锂离子动力电池冷却技术研究进展

锂离子动力电池冷却技术研究进展
锂离子动力电池冷却技术研究进展

Sustainable Energy 可持续能源, 2016, 6(6), 122-129 Published Online December 2016 in Hans. https://www.360docs.net/doc/7415258113.html,/journal/se https://www.360docs.net/doc/7415258113.html,/10.12677/se.2016.66013

文章引用: 郭江荣, 吴峰. 锂离子动力电池冷却技术研究进展[J]. 可持续能源, 2016, 6(6): 122-129.

Research on Cooling Technology of Lithium-Ion Power Battery

Jiangrong Guo, Feng Wu

Maritime College of Ningbo University, Ningbo Zhejiang

Received: Dec. 9th , 2016; accepted: Dec. 27th , 2016; published: Dec. 30th , 2016

Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY).

https://www.360docs.net/doc/7415258113.html,/licenses/by/4.0/

Abstract

Lithium-ion power battery can be safe and efficient in 25?C to 40?C , which needs to be equipped with an efficient thermal management system to ensure its safe operation. Aiming at the heat dis-sipation characteristics of lithium-ion power battery, a comparative analysis including the advan-tages, disadvantages and applicable conditions of cooling by air, liquid and phase change material of lithium-ion battery was proposed. At last, the cooling technology of lithium-ion battery in the future was prospected. Keywords

Lithium-Ion Power Battery, Cooling, Phase Change

锂离子动力电池冷却技术研究进展

郭江荣,吴 峰

宁波大学海运学院,浙江 宁波

收稿日期:2016年12月9日;录用日期:2016年12月27日;发布日期:2016年12月30日

摘 要

锂离子动力电池在25℃~40℃内可高效安全运行,这需要配备高效的热管理系统保证锂离子动力电池组Open Access

郭江荣,吴峰

的运行安全。本文针对锂离子动力电池的散热特点,比较分析了风冷、液冷、相变材料冷却等锂离子动力电池冷却技术的优缺点及适用条件,最后对未来锂离子电池冷却技术进行了展望。

关键词

锂离子动力电池,冷却,相变

1. 引言

1970年,埃克森的M. S. Whittingham 用正极材料硫化钛,负极材料金属锂做了第一个锂电池动力电池。锂离子电池是锂电池发展而来。经过近半个世纪的发展研究,锂离子动力电池现已广泛的用于电动汽车等领域,正因为锂离子电池具备当前电池工业发展的三大特点:体积比能量高、质量比能量高、可充电且无污染,因此在发达国家中有较快的增长速度。锂离子电池的很多市场机遇都是由于电信、信息市场的发展,特别是移动电话和笔记本电脑的普及使用。

高温对于锂离子动力电池具有两方面的影响。一方面,电解液活性随温度的升高而提高,离子扩散的速度加快,电池的内阻减小,改善了电池的性能。另一方面,高温会导致电极降解、电解液分解等有害反应,会对电池内部结构造成永久性的损伤,减少电池的使用寿命。化学反应速率和温度成极数的关系,温度每增加10℃,化学反应速率加倍[1]。

低温环境下则相反,电解液的活性较低,离子扩散的速度较慢,电池内阻则大大增加,放电容量会显著下降,充电期间内电压上升快,便会影响电池的安全。

目前,锂离子动力电池的散热结构形式多种多样,主要是空气冷却、液体冷却、相变材料冷却、冷板冷却、热管冷却、液体射流冲击冷却技术等,其中前三者冷却技术比较常见,研究和应用的范围比较广。

2. 锂离子动力电池生热机理分析

锂离子电池在充放电的过程中,电池内部发生反应,锂离子在正负极之间进行移动,电池内部将会伴随着热量的释放和吸收。从整个电池充放电的过程来看,锂离子电池热量的来源主要存在四种方式,分别是充放电时进行的可逆反应产生反应热r Q ;过充或者过放时电解质分解产生副反应热s Q ;电流通过时,由电池内阻产生焦耳热j Q ;以及极化反应产生极化反应热p Q 。

S r j p Q Q Q Q Q =+++ (1-1)

1) 反应热r Q

从上面锂离子电池充放电机理可知道,电池工作过程中锂离子的移动是因为电池内部发生电化学反应的结果,并在此过程中伴随着热量的生成。充电和放电是相反的两个过程,分别对应电化学反应的相反过程,充电时吸收了热量,即反应热r Q 为负值,放电时放出了热量,即为正值。反应热的大小与电化学反应过程中的熵变有关,通过实验方式对r Q 的大小进行研究后发现其值可由计算公式估算得到: )3600r Q Q FI = (1-2)

其中,Q 为电池内部电化学反应两极产生的热量之和;F 为法拉第常数,通常取96484.5C ml F =;I 为充放电过程中电流大小。

2) 副反应热s Q 锂离子电池在过充、过放的条件下产生副反应热,包括电解质分解产生的热量在电池实际工作运行过程中很小。而且,由于电动汽车中设有保证电池组正常充放电的电池管理系统,除人为作用外,过充、

郭江荣,吴峰

过放的情况很少发生,因此副反应热通常忽略不计。

3) 焦耳热j Q

锂离子电池内部各部分包含着不同材料,电流通过极柱、电解液、隔膜等部分时存在一定大小的电阻,在电池充放电过程中,由于焦耳效应,会有较为明显的热量随之产生,这部分热量为电池组所有热量产生最为主要的来源。焦耳热j Q 的值由焦耳定律可以计算得到:

2j Q I r ?= (1-3)

其中,I 为充放电时电流的大小;r ?为单体电池的内阻。

4) 极化反应热p Q

锂离子动力电池在以一定的倍率充放电时,普遍存在一定大小的极化内阻,在对其进行研究后发现,这部分内阻通常是由于欧姆极化、浓度差极化以及电化学极化三个方面引起的[2]。当电流通过电池内部时,和电池内阻一样,极化内阻也会造成一定压降,并且产生热量,极化反应热计算公式如下:

