高中物理动量定理解题技巧及练习题(含答案)

高中物理动量定理解题技巧及练习题(含答案)
高中物理动量定理解题技巧及练习题(含答案)

高中物理动量定理解题技巧及练习题(含答案)

一、高考物理精讲专题动量定理

1.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:

(i )C 与A 碰撞前的速度大小

(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是3

2

mv 0. 【解析】 【分析】 【详解】

试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰

前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10

v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:

012 3(3)mv mv m m v =+-

在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:03

2

CA I mv =-

即A 、C 碰过程中C 对A 的冲量大小为03

2

mv . 方向为负.

考点:动量守恒定律 【名师点睛】

本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.

2.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩

擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求:

(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小. (2)小车的长度.

【答案】(1)4.5N s ? (2)5.5m 【解析】

①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:

0011()o m v m m v =+,可解得110/v m s =;

对子弹由动量定理有:10I mv mv -=-, 4.5I N s =? (或kgm/s); ②三物体组成的系统动量守恒,由动量守恒定律有:

0110122()()m m v m m v m v +=++;

设小车长为L ,由能量守恒有:22220110122111()()222

m gL m m v m m v m v μ=+-+- 联立并代入数值得L =5.5m ;

点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度.

3.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。已知sin37o=0.60,cos37o=0.80,重力加速度g 取10m/s 2,不计空气阻力。求: (1)物体沿斜面向上运动的加速度大小;

(2)物体在沿斜面运动的过程中,物体克服重力所做功的最大值; (3)物体在沿斜面向上运动至返回到斜面底端的过程中,重力的冲量。

【答案】(1)6.0m/s 2(2)18J (3)20N·s ,方向竖直向下。 【解析】 【详解】

(1)设物体运动的加速度为a ,物体所受合力等于重力沿斜面向下的分力为:

F=mg sin θ

根据牛顿第二定律有:

F=ma ;

解得:

a =6.0m/s 2

(2)物体沿斜面上滑到最高点时,克服重力做功达到最大值,设最大值为v m ;对于物体沿斜面上滑过程,根据动能定理有:

21

2

0m W mv -=-

解得

W =18J ;

(3)物体沿斜面上滑和下滑的总时间为:

0226

2s 6

v t a ?=

== 重力的冲量:

20N s G I mgt ==?

方向竖直向下。

4.如图甲所示,物块A 、B 的质量分别是m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙壁相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不分开,C 的v -t 图象如图乙所示.求:

(1)C 的质量m C ;

(2)t =8s 时弹簧具有的弹性势能E p 1 (3)4—12s 内墙壁对物块B 的冲量大小I

【答案】(1) 2kg (2) 27J (3) 36N s × 【解析】 【详解】

(1)由题图乙知,C 与A 碰前速度为v 1=9m/s ,碰后速度大小为v 2=3m/s ,C 与A 碰撞过程动量守恒

m C v 1=(m A +m C )v 2

解得C 的质量

m C =2kg .

(2)t =8s 时弹簧具有的弹性势能

E p1=

1

2

(m A +m C )v 22=27J (3)取水平向左为正方向,根据动量定理,4~12s 内墙壁对物块B 的冲量大小

I=(m A +m C )v 3-(m A +m C )(-v 2)=36N·s

5.质量为0.2kg 的小球竖直向下以6m/s 的速度落至水平地面,再以4m/s 的速度反向弹回,取竖直向上为正方向,

(1)求小球与地面碰撞前后的动量变化;

(2)若小球与地面的作用时间为0.2s ,则小球受到地面的平均作用力大小?(取g=10m/s 2).

【答案】(1)2kg?m/s ;方向竖直向上;(2)12N ;方向竖直向上; 【解析】 【分析】 【详解】

(1)小球与地面碰撞前的动量为:p 1=m (-v 1)=0.2×(-6) kg·m/s=-1.2 kg·m/s 小球与地面碰撞后的动量为p 2=mv 2=0.2×4 kg·

m/s=0.8 kg·m/s 小球与地面碰撞前后动量的变化量为Δp =p 2-p 1=2 kg·m/s (2)由动量定理得(F -mg )Δt =Δp 所以F =

p t ??+mg =

2

0.2

N +0.2×10N=12N ,方向竖直向上.

