节性变化和时间效应使残余应力释放,在温度应力形成的过载下,促使残余应力发生松弛而使尺寸精度获得稳定。由于周期太长和占地面积大,仅适应长期单一品种的批量生产和效果不理想,目前应用的较少。

热时效(TSR)是将构件由室温(或不高于150℃)缓慢、均匀加热至550℃左右,保温4~8小时,再严格控制降温速度至150℃以下出炉,达到消除残余应力的目的,可以保证加工精度和防止

裂纹产生。

振动时效(VSR)又称振动消除应力法,是将工件(包括铸件、锻件、焊接构件等)在其固有频率下进行数分钟至数十分钟的振动处理,以振动的形式给工件施加附加应力,当附加应力与残余应力叠加后,达到或超过材料的屈服极限时,工件发生微观或宏观塑性变形,从而降低和均化工件内的残余应力,使尺寸精度获得稳定的一种方法。这种工艺具有耗能少、时间短、效果显著等特点。近年来在国内外都得到迅速发展和广泛应用。振动时效艺具有耗能少、时间短、效果显著等特点。与热时效相比,它无需宠大的时效炉,可节省占地面积与昂贵的设备投资。因此,目前对长达几米至几十米和桥梁、船舶、化工器械的大型焊接件和重达几吨至几十吨的超重型铸件或加工精度要求较高的工件,较多地采用了振动时效。生产周期短。自然时效需经几个月的长期放置,热时效亦需经数十小时的周期方能完成,而振动时效一般只需振动数十分钟即可完成。使用方便。振动设备体积小、重量轻、便于携带。由于振动处理不受场地限制,振动装置又可携带至现场,所以这种工艺与热时效相比,使用简便,适应性较强。节约能源,降低成本。在工件共振频率下进行时效处理,耗能极少,能源消耗仅为热时效的3~5%,成本仅为热时效的8~10%。其他。振动时效操作简便,易于机械化自动化。可避免金属零件在热时效过程中产生的翘曲变形、氧化、脱碳及硬度降低等缺陷。是目前唯一能进行二次时效的方法,但消除应力率只

能达到80%。

分析设计中应力分类的一次结构法

1997年7月14日收到初稿,1997年10月6日收到修改稿。 分析设计中应力分类的一次结构法 陆明万陈勇李建国(清华大学工程力学系,北京,100084)(全国压力容器标准化技术委员会,北京,100088)摘要我国新的设计规范JB 24732295《钢制压力容器———分析设计标准》于1995年3月颁布 实施。如何将有限元分析或实验应力分析得到的总应力场分解成规范中定义的各种应力类别是应用JB 24732295或美国ASME 《锅炉及压力容器规范》第Ⅲ篇和第Ⅷ篇第2分册时必须解决的关键问题。本文提出应力分类的两步法和一次结构法,将它们和等效线性化方法相结合,给出了圆满解决该问题的有效方法。文中还阐述了应力分解的不唯一性、自限应力、约束分类和一次结构等重要概念。 关键词分析设计应力分类一次结构法等效线性化方法 1引言 “分析设计法”是一种以弹性应力分析和塑性失效准则为基础的设计方法,已被世界各国公开承认和广泛采用。我国也于1995年3月颁布了采用分析设计法的设计规范JB 24732295。在分析设计法中弹性计算应力被分成:一次总体薄膜应力(P m )、一次局部薄膜应力(P L )、一次弯曲应力(P b )、二次应力(Q )和峰值应力(F )等五大类。以塑性失效准则来判断,各类应力对结构破坏的危害程度是不同的,所以规范中根据等强度设计原则对不同的应力规定了不同的许用极限,其差别达3倍,甚至更多。这样,如何正确地进行应力分类,将有限元分析或实验应力分析所得到的总应力场分解成规范中定义的各类应力成为应用中最为关心、且必须解决的关键问题。国内外发表了大量文章来讨论这一问题,其中等效线性化方法是已被广泛采用的典型方法。一些著名的有限元分析程序如ANSY S 、M ARC 、NAST RAN 等都已实现了等效线性化的后处理功能。我们也曾在文献[1~3]中作了讨论。 等效线性化方法要求设计者在所考虑结构的几个可能的危险部位指定一些贯穿壁厚的(通常是垂直于中面的)应力分类线,然后根据合力等效和合力矩等效的原理将沿应力分类线分布的弹性计算应力分解出薄膜应力和线性弯曲应力,剩下的非线性分布应力就是一个与平衡外载无关的自平衡力系。等效线性化概念起源于ASME 规范,被K roenke 等首先应用于二维轴对称问题[4~6]。对于三维一般情况,H ollin g er 和H echm er 两人就基于应力线性化的三维应力准则问题发表了一系列的重要文章[7~13]。 本文将首先介绍文献[1]中提出的应力分类的两步法。然后,作为等效线性化方法的扩充,提出一种有效的应力分解方法“一次结构法”。 第4期年8月第19卷 1998核动力工程Nuclear Power En g ineerin g Vol.19.No.4Au g .1998

焊接应力与变形

4.2 焊接应力与变形: 4.2.1 焊接变形和残余应力的不利影响: 焊接变形 1.影响工件形状、尺寸精度 2.影响组装质量 3.增大制造成本———矫正变形费工、费时 4.降低承载能力———变形产生了附加应力 焊接应力 1.降低承载能力 2.引起焊接裂纹,甚至脆断 3.在腐蚀介质中,产生应力腐蚀裂纹 4.引起变形 4.2.2 焊接变形和应力的产生原因: 根本原因:对焊件进行的不均匀加热和冷却,如图6-2-8 焊接应力 焊接加热时,焊缝区受压力应力(因膨胀受阻,用符号“-”表示) 远离焊缝区手拉应力(用符号“+”表示) 焊后冷却时,焊缝受拉应力(因收缩受阻),远离焊缝区受压应力 焊接变形:当焊接应力超过金属σs时,焊件将产生变形 焊接应力和焊接变形总是同时存在,不会单独存在,当母材塑性较好,结构刚度较小时,焊接变形较大而应力较小;反之,则应力较大而变形较小。 4.2.3 焊接变形的控制和矫正:

4.2.3.1 焊接变形的基本形式,如图6-2-9 如图6-2-9 常见的焊接残余变形的类型 1、2---纵向收缩量3---横向收缩量4、5---角变形量f---挠度 (1)收缩变形:即焊件沿焊缝的纵向和横向尺寸减少,是由于焊缝区的纵向和横向收缩引起的。如图5-2-9 a (2)角变形:即相连接的构件间的角度发生改变,一般是由于焊缝区的横向收缩在焊件厚度上分布不均匀引起的。如图5-2-9b (3)弯曲变形:即焊件产生弯曲。通常是由焊缝区的纵向或横向收缩引起的。如图5-2-9c (4)扭曲变形:即焊件沿轴线方向发生扭转,与角焊缝引起的角度形沿焊接方向逐渐增大有关。如图5-2-9d (5)失稳变形(波浪变形):一般是由沿板面方向的压应力作用引起的。如图5-2-9e 4.2.3.2 控制焊接变形的措施 (1)设计措施(详见焊接结构设计) 尽量减少焊缝的数量和尺寸,合理选用焊缝的截面形状,合理安排焊缝位置──尽量使焊缝对称或接近于构件截面的中性轴(以减少弯曲变形)。如图6-2-10

焊接应力变形的产生原因与控制措施

焊接应力变形的产生原因与控制措施 无锡威孚力达催化净化器有限责任公司王习宇[摘要] 近年来,汽车行业发展迅猛,各主机厂在提升产量的同时,对于产品质量的要求也大幅提高。为应对巨大的市场冲击,我们威孚力达应采取相应措施,来迎接机遇和挑战。目前我司焊接向着自动化、集成化、高精度、高质量的方向发展,如何采取措施减小金属构件在焊接工序中发生的应力与应变,从而提高焊接工序的精度以及产品的总体质量,有着十分重要的现实意义。本文主要叙述了焊接应力变形与控制方法。 [关键词] 威孚力达焊接变形焊接应力产生原因控制措施

国内现状 随着我国汽车产业的高速发展,焊接技术在汽车工程中得到大量的应用,焊接工件尤其是法兰焊接变形也成为人们密切关注的焦点。在焊接过程中,焊接残余应力和焊接变形会严重影响制造过程、焊接结构的使用性能、焊接接头的抗脆断能力、疲惫强度、抗应力腐蚀开裂和高温蠕变开裂能力。焊接变形在制造过程中也会危及外形与公差尺寸,使制造过程更加困难,当出现题目时还需采取一些费时耗资的附加工序来进行弥补,不仅增加本钱,还可能出现由此工序带来的其他不利因素。因此,要得到高质量的焊接结构必须对这些现象严格控制。焊接应力分析熔化焊接时,被焊金属在热源作用下发生局部加热和熔化,材料的力学性能也会发生明显的变化,而焊接热过程也直接决定了焊缝和热影响区焊后的显微组织、残余应力与变形大小,所以焊接热过程的正确计算和测定是焊接应力和变形分析的条件。因此在焊接过程的模拟研究中,只考虑温度场对应力场的影响,而忽略应力场对温度场的作用。同时,非线性、瞬时作用以及温度相关性效应等也会妨碍正确描述在各种情况下产生的残余应力,并使同一系统化的工作很难完成。为使其简单化,实际中常用焊接性的概念作为一种分类系统,将焊接分解为热力学、力学和显微结构等过程,从而降低了焊接性各种现象的复杂性。图1所示的工艺基础将焊接性分解为温度场、应力和变形场以及显微组织状态场。这种分解针对焊接残余应力和焊接变形的数值分析处理很有价值。在狭义上,焊接性又可理解成所要求的强度性能。影响强度性能的主要因素又包括化学成分、相变显微组织、焊接温度循环、焊后热处理、构件外形、负载条件以及氢含量等。显微组织的转变不仅决定于材料的化学成分,也决定于其受热过程(特别是与焊接有关的过程),特别是它在焊接接头的热影响区和熔化区的影响更加引人留意。 在焊接过程中,由于焊件局部的温度发生变化,产生应力变形。进而导致了构件产生变形。因此,通过对焊接结构及焊接变形的分析,通过对焊接工艺焊件结构设计等方面采取有效措施,从而提高焊接质量。

焊接残余应力有限元分析技术研究

1 前言 焊接在工业中的应用是不言而喻的,但同时焊接过程中产生的残余应力往往又会导致焊接失效。因此,在工业中一般都要对残余应力进行消除,但这种消应力处理往往在实际结构或环境中难以实现,就必须进行破坏性分析。 随着我国核反应堆的建设及运行,核级设备及管道会出现较多的缺陷,有的缺陷必须进行打磨后焊接修复,同时要进行力学分析评价,此时,力学分析就必须考虑由焊接而产生的残余应力。对于焊接后结构中的残余应力大小及分布,会因结构形式、焊接方式及材料特性的不同而不同。某核电站控制棒驱动机构(CRDM )耐压壳上部Ω环连续两年都出现了泄漏,并在检修期间进行焊接修复。焊接公司委托美国公司对修复后的结构进行了力学分析和评定。焊接残余应力的有限元计算是关键技术之一,也是难点。 通过本课题的研究,掌握有限元模拟焊接过程及残余应力计算,能够提高我国焊接修复工程缺陷的分析能力,优化不符合项的处理程序,达到既节约时间和资金又满足工作性能和安全性能的目的。 因此,进行焊接残余应力有限元分析技术的研究是非常有必要的。 2 焊接实例 本文以某核电站CRDM 耐压壳Ω焊接为研究对象,分析研究焊接后的残余应力分布。CRDM 耐压壳包括上段是驱动杆行程套管和下段的密封壳。驱动杆行程套管与密封壳采用螺纹连接,Ω焊接密封的结构进行连接和密封。驱动杆行程套管的上端采用端塞,通过螺纹连接,Ω焊接密封的结构进行密封。CRDM 耐压壳采用的这种密封结构形式是一种便于拆装的焊接密封结构,由于其内力的整体平衡主要由连接螺纹承担,Ω焊缝功能上主要起密封作用。其结构及尺寸见图1 和图2。

图1 辐照监督管位置图 图2 密封焊缝的结构尺寸图 对CRDM 耐压壳上的Ω密封焊缝的修复采用OVERLAY 修复技术。即在出现泄漏的Ω密封焊缝(CSW )处,经打磨后用GTAW 方法堆焊INCONEL 52 。 从采用OVERLAY 技术修复CRDM Ω密封焊缝的总报告[1]可知:

焊接应力与变形

焊接应力和变形. 教学目的:了解应力和变形的概念、产生原因;了解焊接变形的种类;掌握预防和减小焊接应力和变形的措施。 教学重点:预防和减小焊接应力和变形的措施 教学难点:应力和变形的概念、产生原因 教学课时:16课时 第一节应力和变形的概念 一、变形 钢结构构件或节点在焊接过程中,局部区域受到很强的高温作用,在此不均匀的加热和冷却过程中产生的变形称为焊接变形。 二、应力 焊接后冷却时,焊缝与焊缝附近的钢材不能自由收缩,由此约束而产生的应力称为焊接应力。 三、应力形成 两块钢板上施焊时,产生不均匀的温度场,焊缝附近温度高达1600 C,其邻近区域温度较低,且冷却很快。冷却时钢材收缩,冷却慢的区域收缩受到限制,从而产生拉应力,冷却快的区域受到压应力。 四、焊接应力的分类 1.根据焊接应力在空间的位置 单向应力、双向应力、三向应力。 2.根据焊接应力发生和互相平衡所在的范围大小 第一类应力、第二类应力、第三类应力。 3.根据焊接应力在焊缝中的方向不同 纵向应力、横向应力、厚度方向应力 第二节焊接应力和变形的产生原因 焊件进行局部的、不均匀的加热是产生焊接应力和变形的原因。 一、金属棒的均匀加热和冷却 金属棒在均匀加热时,产生过压缩塑性变形,则冷却后必定产生缩短变形。 二、纵向焊接应力和变形

焊接时,在电弧热的作用下,使金属局部达到熔化温度,但离电弧较远处的金属温度则较低,这样焊件就出现了不均匀的膨胀。沿焊缝轴线方向尺寸的缩短。 三、横向焊接应力和变形 焊件在于海峰轴线垂直的方向上,焊缝及热影响区金属在加热过程中也受到压应力,发生压缩塑性变形,在冷却后则存在着残余应力和变形,称为横向焊接应力和变形。 四、影响焊接应力和变形的因素 影响焊接应力和变形的因素主要包括以下几点:焊接规范、焊缝尺寸、焊缝在结构中位置的布置、焊缝分段和焊接方向、焊接程序、焊接结构的刚性以及层数。 第三节焊接变形的种类 一、纵向变形 指平行于焊缝方向的变形。多层焊比单层焊的变形量小。 二、横向变形 指垂直于焊缝方向的变形。角焊缝和对接焊缝焊后都会引起横向变形,同时,与焊接方法有关。 三、弯曲变形 T型梁焊接后,由于焊缝布置不对称,焊缝多的一面收缩量大,引起的工件弯曲。 四、角变形 由于V型坡口对接焊焊缝布置不对称,造成焊缝上下横向收缩量不均匀而引起的变形。 五、扭曲变形 由于焊接过程中焊接顺序和焊接方向不合理引起的工件扭曲,又称为螺旋形变形,多出现在工字梁的焊接加工过程中。 六、波浪变形 这种变形易发生在波板焊接过程中。是由于焊缝收缩使薄板局部引起较大的压应力而失去稳定性,焊后使构件成波浪形。 第四节预防和减小焊接应力和变形的措施 一、从结构设计方面的预防措施 1、尽量减少焊缝数量。

消除残余应力的方法

消除残余应力的方法(金属)——时效处理 消除残余应力的方法(金属)——时效处理 金属工件(铸件、锻件、焊接件)在冷热加工过程中都会产生残余应力,残余应力值高者(单位为Pa)在屈服极限附近构件中的残余应力大多数表现出很大的有害作用;如降低构件的实际强度、降低疲劳极限,造成应力腐蚀和脆性断裂,由于残余应力的松弛,使零件产生变形,大大的影响了构件的尺寸精度。因此降低和消除工件的残余应力就十分必要了,特别是在航空航天、船舶、铁路及工矿生产等应用的,由残余应力引起的疲劳失效更不容忽视。 目前的针对残余应力的不同处理方法有:自然时效方法和人工时效方法(包括热处理时效、敲击时效、振动时效、超声冲击时效) 1、自然时效——适合:热应力(铸造锻造过程中产生的残余应力)冷应力(机械加工过程中产生的残余应力)焊接应力(焊接过程中产生的应力) 自然时效是最古老的时效方法。它是把构件露天放置于室外,依靠大自然的力量,经过几个月至几年的风吹、日晒、雨淋和季节的温度变化,给构件多次造成反复的温度应力。再温度应力形成的过载下,促使残余应力发生松弛而使尺寸精度获得稳定。 自然时效降低的残余应力不大,但对工件尺寸稳定性很好,原因是工件经过长时间的放置,石墨尖端及其他线缺陷尖端附近产生应力集中,发生了塑性变形,松弛了应力,同时也强化了这部分基体,于是该处的松弛刚度也提高了,增加了这部分材质的抗变形能力,自然时效降低了少量残余应力,却提高了构件的松弛刚度,对构件的尺寸稳定性较好,方法简单易行,但生产周期长.占用场地大,不易管理,不能及时发现构件内的缺陷,已逐渐被淘汰。 2、热处理时效——适合:热应力(铸造锻造过程中产生的残余应力)冷应力(机械加工过程中产生的残余应力)焊接应力(焊接过程中产生的应力) 热时效处理是传统的消除残余应力方法。它是将构件由室温缓慢,均匀加热至550℃左右,保温4-8小时,再严格控制降温速度至150℃以下出炉。 热时效工艺要求是严格的,如要求炉内温差不大于±25℃,升温速度不大于50℃/小时,降温速度不大于20℃/小时。炉内最高温度不许超过570℃,保温时间也不易过长,如果温度高于570℃,保温时间过长,会引起石墨化,构件强度降低。如果升温速度过快,构件在升温中薄壁处升温速度比厚壁处快的多,构件各部分的温差急剧增大,会造成附加温度应力。如果附加应力与构件本身的残余应力叠加超过强度极限,就会造成构件开裂。 热时效如果降温不当,会使时效效果大为降低,甚至产生与原残余应力相同的温度应力(二次应力、应力叠加),并残留在构件中,从而破坏了已取得的热