()22P P o n d Q I r I r r r ==++ (1-4)

其中,I 为电池充放电时电流大小;P r 为电池极化内阻值;o r 为欧姆极化内阻;n r 为浓度极差内阻;d r 为电化学极化内阻。

锂离子动力电池在温度达到70℃后,反应热就开始剧烈增加,逐渐占据绝大部分的所有热量。但是在温度还未达到70℃前,反应热产生并不明显,相对焦耳热和极化反应产生的热量,反应热所占比例则非常小。通常在电动汽车内部,制定了较合理的热管理策略,锂离子电池工作的温度不会超过70℃,所以可以将反应热忽略,则电池产生总热量为:

()222j p j p j o n d Q Q Q I r I r I r r r r =+=+=+++ (1-5)

从上式可以看出,对锂离子动力电池产热进行估算时,可以通过实验获取锂电池电压损失,从而得到电池总电阻r ,该总电阻可认为是焦耳内阻、极化内阻的总和,即:

2J P Q Q Q I r =+= (1-6)

3. 锂离子动力电池冷却技术

按照传热介质的不同分类,锂离子电池冷却技术可以分为:空气冷却、液体冷却以及相变材料(Phase Change Material ,简称PCM)冷却[3]。

1) 空气冷却技术

空气冷却是使用空气作为冷却介质来冷却锂离子电池。根据空气冷却系统的结构不同,分为串行冷却和并行冷却;根据是否使用风扇,分为强迫冷却和自然冷却。

① 串行和并行冷却方式

1999年,Ahmad A. Pesaran 等人提出了串行冷却和并行冷却,图1(a)是串行式冷却,空气从电池包左侧吹入,右侧吹出,由于后面电池冷却效果不佳,易造成电池包散热非常不均匀;图1(b)是并行式冷却,空气从底部的吹入,上部吹出,差不多数量的空气流通过每个电池,使电池包均匀冷却。实验结果表明:在相同的条件下,并联冷却均匀,电池组的最大温度差为8℃,使用串行冷却时,电池组的最低温度有所下降,但电池组温度差高达18℃,冷却效果很不均匀。

② 自然和强制冷却方式

自然冷却,即使用冷却风扇,散热效果相对较差。强制冷却是冷却风扇冷却使用,大部分电动车都采用这种冷却,丰田普锐斯和本田Insight 采用强制冷却。

郭江荣,吴峰

(a) (b)

Figure 1. Serial & parallel ventilation

图1.串行和并行通风方式

2002年,Kenneth J. Kelly等人对2001年款Prius和2000年款Insight的电池热管理系统进行测试结果表明,两款车的电池温度被控制在合理范围内。Prius采用的冷却风扇有四种工作模式:停止、低速、中速和高速,热管理系统根据电池温度的差异,在不同的经营模式下,对空气强制冷却效果进行了实验和数值模拟,采用18650型锂离子电池,当环境温度在45℃、放电倍率为6.67 C时,无论空气的流速有多大,都无法将电池包的温度控制在55℃以下;当空气流速增加时,电池单体表面温度差也将随之增大。

空气冷却目前虽然是最成熟、最简单的冷却方式,但空气冷却效果和冷却温度的均匀性差,在复杂的工况条件下难以保持电池温度和温度均匀性在安全范围内。

2) 液体冷却技术

液体冷却技术指的是电池组内流通的传热介质是液体,液体通常比空气的传热系数要高得多,并且液体有更薄的边界层,使得它的导热率更高,冷却效果自然较好[4]。

按照液体是否与电池直接接触,液体冷却分为接触式冷却和非接触式冷却,接触式冷却常采用的传热介质为绝缘的矿物油,非接触式冷却通常采用水、乙二醇等作为传热介质[5]。非接触式液体冷却要保证液体管路有较好的密封性能以及管路的走向合理性,才能达到较好的控温以及热平衡的目的,因而,对电池箱设计及加工要求较高[6];接触式液体冷却所采用的矿物油因具有高粘度,所以需要较大的泵功率才能使系统正常运行,这对于本身续航里程能力不足的电动车来讲是非常不利的。

液体散热系统的设计通常要与整体设计联系在一起。液体冷却介质通过与电池之间的热交换,介质温度升高,经过外部换热设备如热交换器、车辆空调系统等将热量排放出去。图2为常见的三种集中液冷散热系统设计模式。

液冷方式的主要优点有:与电池壁面之间换热系数高,冷却、加热速度快;体枳较小。主要缺点有:存在漏液的可能;质量相对较大;需要水套、换热器等部件,维修和保养复杂。电动汽车的动力电池模块成本高,个数多,质量大,体积大。附加的热管理系统应尽可能减少电池的能量损失,减少总质量,减少额外的能源消耗,以达到汽车轻量化的要求,还应考虑有效的保护电池和电路,延长电池使用寿命。

3) 相变材料冷却技术

相变材料(Phase-Change Material, PCM)是一类特殊的功能性材料,能在恒温或近似恒温的情况下发生相变,同时伴随有较大热量吸收或释放[8]。PCM材料最初是用来作为储存热量的介质,主要目的是平衡热能的供需差异。PCM材料应用的基础有两个:其一,PCM材料相变过程的等温性,这种特性有利于将温度变化控制在较小的范围内,可以用来控制温度;其二,PCM材料有很高的相变潜热,少量的材料可以存储大量的热量,在各系统中应用时可显著减轻系统重量。

郭江荣,吴峰

(a)

(b)(c)

Figure 2. Centralizing liquid cooling system [7]

图2. 集中液冷散热系统模式[7]

PCM材料发生的相变可以是固态–气态、固态-液态以及液态–气态之间的转变,典型的PCM材料相变如图3所示。固态–气态、液态–气态的转变尽管相变潜热很高,但是由于体积变化大,对于系统的空间需求就会增加,这是不实际的[9]。另外一种固态–固态转变只是晶体结构的转变,因为潜热较小应用也很少。PCM材料通常利用的是固态-液态转变,这一过程伴随着较高的相变潜热以及较小的温度与体积变化。