6.用动量定理处理二维问题时,可以在相互垂直的x 、y 两个方向上分别进行研究。如图所示,质量为m 的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是v 。碰撞过程中忽略小球所受重力。若小球与木板的碰撞时间为?t ,求木板对小球的平均作用力的大小和方向。

【答案】2cos mv F t

θ

=?,方向沿y 轴正方向 【解析】 【详解】

小球在x 方向的动量变化为sin sin 0x p mv mv θθ?=-=

小球在y 方向的动量变化为cos (cos )2cos y p mv mv mv θθθ?=--= 根据动量定理y F t p ?=? 解得2cos mv F t

θ

=

?,方向沿y 轴正方向

7.蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目.一个质量为60kg 的运动员从离水平网面3.2m 高处自由下落,着网后沿竖直方向蹦回到离水平网面高5m 处,已知运动员与网接触的时间为1.2s .(g 取10m /s 2) 求:(1)运动员自由下落到接触网时的瞬时速度.

(2)若把网对运动员的作用力当做恒力处理,此力的大小是多少. 【答案】(1)8m /s ,方向向下;(2)网对运动员的作用力大小为1500N . 【解析】 【分析】

(1)根据题意可以把运动员看成一个质点来处理,下落过程是自由落体运动,由位移-速度公式即可求出运动员着网前瞬间的速度大小;

(2)上升过程是竖直上抛运动,我们可以算出自竖直上抛运动的初速度,算出速度的变化量,由动量定理求出网对运动员的作用力大小. 【详解】

(1)从h 1=3.2m 自由落体到床的速度为v 1,则:2

112v gh =

代入数据可得:v 1=8m /s ,方向向下;

(2)离网的速度为v 2,则:22210/v gh m s ==,方向竖直向上, 规定向下为正方向,由动量定理得:mgt -Ft =mv 2-mv 1 可得:21

mv mv F mg t

-=-

=1500N 所以网对运动员的作用力为1500N . 【点睛】

本题关键是对运动员的各个运动情况分析清楚,然后结合机械能守恒定律、运动学公式、动量定理列式后联立求解.

8.2018年诺贝尔物理学奖授于了阿瑟·阿什金(Arthur Ashkin )等三位科学家,以表彰他们在激光领域的杰出成就。阿瑟·阿什金发明了光学镊子(如图),能用激光束“夹起”粒子、原子、分子;还能夹起病毒、细菌及其他活细胞,开启了激光在新领域应用的大门。

①为了简化问题,将激光束看作是粒子流,其中的粒子以相同的动量沿光传播方向运动。激光照射到物体上,会对物体产生力的作用,光镊效应就是一个实例。

现有一透明介质小球,处于非均匀的激光束中(越靠近光束中心光强越强)。小球的折射率大于周围介质的折射率。两束相互平行且强度①>②的激光束,穿过介质小球射出时的光路如图所示。若不考虑光的反射和吸收,请分析说明两光束因折射对小球产生的合力的方向。

②根据上问光束对小球产生的合力特点,试分析激光束如何“夹起”粒子的?

【答案】见解析;

【解析】

【详解】

解:①由动量定理可知:△v的方向即为小球对光束作用力的方向

当强度①>②强度相同时,作用力F1>F2,由平行四边形定则知,①和②光速受力合力方向向左偏下,则由牛顿第三定律可知,两光束因折射对小球产生的合力的方向向右偏上,如图所示

②如图所示,小球受到的合力向右偏上,此力的横向的分力F y,会将小球推向光束中心;一旦小球偏离光速中心,就会受到指向中心的分力,实现光束对小球的约束,如同镊子一样,“夹住”小球其它粒子

9.电磁弹射在电磁炮、航天器、舰载机等需要超高速的领域中有着广泛的应用,图1所示为电磁弹射的示意图.为了研究问题的方便,将其简化为如图2所示的模型(俯视图).发射轨道被简化为两个固定在水平面上、间距为L且相互平行的金属导轨,整个装置处于竖直向下、磁感应强度为B的匀强磁场中.发射导轨的左端为充电电路,已知电源的电动势为E,电容器的电容为C,子弹载体被简化为一根质量为m、长度也为L的金属导体棒,其电阻为r.金属导体棒,其电阻为r.金属导体棒垂直放置于平行金属导轨上,忽略一切摩擦阻力以及导轨和导线的电阻.