应力分类

管道在内压、持续外载以及热胀、冷缩和其它位移等荷载作用下,其最大应力往往超过材料的屈服极限,使材料在工作状态下发生塑料变形。高温管道的蠕动和应力松弛,也将使管系上的应力状态发生变化。这些情况说明,管系上的应力与一般结构、机械分析中所遇到的低温的和稳定的应力不同。因此,对于不同种类的应力应当区别对待,根据它可能产生的效应和对于破坏所起的作用不同,给予不同的限定。 对于管道上的应力,一般分为一次应力、二次应力和峰值应力三类。 一、一次应力 一次应力是由所加荷载引起的正应力和剪应力。它必须满足外部、内部力和力矩的平衡法则。一次应力的基本特征是非自限性的,它始终随所加荷载的增加而增加,超过屈服极限或持久强度,将使管道发生塑性变形。因此,必须防止发生过度的塑性变形,并为爆破或蠕变失效留有足够的裕度。 管道承受内压和持续外载而产生的应力,属于一次应力。管道承受风荷载、地震荷载、水冲击和安全阀动作冲击等荷载而产生的应力,也属于一次应力,但这些荷载都是属于偶然荷载,这些应力属动荷载产生的应力,应当在动力计算中考虑。 一次应力有三种类型:一次一般薄膜应力、一次局部薄膜应力和一次弯曲应力。 一次一般薄膜应力,是在所研究的截面厚度上均匀分布的,且等于该截面应力平均值的法向应力(即正应力)的分量。如果这种应力达到屈服极限时,将引起截面整体屈服,不出现荷载的再分配。 一次局部薄膜应力,是由内压或其它机械荷载产生的,由于结构不连续或其它特殊情况的影响而在管道或附件的局部区域有所增强的一次薄膜应力。这类应力虽然具有二次应力的一些特征,但为安全计,通常仍划为一次应力。这种应力达到屈服极限时,只引起局部屈服,塑性应变仍然受到周围弹性材料的约束,所以屈服是允许的。假若有一个应力区域,其应力强度超过1.1倍的基本许用应力,在纵向方向的延伸距离不大于图片点击可在新窗口打开查看,并且与另一个超过一次一般薄膜应力极限的区域沿纵向方向的距离不小于图片点击可在新窗口打开查看(这里的图片点击可在新窗口打开查看和S是超过一次一般薄膜应力极限处的管子平均半径和壁厚),此应力区域可以认为是局部的,划为一次局部薄膜应力,否则就应按一次一般薄膜应力考虑。例如,在固定支架处或接管连接处由于外载产生的一次薄膜应力,通常划为一次局部薄膜应力。 一次弯曲应力是在所研究的截面上法向应力(即正应力)从平均值算起的沿厚度方向变化的分量。这种应力达到屈服极限时,也只引起局部屈服。在应力验算中,通常不单独评价一次弯曲应力强度。

焊接应力产生的原因及处理方法

1.焊接应力的分类 焊接过程是一个先局部加热,然后再冷却的过程。焊件在焊接时产生的变形称为热变形,焊件冷却后产生的变形称为焊接残余变形,这时焊件中的应力称为焊接残余应力。焊接应力包括沿焊缝长度方向的纵向焊接应力,垂直于焊缝长度方向的横向焊接应力和沿厚度方向的焊接应力。 2.焊接残余应力对结构性能的影响 (1)对结构静力强度的影响:焊接应力不影响结构的静力强度。 (2)对结构刚度的影响:焊接残余应力降低结构的刚度。 (3)对受压构件承载力的影响:焊接残余应力降低受压构件的承载力。(4)对低温冷脆的影响:增加钢材在低温下的脆断倾向。 (5)对疲劳强度的影响:焊接残余应力对结构的疲劳强度有明显不利影响。焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭曲变形等。 焊接过程中,对焊件进行不均匀加热和冷却,是产生焊接应力和变形的根本 原因。 减少焊接应力与变形的工艺措施主要有: 一、预留收缩变形量。根据理论计算和实践经验,在焊件备料及加工时预先考 虑收缩余量, 以便焊后工件达到所要求的形状、尺寸。 二、反变形法。根据理论计算和实践经验,预先估计结构焊接变形的方向和大小,然后在焊接装配时给予一个方向相反、大小相等的预置变形,以抵消焊后产生的变形。 三、刚性固定法。焊接时将焊件加以刚性固定,焊后待焊件冷却到室温后再去掉刚性固定,可有效防止角变形和波浪变形。此方法会增大焊接应力,只适用于塑性较好的低碳钢结构。 四、选择合理的焊接顺序。尽量使焊缝自由收缩。焊接焊缝较多的结构件时,应先焊错开的短焊缝,再焊直通长焊缝,以防在焊缝交接处产生裂纹。如果焊缝较长,可采用逐步退焊法和跳焊法,使温度分布较均匀,从而减少了焊接应力和变形。 五、锤击焊缝法。在焊缝的冷却过程中,用圆头小锤均匀迅速地锤击焊缝,使金属产生塑性延伸变形,抵消一部分焊接收缩变形,从而减小焊接应力和变形。 六、加热“减应区”法。焊接前,在焊接部位附近区域(称为减应区)进行加热使之伸长,焊后冷却时,加热区与焊缝一起收缩,可有效减小焊接应力和变形。 七、焊前预热和焊后缓冷。预热的目的是减少焊缝区与焊件其他部分的温差,降低焊缝区的冷却速度,使焊件能较均匀地冷却下来,从而减少焊接应力与变形。焊后消除应力处理: 1、整体热处理:消除应力的程度主要决定于材质的成分、组织、加热温度和 保温时间。低碳钢及部分低合金钢焊接构件在650度,保温20~40h,可基本