分析PCM材料固态–液态转变的过程:首先,PCM材料和传统的显热存储材料(简称SHS)一样,吸收热量温度上升;与SHS不同的是,当PCM材料达到其相变温度(熔化温度)的时候,可以在几乎恒定的温度下吸收大量的热;这一过程,PCM材料持续吸热直到全部熔化。反过来,当环境温度降低,PCM 材料由液态转变为固态的过程中也会相应地释放大量的潜热。PCM材料单位体积的吸热量是传统显热存储材料(SHS)的5至14倍[10]。

在最近40年的研究中,出现了很多种PCM材料,如水合盐、石蜡、脂肪酸以及共晶有机和非有机物[11]。有机物材料和无机物材料各自的优缺点见表1。有机物PCM材料虽然相变潜热不及无机物PCM 材料高,但由于具有良好的化学和热力学稳定性,在实际应用中远多于无机物。针对有机PCM材料导热性能低以及易燃等缺点,许多学者通过掺杂其他物质来改进PCM材料的性能[12][13][14]。

有机物PCM材料可以进一步分为石蜡和非石蜡混合物。石蜡主要是由直链的烷基组成,在烷基链结晶的过程中释放出大量的潜热。材料的熔点和熔化潜热都随着链的长度增长而增加。石蜡安全、可靠、无毒、便宜,化学性能稳定,在熔化的过程中体积变化很小,蒸汽压力低;并且由于它们工作温度涵盖的范围大,是一种很优良的PCM材料。出于成本考虑,仅仅是工业级石蜡常用来作为PCM材料。非石

郭江荣,吴峰

图3. PCM材料相变图

Table 1. Contrast of organic & inorganic substance used for PCM

表1. 用作PCM材料的有机物和无机物的对比

特点有机PCM材料无机PCM材料

优点无腐蚀性、无过冷,化学及热力学稳定相变潜热大

缺点相变潜热小、热导率低、易燃有过冷、有腐蚀、热稳定不够

蜡有机物PCM材料数量庞大,它们的熔化潜热通常比石蜡高,但是非石蜡有机物的致命缺点是成本太高,一般为工业级石蜡的2至2.5倍。从PCM材料储热能力,化学、热力学性能,成本等各方面综合考虑,石蜡最适合作为PCM材料。

国内外许多学者对应用PCM的电池组系统热特性进行了研究。Kizilel R.等提出将电池模块放置在固–液相变材料(PCM)中以提高电池间温度均匀性并且做了相关的温度试验,结果表明:虽然添加相变材料后电池组温度分布趋于均匀,但冷却速度较慢。Sabbah R.等通过数值模拟与实验对比研究了PCM与强制风冷两种冷却方式的有效性,结果表明:PCM热管理性能始终保持温度低于55℃。Mills A等将其作为相变材料填充在单体电池之间,研究结果表明:填充相变材料会导致其储热速度降低,容易引起在融化和固化循环过程中的离析,进而降低整体功能。随后,许多研究学者为了克服其低热导率的缺陷开展了一系列的实验研究,通过添加泡沫铝材料、固体石蜡混合石墨烯复合材料、金属热管翅片等来提高相变材料的热导率和潜热,综合性能的提高,冷却效果有所提高。随后的研究中,还有包括采用相变材料不同包裹形式、双层PCM材料结构以及添加脉动热管等提高PCM热管理效率的措施。相变材料在电动汽车上的应用一个最大的优点就是可以很好的解决电池组温度急剧升高的问题,保证系统内各电池温度的一致性。

4. 锂离子动力电池冷却技术优化方案

按照风冷、液冷、相变材料冷却的顺序,各种冷却方法的比较如下所示:

空气冷却技术的优点:①结构简单,重量相对较小;②成本较低;③有害气体产生时有效通风。缺点:①冷却速度比较慢,吸入的空气必须经过过滤处理;②系统受环境温度影响较大。

液体冷却的优点:①传热更有效,温度均匀好;②与电池组壁面之间的热交换系数高。缺点:①系统重量相对较大,存在漏液的情况;②可能需要水套、热交换器等部件。

相变材料冷却的优点:①可回收利用产生的热量;②相变过程体积变化小、相变潜热较大;缺点:①需要附加其他散热系统;②相变材料导热率较低。

郭江荣,吴峰

Figure 4. Optimization of cooling method

图4. 冷却优化方案

通过上述特性的传热介质比较,可以看出使用液体作为传热介质,需要考虑的电导率,安全性和密封性,维护方便,和液体将增加系统的重量。相变材料(如液体石蜡)可以在相变温度下实现,可大量加热而不加热,通过选择合适的相变材料可使电池单体有效地达到热平衡,很好地控制电池温度,避免出现高温现象。然而,使用相变材料会增加系统的成本,从实际应用的角度来看,在空气中冷却可以满足电池包热的需要,大多数使用空气冷却。

但利用空气冷却和相变冷却的优缺点相结合,提一种新型的冷却方案也是符合情理,可利用强迫空气对流冷却和相变冷却技术相结合的复合型冷却系统。有效解决散热不均匀、效果差的问题,但其可实施性还有待实验证明。

由以上总结便知,无论何种冷却方案都有弊端,本文提出了以下冷却技术的优化方案:

如图4所示,优化方案不仅考虑到电池组的冷却问题,还考虑到了气温较低时电池冷启动对电池性能的影响。冬季由于电池组不能冷启动,便由冷却水出来走1号路线,冷却水先进入冷凝器吸热进入电池组加热电池组;夏季电池组处于高温状态下,冷却水便由2号路线进入蒸发器放热降温,降温的冷却水进入电池组冷却电池组。这样的热管理方案不仅在冬季可以加热电池组,还能在夏季冷却电池组。有效的加强了电池组的热管理效果,增长锂离子动力电池的寿命。