(1)发射前,将开关S 接a ,先对电容器进行充电. a .求电容器充电结束时所带的电荷量Q ;

b .充电过程中电容器两极板间的电压y 随电容器所带电荷量q 发生变化.请在图3中画出u-q 图像;并借助图像求出稳定后电容器储存的能量E 0;

(2)电容器充电结束后,将开关b ,电容器通过导体棒放电,导体棒由静止开始运动,导体棒离开轨道时发射结束.电容器所释放的能量不能完全转化为金属导体棒的动能,将导体棒离开轨道时的动能与电容器所释放能量的比值定义为能量转化效率.若某次发射结束时,电容器的电量减小为充电结束时的一半,不计放电电流带来的磁场影响,求这次发射过程中的能量转化效率η.

【答案】(1)a .Q CE =;b .

;2

012E CE =(2)223B L C m

η=

【解析】

(1)a 、根据电容的定义Q

C U

=

电容器充电结束时其两端电压U 等于电动势E ,解得电容器所带电荷量Q CE = b 、根据以上电容的定义可知q

u C

=

,画出q-u 图像如图所示:

有图像可知,稳定后电容器储存的能量0E 为图中阴影部分的面积01

2

E EQ =,

将Q 代入解得2

012

E CE =

(2)设从电容器开始放电至导体棒离开轨道时的时间为t ,放电的电荷量为Q ?,平均电流为I ,导体棒离开轨道时的速度为v

根以导体棒为研究对象,根据动量定理0BLIt mv =-,(或BLi t m v ∑?=∑?), 据电流定义可知It Q =?(或i t Q ∑?=?) 根据题意有1122Q Q CE ?=

=,联立解得2BLCE v m

= 导体棒离开轨道时的动能()2

2128k

BLCE E mv m == 电容器释放的能量222

113228

E CE CU CE ?=-=

联立解得能量转化效率223k E B L C

E m

η==

?

10.一垒球手水平挥动球棒,迎面打击一以速度水平飞来的垒球,垒球随后在离打击

点水平距离为

的垒球场上落地。设垒球质量为0.81kg ,打击点离地面高度为2.2m ,球

棒与垒球的作用时间为0.010s ,重力加速度为,求球棒对垒球的平均作用力的大

小。 【答案】900N 【解析】 【详解】

由题意可知,垒球被击后做平抛运动,竖直方向:h=gt 2

所以:

水平方向:x=vt

所以球被击后的速度:

选取球被击出后的速度方向为正方向,则:v 0=-5m/s

设平均作用力为F ,则:Ft 0=mv-mv 0 代入数据得:F=900N 【点睛】

此题主要考查平抛运动与动量定理的应用,其中正确判断出垒球被击后做平抛运动是解答的关键;应用动量定理解题时注意正方向.

11.一质量为100g 的小球从1.25m 高处自由下落到一厚软垫上.若小球从接触软垫到小球陷至最低点经历了0.02s ,则这段时间内软垫对小球的平均作用力是多大?(不计空气阻力,g =10m/s 2) 【答案】26N 【解析】

设小球刚落到软垫瞬间的速度为v .对小球自由下落的过程,由机械能守恒可得: mgh=

12

mv 2

有:/5/v s m s =

选取小球接触软垫的过程为研究过程,取向下为正方向.设软垫对小球的平均作用力为F ,由动量定理有:(mg-F )t=0-mv 得:0.150.110260.02

mv F mg N t ?=+

=?+= 点睛:本题是缓冲类型,往往根据动量定理求解作用力,要注意研究过程的选取,本题也可以选取小球从开始下落到最低点整个过程研究,比较简单.

12.蹦床运动有"空中芭蕾"之称,某质量m =45kg 的运动员从空中h 1=1.25m 落下,接着又能弹起h 2=1.8m 高度,此次人与蹦床接触时间t =0.40s ,取g =10m/s 2,求: (1)运动员与蹦床接触时间内,所受重力的冲量大小I ; (2)运动员与蹦床接触时间内,受到蹦床平均弹力的大小F . 【答案】(1)180N·s (2)1687.5N 【解析】 【详解】

(1)重力的冲量大小

180N s I mgt ==?;

(2)设运动员下落h 1高度时的速度大小为v 1,弹起时速度大小为v 2,则

2112v gh =

2

222v gh =

由动量定理有

21()()F mg t mv mv -?=--

代入数据解得

F=1687.5N .

相关主题
相关文档
最新文档