焊接组件的受力分析

在对一个焊接组件进行受力分析的时候,个人认为有两种方法: 第一种方法:假定焊缝的强度够用,不对焊缝进行受力分析。此时对整个组件使用mechanica的实体单元进行网格划分。因为在mechanica中会把组件中有接触面的零件均视为一个零件,组件实际上就变成了一个零件,载荷和约束已可以在零件之间传递了。此时组件的受力分析与零件的受力分析在步骤上就没有什么区别了。 这种方法缺点是因为没有使用理想化,所以速度较慢。而且焊缝的强度也没有校核。优点是不用对焊接组件进行调整。 第二种方法:因为焊接件多数是标准板材、型材等,在分析时使用壳理想化可以大大加快解算速度。这时就产生了一个问题:板材理想化后在板子的中心位置生成midsurface。而这个midsurface多数无法与别的midsurface相连,于是造成了载荷与约束无法在零件间传递。 a)此时应使用mechanica提供的一个功能connections中的端焊、周焊或点焊将零件(midsurface)在焊缝 处“连接”起来再进行受力分析。有的资料中提过结果中如果在焊缝处显示了高应力,那就必须专门对焊缝进行受力分析。但是因为在connections的焊缝设定过程中,并无焊缝材料、焊缝宽度、焊接工艺的选项。 所以稳妥起见,要做下面的焊缝实体的受力分析 b)人工建立焊缝的实体模型并装配到组件 为了避免载荷和约束在贴合的零件面上传递,这里应人工的把零件分开一个微小的距离,使后期在mechanica分析中零件间的载荷和约束完全通过焊缝来传递 进入mechanica,改用实体单元进行网格划分 最后只需观察焊缝处的应力情况即可。 下例是二个低碳钢板(200x100x5)用5mm角焊缝焊在一起,焊缝长度2-50mm,一板材左侧端面固定,另一板材右侧端面受水平向右的拉力100N 组件如图: [ Last edited by zlxlbean on 2004-9-29 at 11:36 ] 图片附件: part.jpg (2004-9-29 11:25, 10.65 K) 如上所述第一种方法,采用实体单元对组件进行受力分析,由组件直接进入mechanica,设定约束、材料、载荷,运行静态分析,得到如下结果: max_disp_mag: 4.222310e-04 0.8% max_stress_vm: 2.206539e-01 3.5% 第二种方法 创建midsurface,分别由零件进入mechanica,mec struct/strc model/idealizations/shells/midsurfaces-> New compress/shells only/showcompress 最后组件的midsurface如图

焊接残余应力与变形

焊接残余应力和焊接变形 焊接残余应力(welding residual stresses)简称焊接应力,有沿焊缝长度方向的纵向焊接应力,垂直于焊缝长度方向的横向焊接应力和沿厚度方向的焊接应力。 1、纵向焊接应力 焊接过程是一个不均匀加热和冷却的过程。在施焊时,焊件上产生不均匀的温度场,焊缝及其附近温度最高,可达1600℃以上,而邻近区域温度则急剧下降。不均匀的温度场产生不均匀的膨胀。温度高的钢材膨胀大,但受到两侧温度较低、膨胀量较小的钢材所限制,产生了热塑性压缩。焊缝冷却时,被塑性压缩的焊缝区趋向于缩短,但受到两侧钢材限制而产生纵向拉应力。在低碳钢和低合金钢中,这种拉应力经常达到钢材的屈服强度。焊接应力是一种无荷载作用下的内应力,因此会在焊件内部自相平衡,这就必然在距焊缝稍远区段内产生压应力 2、横向焊接应力 横向焊接应力产生的原因有二:一是由于焊缝纵向收缩,使两块钢板趋向于形成反方向的弯曲变形,但实际上焊缝将两块钢板连成整体,不能分开,于是两块板的中间产生横向拉应力,而两端则产生压应力。二是由于先焊的焊缝已经凝固,会阻止后焊焊缝在横向自由膨胀,使其发生横向塑性压缩变形。当焊缝冷却时,后焊焊缝的

收缩受到已凝固的焊缝限制而产生横向拉应力,而先焊部分则产生横向压应力,在最后施焊的末端的焊缝中必然产生拉应力。焊缝的横向应力是上述两种应力合成的结果。 3、厚度方向的焊接应力 在厚钢板的焊接连接中,焊缝需要多层施焊。因此,除有纵向和横向焊接应力σx、σy外,还存在着沿钢板厚度方向的焊接应力σz。在最后冷却的焊缝中部,这三种应力形成同号三向拉应力,将大大降低连接的塑性。 3.4.2 焊接应力和变形对结构工作性能的影响 一、焊接应力的影响 1、对结构静力强度的影响 对在常温下工作并具有一定塑性的钢材,在静荷载作用下,焊接应力是不会影响结构强度的。设轴心受拉构件在受荷前(N=0)截面上就存在纵向焊接应力。在轴心力N作用下,截面bt部分的焊接拉应力已达屈服点fy,应力不再增加,如果钢材具有一定的塑性,拉力N就仅由受压的弹性区承担。两侧受压区应力由原来受压逐渐变为受拉,最后应力也达到屈服点fy,这时全截面应力都达到fy 2、对结构刚度的影响 构件上的焊接应力会降低结构的刚度。由于截面的bt部分的拉应力已达fy,这部分的刚度为零,则具有所示残余应力的拉杆的抗

焊接残余应力的消除方法

焊接残余应力的消除方法 焊接残余应力是焊接技术带来的一个几乎无法避免的缺陷,其危害众所周知。当焊接造成的残余应力会影响结构安全运行时,还需设法消除焊接残余应力,改善焊接接头的塑性和韧性,以提高焊件结构性能。 一、焊接的应力与应变: 在接过程中,由于焊接件产生温度梯度,接头组织和性能的不均匀,就会在焊件内产生应力和应变。焊后残留在焊件内的焊接应力就是焊接残余应力,它是没有外载荷作用时就存在的应力。 二、焊接残余应力的危害: 焊接残余应力与外载荷产生的应力叠加,局部区域应力过高,使结构承载能力下降,引起裂纹和变形,使焊件形状和尺寸发生变化,需要进行矫形。变形过大会因无法矫形而报废甚至导致结构失效。 三、减少焊接残余应力和变形的措施: ①设计 ②焊接工艺 如: 尽量减少焊接接头数量 相邻焊缝间应保持足够的间距 尽可能避免交叉,避免出现十字焊缝 焊缝不要布置在高应力区 焊前预热等等 四、焊后残余应力的消除方法 消除焊接残余应力的方法有:热处理、锤击、振动法和预载法等。 1、热处理消除法 焊后热处理是一种消除焊接残余应力常用的方法。工程上我们主要用退火处理,火温度越高、保温时间越长,消除焊接残余应力的效果就越好。但是温度过高,使工件表面氧化比较严重,组织可能发生转变,影响工件的使用性能,存在弊端。蠕变应力松弛理论为热处理消除焊接残余应力提供了另一条思路,工件在较低温度时会发生蠕变,材料内部的残余应力会因应力松弛而得到释放,只要保温时间