5. 总结

1) 本文阐述了锂离子动力电池的产热机理,基于动力电池的产热机理,产热过程中主要包括电解液

的分解、负极与电解液的反应、负极和粘合剂的反应等。同时针对相变材料冷却时模块产生的热以及相变材料用最进行理论分析,并给出了相应的计算公式。动力电池的产热机理分析为后续的实验研究具有重要的指导意义。

2) 根据锂离子动力电池冷却介质的不同,分析了空气冷却技术、液体冷却技术和相变材料冷却技术

的散热机理和优缺点,以及各自冷却技术的使用工况。

3) 根据三种冷却技术的特点和缺点,结合锂离子动力电池的使用工况,提出一种冷却技术的优化方

案。这样的热管理方案不仅在冬季可以加热电池组,还能在夏季冷却电池组。有效的加强了电池组的热管理效果,延长锂离子动力电池的寿命。

基金项目

浙江省教育厅科研计划项目,项目编号:Y201121006。

郭江荣,吴峰

参考文献(References)

[1]楼英莺. 混合动力车用镍氢电池散热系统研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2007.

[2]徐克成, 秋天, 陈军, 桂长清. 动力型蓄电池欧姆内阻测定[J]. 电池工业, 2011, 1(1): 3-5.

[3]Pesaran, A.A. (2001) Battery Thermal Management in EVs and HEVs: Issues and Solutions. Advanced Auto motive

Battery Conference, Las Vegas, Nevada, 2001, 1-11.

[4]齐晓霞, 王文, 邵力清. 混合动力电动车用电源热管理的技术现状[J]. 电源技术, 2005, 29(3): 178-181.

[5]张剑波, 卢兰光, 李哲. 车用动力电池系统的关键技术与学科前沿[J]. 汽车安全与节能学报, 2012, 3(2): 87-104.

[6]张国庆, 马莉, 张海燕. HEV电池的产热行为及电池热管理技术[J]. 广东工业大学学报, 2008, 25(1): 1-4.

[7]胡锐鸿. 电动汽车用锂离子电池热特性及散热装置的数值模拟[D]: [硕士学位论文]. 广州: 华南理工大学, 2014:

4-8.

[8]Lane, G.A. (1987) Solar Heat Storage: Latent Heat Materials. CRC Press, Florida.

[9]Regin, A.F, Solanki, S.C. and Saini, J.S. (2008) Heat Transfer Characteristics of Thermal Energy Storage System Us-

ing PCM Capsules: A Review. Renewable and Sustainable Energy Reviews, 12, 2438-2458.

https://https://www.360docs.net/doc/7415258113.html,/10.1016/j.rser.2007.06.009

[10]Agbossou, A., Zhang, Q., Sebald, G. and Guyomar, D. (2010) Solar Micro-Energy Harvesting Based on Thermoelec-

tric and Latent Heat Effects. Part I: Theoretical Analysis. Sensors and Actuators A: Physical, 163, 227-283.

https://https://www.360docs.net/doc/7415258113.html,/10.1016/j.sna.2010.06.026

[11]Sharma, A., Tyagi, V.V., Chen, C.R. and Buddhi, D. (2009) Review on Thermal Energy Storage with Phase Change

Materials and Applications. Renewable and Sustainable Energy Reviews, 13, 318-345.

https://https://www.360docs.net/doc/7415258113.html,/10.1016/j.rser.2007.10.005

[12]Sadasuke, I. and Naokatsu, M. (1991) Heat Transfer Enhancement by Fin in Latent Heat Thermal Energy Storage De-

vices. ASME-JSME International Solar Energy Conference, 223-228.

[13]Bugaje, I.M. (1997) Enhancing the Thermal Response of Latent Heat Storage Systems. International Journal of Ener-

gy Research, 21, 759-766. https://https://www.360docs.net/doc/7415258113.html,/10.1002/(SICI)1099-114X(199707)21:9<759::AID-ER254>3.0.CO;2-7 [14]Manoo, A. and Hensel, E. (1991) One-Dimensional Two-Phase Moving Boundary Problem, HTD, Phase Change Heat

Transfer. ASME, 159, 97-102.

期刊投稿者将享受如下服务:

1. 投稿前咨询服务(QQ、微信、邮箱皆可)

2. 为您匹配最合适的期刊

3. 24小时以内解答您的所有疑问

4. 友好的在线投稿界面

5. 专业的同行评审

6. 知网检索

7. 全网络覆盖式推广您的研究

投稿请点击:https://www.360docs.net/doc/7415258113.html,/Submission.aspx

期刊邮箱:se@https://www.360docs.net/doc/7415258113.html,

冷却系的维护与保养

冷却系的维护与保养

发动机冷却系统的保护 实习指导教师:闫英 一、引言: 如果一台发动机,冷却系统的维修率一直居高不下,往往会引起发动机其他构件损坏,特别是随着车辆行驶里程的增加,冷却系统的工作效率逐渐下降,对发动机的整体工作能力产生较大影响,冷却系统的重要性在于维护发动机常温下工作,尤如人体的皮肤汗腺,如果有一天,人体的汗 腺不能正常工作,那么身体内的热量将无法散去,轻则产生中暑,重则休克。 二、冷却系统的作用 冷却系统的功用是带走发动机燃烧所产生的热量,使发动机维持在正常的温度范围内。发动机冷却的方式可分为风冷式发动机及水冷式发动机,水冷式发动机是靠发动机冷却水在中循环来冷却。 三、冷却系统的组成 水冷却系统一般由散热器、节温器、水泵、水道、风扇等组成。散热器负责循环水的冷却,它的水管和散热片多用铝材制成,铝制水管做成

扁平形状,散热片带波纹状,注重散热性能,安装方向垂直于空气流动的方向,尽量做到风阻要小,冷却效率要高。散热器又分为横流式和垂直流动两种。 发动机是由冷却液的循环来实现的,强制冷却液循环的部件是水泵,它由曲轴皮带带动,推动冷却液在整个系统内循环。一般冷却液对发动机的冷却,要根据发动机的工作情况而随时调节。当发动机温度低的时候,冷却液就在发动机本身内部做小循环,当发动机温度高的时候,冷却液就在发动机—散热器之间做大循环。实现冷却液做不同循环的控制部件是节温器。可以将节温器看作一个阀门,其原理是利用可随温度伸缩的材料(石蜡或乙醚之类的材料)做开关阀门,当水温高时材料膨胀顶开阀门,冷却液进行大循环,当水温低时材料收缩关闭阀门,冷却液小循环。 为了提高散热器的冷却能力,在散热器后面安装风扇强制通风。以前的轿车散热器风扇是由曲轴皮带直接带动的,发动机启动它就要转,不能视发动机温度变化而变化,为了调节散热器的冷却力,要在散热器上装上活动百页窗以控制风

锂电池负极材料的研究进展

锂离子电池负极材料研究进展介绍 来源:中国燃料电池网时间:2015-09-08 09:11 编辑:周奕 我国能源生产量和消费量均已居世界前列,但在能源供给和利用形式上存在着一系列突出问题,如能源结构不合理、能源利用效率不高、可再生能源开发利用比例低、能源利用安全水平有待进一步提高。总体上讲,我国能源工业大而不强,与发达国家相比,在技术创新能力方面还存在较大差距。因此,提高能源利用效率,调整能源结构,开发和利用可再生能源将是我国能源发展的必然选择。为了解决我国能源工业所面临的难题,寻求替代传统化石燃料的可再生绿色能源显得尤为迫切。与此同时,随着人们环保意识的日益增强和对资源利用率的关注,可充电电池逐渐成为研究的焦点,而锂原电池的成功应用大大推动了锂离子电池的研究和发展,使锂离子电池成为关注的重点。 1锂离子电池发展状况 锂电池最早出现于1958年,20世纪70年代开始进入实用化[2]。由于具有重量轻、体积小、安全性好、工作电压高、能量密度高、使用寿命长等优点成为近年来最受关注的储能器件之一。随着世界全面步入信息时代,电子化和信息化己经成为各个领域的共同发展趋势,锂离子电池也被越来越多地应用于多个方面。医疗上,锂离子电池可以为心脏起搏器、助听器等设备供能,对于病人更安全、更便捷;交通上,锂离子电池己经被广泛应用于电动单车、电动汽车上;军事上,锂离子电池可为电磁武器充能,为小型定位系统供能,甚至作为潜艇等大型作战设备的备用动力源;航天上,锂离子电池可作为航天器及各种仪器设备的电力补充单元。 电池按工作性质可以分为一次电池和二次电池[3]。一次电池是指不可循环使用的电池,如碱锰电池、锌锰电池等。二次电池指可以多次充放电、循环使用的电池,如先

动力电池系统设计讲解

深入浅出史上最易懂的动力电池系统 设计讲解 2 [摘要]动力电池系统设计要以满足整车的动力要求和其他设计为前提,同时要考虑电池系统自身的内部结构和安全及管理设计等方面。 动力电池系统指用来给电动汽车的驱动提供能量的一种能量储存装置,由一个或多个电池包以及电池管理(控制)系统组成。动力电池系统设计要以满足整车的动力要求和其他设计为前提,同时要考虑电池系统自身的内部结构和安全及管理设计等方面。 比如整车厂会针对要设计的整车,在考虑安全设计、线束连接线设计、接插件设计等相关要求后,形成一个有限的动力电池系统空间大小。然后在有限的空间约束下,进行电池模组、电池管理系统、热管理系统、高压系统等布置,保证电池单体及模块均匀散热,保证电池的一致性,提高电池系统的寿命与安全。设计时要考虑到的一些整体和通用性原则包括安全性好、高比能量、高比功率、温度适应性强、使用寿命长、安装维护性强、综合成本低等。

一种典型的动力电池系统 由于不同种类电动汽车的结构和工作模式的不同,导致对动力电池的性能要求也不一样。纯电动汽车行驶完全依赖于动力电池系统的能量,电池系统容量越大,可以续航里程越长,但所需电池系统的体积和重量也越大。虽然混合动力汽车对动力电池系统的容量要求比纯电动汽车要低,但要能够在某些时候提供较大的瞬时功率。而串联式和并联式混合动力汽车对电池系统的要求又有所区别。 因此动力电池系统的设计流程一般如下:(1)先确定整车的设计要求;(2)然后确定车辆的功率及能量要求(3)选择所能匹配合适的电芯(4)确定电池模块的组合结构形式(5)确定电池管理系统设计及热管理系统设计要求(6)仿真模拟及具体试验验证。

《锂离子电池应用》word版

国海军对其使用的所有锂电池都要根据NA VSEA指南9310.1b和技术手册S9310-AQ-SAF-010进行安全性评估。描述了对战场准备自主水下航行体(BPAUV)上锂离子电池进行的安全性测试试验;也给出了由海军水面战中心(NSWC)Carderock实验室所做的