足够长,理论上残余应力可完全消除。在低温消除焊接残余应力时,材料的组织和性能变化甚微,几乎不影响材料的使用性能,而且低温处理材料表面的氧化和脱碳也比较小,这就可以在材料的力学性能和组织基本不变的情况下达到降低材料焊接残余应力的目的。 2、锤击消除法 焊后采用带小圆头面的手锤锤击焊缝及近缝区,使焊缝及近缝区的金属得到延展变形,用来补偿或抵消焊接时所产生的压缩塑性变形,使焊接残余应力降低。 锤击时要掌握好打击力量,保持均匀、适度,避免因打击力量过大造成加工硬化或将焊缝锤裂。另外,焊后要及时锤击,除打底层不宜采用锤击外,其余焊完每一层或每一道都要进行锤击。锤击铸铁时要避开石墨膨胀温度。 3、振动消除法 振动消除法是利用由偏心轮和变速马达组成的激振器,使焊接结构发生共振所产生的循环应力来降低内应力的。 如截面为30mm×50mm一侧堆焊的试件,经过σmax=128N/mm2和σmin=5.6N/mm2多次应力循环后,残余应力的变化情况。当变载荷达到一定数值,经过多次循环加载后,焊接结构中的残余应力逐渐降低。 这种方法所用的设备简单,处理成本低,时间比较短,没有高温回火给金属表面造成的氧化问题,目前在施工中广泛使用。 4、预载消除法 残余应力也可采用机械拉伸法(预载法)来消除或调整,例如对压力容器可以采用水压试验,也可以在焊缝两侧局部加热到200℃,造成一个温度场,使焊缝区得到拉伸,以减小和消除焊接残余应力。 焊接残余应力的消除和调整应采取合理的焊接顺序,先进的焊接工艺,焊接时适当降低焊件的刚度,并在焊件的适当部位局部加热,使焊缝能比较自由地收缩,在焊接的每一个环节都减小残余应力,大大提高材料的使用寿命和性能,在工程施工上具有重要的意义。

焊接结构作业2014

焊接结构作业1 1. 简述焊接结构的特点(优势与不足)。 2. 简述构件焊接性的含义,哪些因素影响构件焊接性? 3. 比较电弧焊(MIG )与电阻焊(点焊)过程中产热机构、散热机构和热量传递方式方面 的差异。 4. 哪些因素会影响MIG 过程产热及散热? 焊接结构作业2 1. 举例说明焊接结构过程中涉及到几种热量传递方式。 2. 比较交流TIG 焊与电阻焊的有效热功率的差异。 3. 什么是焊接热循环?描述焊接热循环的参数有哪些? 4. 请在典型焊接热循环曲线上标出各热循环参数并解释其意义。 5. 比较长段多层焊与短段多层焊的特点和使用范围。 焊接结构作业3 1. 什么是内应力?有什么特点? 2. 内应力的分类(作用范围划分)、温度应力产生原因。 3. 什么是自由变形、内部变形、外观变形?之间有什么关系? 4. 画出低碳钢的屈服极限随温度的变化曲线。 5. 简述长板条中心加热条件下的变形及应力产生分布情况。 6. 长板条中心加热—冷却后残余应力的产生机理(过程) 焊接结构作业4 1. 长板条一侧加热—冷却后,残余应力的产生及分布情况。 2. 长板条一侧加热时变形及应力的演变过程。 3. 以低碳钢平板条中心焊接为例说明焊接温度场与对应高温时的应力分布情况。 4. 说明受拘束体在热循环中应力与变形的演变过程。(以低碳钢为例)分三种情况 焊接结构作业5 1. 某种钢材((T s=960MPa的杆两端完全拘束的条件下温升多少才屈服?(注: E=210GPa, -6 a =1.2 X 10 )。

2. 某种钢材((T s=300MPa的杆两端完全拘束,环境温度为30C,问在均匀的加热的

焊接与焊接应力

焊接与焊接应力 在建筑钢结构发展如火如荼的今天,形式各异的焊接机械、焊接方法日新月异,焊接技术成了一个关键的课题。但在施工过程中,由于焊接产生的焊接残余应力和残余变形,严重影响着工程的质量、安装进度和结构承载力(即使用功能),因而,急需采用合理的方法予以控制。 钢结构的焊接过程实际上是在焊件局部区域加热后又冷却凝固的热过程,但由于不均匀温度场,导致焊件不均匀的膨胀和收缩,从而使焊件内部产生焊接应力而引起焊接变形。常见的焊接应力有:1)纵向应力;2)横向应力;3)厚度方向应力。常见的焊接变形有:1)纵向收缩变形;2)横向收缩变形;3)角变形;4)弯曲变形;5)扭曲变形;6)波浪变形。针对这些不同种类的焊接变形和应力分布,追溯根源,具体进行研究控制。 1焊接变形的控制措施 全面分析各因素对焊接变形的影响,掌握其影响规律,即可采取合理的控制措施。 1.1焊缝截面积的影响 焊缝截面积是指熔合线范围内的金属面积。焊缝面积越大,冷却时收缩引起的塑性变形量越大,焊缝面积对纵向、横向及角变形的影响趋势是一致的,而且是起主要的影响,因此,在板厚相同时,坡口尺寸越大,收缩变形越大。 1.2焊接热输入的影响 一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大。 1.3焊接方法的影响 多种焊接方法的热输入差别较大,在建筑钢结构焊接常用的几种焊接方法中,除电渣以外,埋弧焊热输入最大,在其他条件如焊缝断面积等相同情况下,收缩变形最大,手工电弧焊居中,CO2气体保护焊最小。 1.4接头形式的影响 在焊接热输入、焊缝截面积、焊接方面等因素条件相同时,不同的接头形式对纵向、横向、角变形量有不同的影响。常用的焊缝形式有堆焊、角焊、对接焊。 1)表面堆焊时,焊缝金属的横向变形不但受到纵横向母材的约束,而且加热只限于工件表面一定深度而使焊缝的收缩同时受到板厚、深度、母材方面的约束,因此,变形相对较小。 2)T形角接接头和搭接接头时,其焊缝横向收缩情况与堆焊相似,其横向收缩值与角焊缝面积成正比,与板厚成反比。 3)对接接头在单道(层)焊的情况下,其焊缝横向收缩比堆焊和角焊大,在单面焊时坡口角度大,板厚上、下收缩量差别大,因而角变形较大。 双面焊时情况有所不同,随着坡口角度和间隙的减小,横向收缩减小,同时角变形也减小。 1.5焊接层数的影响 1)横向收缩:在对接接头多层焊接时,第一层焊缝的横向收缩符合对接焊的一般条件和变形规律,第一层以后相当于无间隙对接焊,接近于盖面焊道时与堆焊的条件和变形规律相似,因此,收缩变形相对较小。 2)纵向收缩:多层焊接时,每层焊缝的热输入比一次完成的单层焊时的热输入小得多,加热范围窄,冷却快,产生的收缩变形小得多,而且前层焊缝焊成后都对下层焊缝形成约束,因此,多层焊时的纵向收缩变形比单层焊时小得多,而且焊的层数越多,纵向变形越小。 在工程焊接实践中,由于各种条件因素的综合作用,焊接残余变形的规律比较复杂,了解各因素单独作用的影响便于对工程具体情况做具体的综合分析。所以,了解焊接变形产生的原因和影响因素,则可以采取以下控制变形的措施: 1)减小焊缝截面积,在得到完整、无超标缺陷焊缝的前提下,尽可能采用较小的坡口尺寸(角度和间隙)。 2)对屈服强度345MPA以下,淬硬性不强的钢材采用较小的热输入,尽可能不预热或适