LiNi x Co(1-x)O2由LiNiO2材料改性得到,是一种高容量的锂离子正极材料,比容量比LiCoO2高30%左右,具有很好的比功率特性,价格相对低廉。但是由于这种材料的合成相对困难、吸水性较强、与电解液的相容性较差、安全性较差等原因,并未得到广泛的推广。目前世界上应用最好的是SAFT公司,其利用LiNi x Co(1-x)O2正极材料制造的各种型号的锂离子电池已广泛应用于卫星、UUV以及各类便携式电子设备上。 LiNi1/3Co1/3Mn1/3O2是另一种高容量的正极材料,集合LiNiO2、LiCoO2和LiMnO2的优点,可逆比容量可以达到160mAh/g以上,是非常有前途的正极材料。此材料不仅有比容量高的优势,而且安全性也相对较好,价格相对较低,与电解液的相容性好,循环性能优异,是最有可能在小型通讯和小型动力领域同时应用的电池正极材料,甚至有在大型动力领域应用的可能。 LiMn2O4是LiCoO2外研究最早的正极材料,它具有较高的电压平台,较高的安全性和低廉的价格,在大容量动力电池领域有广阔的应用前景;但是其较低的比容量(110mAh/g),较差的循环性能(300次),特别是高温循环性能差使得其应用受到了较大的限制。尽管经过这几年的研究,LiMn2O4的性能得到了较大的提高,但高温循环性能依然是使用的一个瓶颈。目前国内以锰酸锂为正极材料制造锂动力电池最成功的厂家为北京中信国安盟固利公司。其生产的大容量动力型锰酸锂电池经过了两到三年的示范运行,成为配套2008年北京奥运会电动汽车的唯一电池。 LiFePO4是最近两年才快速发展起来的正极材料,其较高的安全性能,良好的耐高温特性,优越的循环性能使得其作为动力电池和备用电源领域有广阔的应用前景。但是其也存在一些缺点,特别是其电压平台较低(3.2V),振实密度低,使其制成的电池比能量较低,而且由于磷酸铁锂制备工艺要求控制严格,批次生产质量一致性差,导致其成本居高不下。同时磷酸铁锂材料的电导率低,低温放电性能差,倍率放电差等问题也需要继续研究和改进。但是近年来在世界范围内的广泛研究已经使这些问题得到了改善,特别是低温放电性能及功率特性。日本三井造船生产的磷酸铁锂动力锂电池能够以20C的

锂离子电池三元正极材料的研究进展

锂离子电池三元正极材料的研究进展 2009年09月01日作者:丁楚雄/孟秋实/陈春华来源:《化学与物理电源系统》编辑:樊晓琳 摘要:本文综述了锂离子电池正极材料层状三元过渡金属氧化物 Li-Ni-Co-Mn-O的研究进展,讨论了三元材料的结构特性与电化学反应特征,重点介绍了三元材料的制备方法和掺杂、表面修饰等改性手段,并分析了三元材料目前存在的问题和未来的研究重点。 关键词:锂离子电池;Li-Ni-Co-Mn-O;层状结构;制备方法;改性 Abstract: The research progress of the ternary transition metal oxides LiNi1-x-yCoxMnyO2 as layered cathode materials for lithium ion batteries is reviewed. The structure and electrochemical performances of the materials are discussed. Various synthesis methods, doping and surface-modification approaches are introduced in detail. Finally, the current main problems and further research trend of the materials are pointed out. Key words: lithium ion battery; cathode; layered structure; synthesis methods; modification 1、引言 锂离子电池因其电压高、能量密度高、循环寿命长、环境污染小等优点倍受青睐[1, 2],但随着电子信息技术的快速发展,对锂离子电池的性能也提出了更高的要求。正极材料作为目前锂离子电池中最关键的材料,它的发展也最值得关注。 目前常见的锂离子电池正极材料主要有层状结构的钴酸锂、镍酸锂,尖晶石结构的锰酸锂和橄榄石结构的磷酸铁锂。其中,钴酸锂(LiCoO2)制备工艺简单,充放电电压较高,循环性能优异而获得广泛应用。但是,因钴资源稀少、成本较高、环境污染较大和抗过充能力较差,其发展空间受到限制[3, 4]。镍酸锂(LiNiO2)比容量较大,但是制备时易生成非化学计量比的产物,结构稳定性和热稳定性差[5]。锰酸锂除了尖晶石结构的LiMn2O4外,还有层状结构的LiMnO2。其中层状LiMnO2比容量较大,但其属于热力学亚稳态,结构不稳定,存在Jahn-Teller效应而循环性能较差[6]。尖晶石结构LiMn2O4工艺简单,价格低廉,充放电电压高,对环境友好,安全性能优异,但比容量较低,高温下容量衰减较严重[7]。磷酸铁锂属于较新的正极材料,其安全性高、成本较低,但存在放电电

四大锂电池材料介绍

四大锂电池材料分析 一、锂电池材料组成 正极材料 负极材料 隔膜 电解液 锂电池 正极材料、负极材料、隔膜、电解液是锂电池最主要的原材料,占整个材料成本近80%。二、锂电池材料介绍1.正极材料 1) 正极材料分类及对比正极材料包括钴酸锂(LCO)、锰酸锂(LMO)、镍钴锰三元材料(NMC)、磷酸铁锂(LFP)等。 1)正极材料行业现状 LCO最早实现商业化应用,技术发展至今已经比较成熟,并已广泛应用在小型低功率的便携式电子产品上,如手机、笔记本电脑、数码电子产品等。LCO的国产化已经接近十年,自2004年以来市场发展很快,2006年至今年平均增幅25%左右;据了解,目前国内锂电池企业的正极材料国产化近90%,供求关系比较稳定,从行业生命周期看,LCO市场经过近几年的高速发展,即将进入稳定期。目前,国内LCO

生产企业主要有湖南杉杉、湖南瑞翔、国安盟固利、北京当升等。 LMO主要作为LCO的替代产品,优点是锰资源丰富,价格便宜,安全性高,但其最大的缺点是容量低,循环性能不佳,这也是限制LMO发展的主要原因,目前通过掺杂等方法提高其性能。LMO应用范围较广,不仅可用于手机、数码等小型电池,也是目前动力电池主要选择材料之一,与LFP在动力电池领域形成竞争态势。国内LMO生产企业包括湖南杉杉、国安盟固利、青岛乾运、深圳源源等。 NMC,即三元材料,融合了LCO和LMO的优点,在小型低功率电池和大功率动力电池上都有应用。主要厂家包括深圳天骄、河南思维等。LFP是被认为最适合用于动力电池的正极材料,具有高稳定性,安全性,现已成为各国、各企业竞相研究的热点。慧聪邓白氏认为,目前,国内宣称可以生产LFP的企业很多,全国LFP产能规模近6,000吨,但实际量产数远低于产能数,主要原因在于技术性能仍达不到锂电池厂家的要求,并且LFP专利的国际纠纷仍然影响了其在国内的发展。目前,主要厂家包括天津斯特兰、北大先行等。 2.负极材料国内应用的负极材料主要包括人造石墨、天然石墨、CMS(中间相炭微球)、钛酸锂等,其中人造石墨分为人造石墨和复合人造石墨等,天然石墨分为天然石墨、改性天然石墨等。近几年负极材料行业发展迅速,国内企业增长较快,2008年全国负极材料实际供货量近9,000吨,同比增长41。目前,负极材料仍然以人造石墨与天然石墨为主,石墨材料在整个负极材料中占85%左右;其次是CMS。负极材料厂家包括深圳贝特瑞、上海杉杉、长沙海容等。 3.隔膜 随着国内锂电池生产规模扩大,对隔膜的需求也年年上升,自2006年来,整体隔膜市场容量年增幅均在30%左右。自2006、2007年多个国内隔膜企业投产以来,

动力电池材料体系及结构选择分析

动力电池材料体系及结构选择分析 材料体系选择分析 1、下表是理论上可以在锂离子电池中应用的正负及材料体系 正极材料(阳灿/^) 200 400 600 800 1000 负极材料比(阳八卜/妒 综合考虑材料体系的安全、成本、能量密度、电性能、原材料的自然界资源储量等条件,目前具备产业化条件,最有可能成为新一代车载动力电池的材料主要分为以下几个体系,1、 2、0^111204/01^11116 3、 4、 5、1^1^11204/1-14115012 几种常用的正极材料的特性以及优缺点分析

700:^3;^1:十2;胞:44; 7^1是材料容量的主要来源,^2^-14; 705在高电位时才能发生反应,^3^44,起到稳定晶体结构的作用; 7―保持44价不变,在―含量偏高时易出现价态变小的趋势,出现十3的\111; ^^的容量要高于尺0从,是目前容量最高的正极材料,其安全性能差是突出的问题;解决层状晶体材料安全性能差的问题主要从以下几个方面入手 ^表面涂层,减少反应活性区域的直接接触(八1203、 ^陶瓷隔膜技术; ^活性低的负极材料 ^正极材料的掺杂改性; 2、1^1^10204 ^成本低,储量丰富; 7能量密度偏低’高温性能差是其主要缺点; 改善高温循环的方法 ^元素掺杂,掺入低价态元素提高锰价态(灰1、^); ^表面修饰,包覆氧化物,减少材料与电解液的接触; ^采用新型电解质盐,0608; ^活性低的负极材料 3、01^?04 7成本低、储量丰富; 7循环性能优良、安全性能优良; 7材料稳定性差、合成过程质量控制困难; ^加工性能差工艺要求高; 7材料电子导电性差、低温性能差、能&密度偏低; 改善电子传导性差的手段 ^元素掺杂与表面包覆扣材料 ^纳米级导电材料、高效分散技术; ^箔材预处理技术; 几种常见的外部包装结构及分析 目前,在传统锂离子电池基础上发展起来的锂离子动力电池呈现出结构多样化,缺乏统一 的标准,而外部的结构对工艺布局有着决定性的影响,目前主流电池在外部封装结构上主 要可分为以下几类: 1、圆柱型电池 2、方型硬壳电池 3、方型软包装电池 几种不同类型结构的优缺点分析 1、圆柱型电池代表厂家(江森自控、八123、531^0、300)0 7工艺成熟度高、生产效率高、过程控制严格,成品率及产品一致性都较其他结构电池 高; 7壳体结构成熟,成本低; 7极片过长,卷绕方向上集流体电流密度分布不均匀,造成内部各部分反应程度不一致;^直径过大,电芯内部产生的热量很难得到快速释放,内部的热量累积,给电池的安全