焊接应力与变形及措施

焊接应力与变形: 4.2.1 焊接变形和残余应力的不利影响: 焊接变形{ 1.影响工件形状、尺寸精度 2.影响组装质量 3.增大制造成本———矫正变形费工、费时 4.降低承载能力———变形产生了附加应力 焊接应力{ 1.降低承载能力 2.引起焊接裂纹,甚至脆断 3.在腐蚀介质中,产生应力腐蚀裂纹 4.引起变形 4.2.2 焊接变形和应力的产生原因: 根本原因:对焊件进行的不均匀加热和冷却,如图6-2-8 焊接应力{焊接加热时,焊缝区受压力应力(因膨胀受阻,用符号“-”表示) 远离焊缝区手拉应力(用符号“+”表示) 焊后冷却时,焊缝受拉应力(因收缩受阻),远离焊缝区受压应力 焊接变形:当焊接应力超过金属σs时,焊件将产生变形 焊接应力和焊接变形总是同时存在,不会单独存在,当母材塑性较好,结构刚度较小时,焊接变形较大而应力较小;反之,则应力较大而变形较小。 4.2.3 焊接变形的控制和矫正: 4.2.3.1 焊接变形的基本形式,如图6-2-9

如图6-2-9 常见的焊接残余变形的类型 1、2---纵向收缩量 3---横向收缩量 4、5---角变形量 f---挠度 (1)收缩变形:即焊件沿焊缝的纵向和横向尺寸减少,是由于焊缝区的纵向和横向收缩引起的。如图5-2-9 a (2)角变形:即相连接的构件间的角度发生改变,一般是由于焊缝区的横向收缩在焊件厚度上分布不均匀引起的。如图5-2-9b (3)弯曲变形:即焊件产生弯曲。通常是由焊缝区的纵向或横向收缩引起的。如图5-2-9c (4)扭曲变形:即焊件沿轴线方向发生扭转,与角焊缝引起的角度形沿焊接方向逐渐增大有关。如图5-2-9d (5)失稳变形(波浪变形):一般是由沿板面方向的压应力作用引起的。如图5-2-9e 4.2.3.2 控制焊接变形的措施 (1)设计措施(详见焊接结构设计) 尽量减少焊缝的数量和尺寸,合理选用焊缝的截面形状,合理安排焊缝位置──尽量使焊缝对称或接近于构件截面的中性轴(以减少弯曲变形)。如图6-2-10

第七节 载荷和应力的分类

第七节 载荷和应力的分类 一、载荷分类 作用在机械零件上的载荷可分为静载荷和变载荷两类。不随时间变化或变化较缓慢的载荷称为静载荷。随时间变化的载荷称为变载荷。 在设计计算中,还常把载荷分为名义载荷与计算载荷。根据额定功率用力学公式计算出作用在零件上的载荷称为名义载荷,它没有反映载荷随时间作用的不均匀性、载荷在零件上分布的不均匀性及其它影响零件受载等因素。因此,常用载荷系数K 来考虑这些因素的综合影响。载荷系数K 与名义载荷的乘积即称为计算载荷。 二、应力分类 按应力随时间变化的特性不同,可分为静应力和变应力。不随时间变化或变化缓慢的应力称为静应力(见图1–2a )。随时间变化的应力称为变应力(见图1–2b 、c 、d )。绝大多数机械零件都是处于变应力状态下工作的。 a) b) c) d) 图1-2 静应力及边应力 a)静应力 b)稳定循环变应力 c)不稳定循环变应力 d)随机变应力 变应力可分为稳定循环变应力(见图1–2b )、不稳定循环变应力(见图1–2c )及随机变应力(见图1–2d )。瞬时作用的过载或冲击所产生的应力称为尖峰应力(见图1–2d )。 稳定循环变应力的类型是多种多样的,但归纳起来有如图1–3所示的三种基本类型:(a )非对称循环变应力;(b)脉动循环变应力;(c)对称循环变应力。 为了表示稳定循环变应力状况,引入下列变应力参数:s max –––变应力最大值;s min ––––变应力最小值;s m –––平均应力;s a –––应力幅;r –––循环特性。

如图1–3所示可知,s max=s m+s a;s min=s m–s a;s m=(s max+s min)/2;s a=(s max–s min)/2;r=s min/s max=(s m–s a)/(s m+s a)。当r=+1时,表明s max=s min,即为静应力;当r=–1时,表明s max 与s min的数值相等但符号(即方向)相反,这类应力称为对称循环变应力;当r=0时,即s min=0,s m=s a=s max/2,这类应力称为脉动循环变应力。当r为任意值为(即r1+1、–1、0),这类应力统称为非对称循环变应力(见图1–3a)。 a) b) c)图1-3 稳定循环变应力 a)非对称循环变应力b)脉动循环变应力c)对称循环变应力 通常在设计时,对于应力变化次数较少(例如在整个使用寿命期间应力变化次数小于103的通用零件)的变应力,可近似地按静应力处理。 变应力由变载荷产生,也可能由静载荷产生。在静载荷作用下产生变应力的例子如图1–4所示,图示为转轴和滚动轴承a点的应力变化。 图1–4 在静载荷作用下产生变应力的例子 零件的失效形式与材料的极限应力及零件工作时的应力类型有关。在进行强度计算时,首先要弄清楚零件所受应力的类型。

焊接应力与变形

●焊接应力与变形 1.焊接应力与变形产生的原因 焊件在焊接过程中受到局部加热和冷却是产生焊接应力和变形的主要原因。 焊接加热时,图F-4(a)中虚线既表示接头横截面的温度分布,也表示金属能自由膨胀时的伸长量分布。实际上接头是个整体,由于受工件未加热部分的冷金属产生的约束,无法进行自由膨胀,平板只能在整个宽度上伸长ΔL,因此焊缝区中心部分因膨胀受阻而产生压应力(用符号“-”表示),两侧则形成拉应力(用符号“+”表示)。焊缝区中心部分的压应力超过屈服强度时,产生压缩塑性变形,其变形量为图F-4(a)中被虚线包围的无阴影部分。焊后冷却时,金属若能自由收缩,则焊件中将无残余应力,也不会产生焊接变形,但由于焊缝区中心部分已经产生的压缩塑性变形,不能再恢复,冷却到室温将缩短至图F-4(b)中的虚线位置,两侧则缩短到焊前的原长L。这种自由收缩同样是无法实现的,平板各部分收缩会互相牵制,焊缝区两侧将阻碍中心部分的收缩,因此焊缝区中心部分产生拉应力,两侧则形成压应力。在平板的整个宽度上缩短ΔL′,即产生了焊接变形。 图F-4 平板对焊的应力与分布 (a)焊接过程中;(b)冷却后 2.焊接变形的几种基本形式

图F-5 焊接变形的基本形式 (a)收缩变形;(b)角变形;(c)弯曲变形;(d)扭曲变形;(e)波浪变形 1)收缩变形:收缩变形是工件整体尺寸的减小,它包括焊缝的纵向和横向收缩变形。 2)角变形:当焊缝截面上下不对称或受热不均匀时,焊缝因横向收缩上下不均匀,引起角变形。V形坡口的对接接头和角接接头易出现角变形。 3)弯曲变形:由于焊缝在结构上不对称分布,焊缝的纵向收缩不对称,引起工件向一侧弯曲,形成弯曲变形。 4)扭曲变形:对多焊缝和长焊缝结构,因焊缝在横截面上的分布不对称或焊接顺序和焊接方向不合理等,工件易出现扭曲变形。 5)波浪变形:焊接薄板结构时,焊接应力使薄板失去稳定性,引起不规则的波浪变形。 实际焊接结构的真正变形往往很复杂,可同时存在几种变形形式。 3.焊接变形的防止与矫正

应力与应力状态分析

应力与应力状态分析 拉伸模量 拉伸模量是指材料在拉伸时的弹性,其计算公式如下: 拉伸模量(㎏/c ㎡)=△f/△h(㎏/c ㎡) 其中,△f 表示单位面积两点之间的力变化,△h 表示以上两点之间的应变化。更具体地说,△h =(L-L0)/L0,其中L0表示拉伸长前的长度,L 表示拉伸长后的长度。 §4-1 几组基本术语与概念 一、变形固体的基本假设 1、均匀连续性假设:假设在变形固体的整个体积内均匀地、毫无空隙地充满着物质,并且各点处的力学性质完全相同。 根据这一假设,可从变形固体内任意一点取出微小单元体进行研究,且各点处的力学性质完全相同,因而固体内部各质点的位移、各点处的内力都将是连续分布的,可以表示为各点坐标的连续函数。 2、各向同性假设:假设变形固体在所有方向上均具有相同的力学性质。 3、小变形假设:认为构件的变形与构件的原始尺寸相比及其微小。 根据小变形假设,在研究构件上力系的简化、研究构件及其局部的平衡时,均可忽略构件的变形而按构件的原始形状、尺寸进行计算。 二、应力的概念 1、正应力的概念 分布内力的大小(或称分布集度),用单位面积上的内力大小来度量,称为应力。 由于内力是矢量,因而应力也是矢量,其方向就是分布内力的方向。 沿截面法线方向的应力称为正应力,用希腊字母σ表示。 应力的常用单位有牛/米2 (2/m N ,12/m N 称为1帕,代号a P )、千米/米2(2/m KN ,12/m KN 称为1千帕,代号K a P ),此外还有更大的单位兆帕(M a P )、吉帕(G a P )。 几种单位的换算关系为:

1 K a P =310a P 1 M a P =310K a P 1 G a P =310M a P =610K a P =910a P 2、切应力与全应力的概念 与截面相切的应力分量称为切应力,用希腊字母τ表示。 K 点处某截面上的全应力K p 等于该点处同一截面上的正应力K σ与切应力K τ的矢量和。 三、位移、变形及应变的概念 变形:构件的形状和尺寸的改变。 位移:构件轴线上点的位置变化和截面方位的改变。 变形和位移的关系:构件的变形必然会使结构产生位移,但结构的位移不一定是由构件的变形引起的,温度变化、支座移动等也会使结构产生位移。 单元体:围绕构件内某一点截取出来的边长为无限小的正六面体。 应变:描述单元体变形程度的几何量,包括线应变和角应变两类。 线应变(正应变)ε:单元体线性尺寸的相对改变量。ε=Δu / u 角应变(切应变)γ:单元体上直角的改变量。γ= 90°- θ 应力与应变的对应关系:正应力σ与正应变ε相互对应;切应力τ与切应变γ相互对应。 四、受力构件内一点处的应力状态的概念 构件内某点处的应力状态,是指通过该点的各个不同方位截面上的应力情况的总体。 研究应力状态,对全面了解受力杆件的应力全貌,以及分析杆件的强度和破坏机理,都是必需的。 为了研究一点处的应力状态,通常是围绕该点取一边长为无限小的正六面体,即单元体。 主平面:单元体上没有切应力的面称为主平面。 主应力:主平面上的正应力称为主应力。 可以证明,通过一点处的所有方向面中,一定存在三个互相垂直的主平面(即一定存在主单元体),因而每一点都对应着三个主应力。 一点处的三个主应力分别用σ1 , σ2 和σ3来表示,并按应力代数值的大小顺序排列,即σ1≥σ2≥σ3。 原始单元体:从一点处取出的各面上应力都已知的单元体,称为该点的原始单元体。对于杆件,通常用一对横截面和两对互相垂直的纵截面截取原始单元体。 主单元体:各面上没有切应力的单元体称为主单元体。 应力状态的分类: 空间(三向)应力状态:三个主应力均不为零 平面(二向)应力状态:一个主应力为零 单向应力状态:两个主应力为零

相关文档
最新文档