锂离子电池的正确使用方法

锂离子电池的正确使用方法 目前大家在市面上买到的便携电子产品,比如手机、MP3、相机等,绝大多数使用的都是可充锂离子电池,那么如何正确的使用锂离子电池呢~ 正确的充放电直接关系到锂离子电池的使用寿命和性能,在查了一些文献后,我总结了一下锂离子电池的正确使用方法供大家参考。 一、锂离子电池的定义 我们通常所说的“锂电池”,严格意义上来说,应该称为锂离子(Li-ion)电池。锂(Li)电池和锂离子(Liion)电池是两种不同的电池。最早出现的锂电池在使用时比较危险,经常会有在充电时出现燃烧、爆裂的情况出现。这是因为锂是比较活跃的金属元素,使用时不太安全。而锂离子电池(Li-ion)加入了能抑制锂元素活跃的成份,它是锂电池的替代产品,它的阳极采用锂的活性化合物组成,通常为钴酸锂(LiCoO2),负极则是吸藏锂离子的特殊分子结构的碳。充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列在呈片状结构的碳中。放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合。锂离子的移动产生了电流。所以,在该电池中锂永远以锂离子的形态出现,不会以金属锂的形态出现,当然也就不会出现燃烧、爆炸等危险。从而使锂电真正达到了安全、高效、方便,而老的锂电也随之被淘汰了。区分锂电池和锂离子电池的方法相当简单:从电池的标识上就能识别,锂电的标识为Li,而锂离子电池为Li-ion。 二、电池的记忆效应 电池记忆效应是指电池长时间经受特定的工作循环后,自动保持这一特定的倾向。这一现象最早出现在镍镉电池中,如果不放尽电量,电池会随使用次数的增加而呈现出电量愈来愈少的状态,所以要每次用尽电池再充电。后来的镍氢电池,其实已经没有明显的记忆效应,但是仍然需要经常的彻底充放电来保持其正常的蓄电量,因此,某些镍氢电池的充电器提供了放电后再进行充电的功能。锂电池则基本上没有镍镉电池的记忆效应,记忆效应的原理是结晶化,在锂电池中几乎不会产生这种反应。但是,锂离子电池在多次充放后容量仍然会下降,其原因是复杂而多样的。主要是正负极材料本身的变化,从分子层面来看,正负极上容纳锂离子的空穴结构会逐渐塌陷、堵塞;从化学角度来看,是正负极材料活性钝化,出现副反应生成稳定的其他化合物。物理上还会出现正极材料逐渐剥落等情况,总之最终降低了电池中可以自由在充放电过程中移动的锂离子数目。 三、锂离子电池的激活 锂离子电池是不需要采用超常时间充电来激活的。如果从锂离子电池的工作原理和锂离子电池的性能特征来看,这一说法无疑是正确的。锂离子电池在出厂以前本身要经过恒压充电,然后放电,如此几个循环,使电极充分浸润电解液,充分活化,以容量达到要求为止,这个就是激活过程,这样出来的锂离子电池到用户手上已经是激活过的了。 但是存在一个问题,就是电池厂出厂的电池到用户手上,这个时间是难以确定的,有时可能是很短的,仅一两个月,但也有可能是很长的,长达半年一年。如果是很长的时间,那么电池电极材料就会钝化,故尔,锂离子电池在首次使用时进行激活还是有必要的。所以,厂家一般也建议:对初次使用的锂离子电池最好进行1~3 次完全充放电过程(这里的完全放电不可理解为过度放电),以便消除电极材料的钝化,达到最大容量。之后,电池就可以即用即充,只有在长时间不用后才需要再次进行完全充放电,使之恢复活力。 需要了解的是:锂离子电池不允许过度充电和过度放电(过度放电的意思是:比如你用的手机,你直接把电池用过自动关机,然后再强行开机,再自动关机,使电池彻底没电),这将对锂离子电池的正负极造成永久的损坏。此外,充电时若产生过高的温度,也将会引发锂离子电池的损害,所以在不少的锂离子电池正负极之间设有保护性的温控隔膜或电解质添加剂。在电池升温到一定的情况下,复合膜膜孔闭合或电解质变性,电池内阻增大直到断路,电池不再升温,确保电池充电温度正常。大多数锂离子电池配套的充电器通常具有充放电的控制电路,当充电完成时,电路会自动断开,指示灯会自动熄灭,以保护锂离子电池。这样,你在给锂离子电池充电时,忘记了及时拔下充电器的电源插头,一点也不用担心电池会过充和过热。这个时候插不插上电源其实已经没有区别了。但是,如果你的充电器没有自动断开的保护电路,那么,你的电池一旦充电完成时,应该及时拔下电源插头,以避免锂离子电池因过充而损坏。 四、锂离子电池的使用寿命 有一点需要告诉大家:锂离子电池的使用寿命不同于镍镉电池和镍氢电池的寿命是以充电的次数来计算,锂离子电池的使用寿命体现在充放电周期上,这个周期指的是一次完整的充放电过程。锂离子电池的使用寿命在出厂时就已经确定了,同一个品牌和批号的产品,他们的使用寿命,也就是充放电的周期数是一样的。举一个简单的例子来说,如果你上次使用了电池40%的电力,将电池充满电,下次又使用了60%的电力,又充满电,这样两次的充放电使用恰恰刚好是一个完整的充电周期,而不是两个,所以,无论你是喜欢把锂离子电池用完了再充电,还是喜欢随用随充,均无伤大雅。(这里的用完不是完全用完) 锂离子电池的保养的建议: ①其实不必刻意使锂离子电池每一次都是在电力用尽后再充,外出前可以将电池充满电,备上一块备用电池不失为一个理想的选择。 ②一段时间可以进行一次保护电路控制下的深充放以修正电池的电量。 ③切记不要使锂离子电池过度充电。如果你的充电器没有自动断电功能,那么就必须在充电完成后及时拔下电源插头。否则,不仅有可能会损坏电池,而且会有可能因为电池的电压过高而烧坏数码照相机,特别是袖珍数码照相机。 ④锂离子电池长期不用时,应充入一定的电量以防电池在存贮中自放电过量导致过度放电的损坏。同时,应存放在阴凉的地方以减弱其自身内部钝化反应的速度。 ⑤最后一条是:实际上,锂离子电池在使用中没有太多要顾及的方面,换句话说,就是顾及也没有太大的作用。一个电池能使用多少次,也许差别更多的来自电池

冷却塔日常维护和保养

冷却塔系统日常维护与保养 一.冷却塔的工作原理 该设备是一种机力通风型冷却塔,其工作原理是把所需冷却处理的水压到冷却塔塔上部,再通过配水系统均匀地喷洒于填料上,热水从填料上部落下,同时不饱和空气从塔下部上升,在填料间隙的流动中,热水与不饱和各空气进行冷热交换,空气把热量向上传递,变成热空气,再由风机抽出塔外,从而达到水温降低的效果。 二.冷却塔运行规程 2.1冷却塔运行前准备 2.1.1清扫现场,保证塔内、塔上无零星杂物。 2.1.2复验各部件安装位臵是否符合安装要求,各紧固件有否松动。 2.1.3检查电动机绝缘电阻,以免电机运转时烧坏。 2.1.4冷却塔运行前必须清理管道内杂质,以免堵塞布水器上出水孔,造成配水不均匀。 2.1.5检查风机叶片处的叶尖与风筒壁间隙,保证叶尖与风筒壁间隙在252 mm之间,达不到上述要求应于调整。 2.2循环水系统试运行 2.2.1逐步打开进水总管闸,通过阀门将水量调至额定值。 2.2.2冷却塔采用旋转布水器,应观察布水器旋转情况,布水器应运转平稳,布水均匀,如有异常情况,按常见故障及排除的规定排除。 2.2.3冷却塔出水应保证畅通。 2.2.4检查冷却塔塔体有否渗漏,如有渗漏应及时密封。 2.3风机系统试运行 2.3.1清扫现场 2.3.2复验各部件安装位臵是否符合安装要求,各紧固件连接件有否松动。 2.3.3检查叶片安装角是否正确、一致,各叶片水平位臵误差是否在允许范围内。 2.3.4检查叶轮、叶片安装紧固螺栓是否牢固,轴端止动保险是否安全可靠。 2.3.5检查电机绝缘电阻是否达到标准。 2.3.6手工转动风机叶轮,整机运转应轻重均匀。 2.3.7点动电机,检查叶片旋转方向是否正确,本公司叶片旋转方向为顺时针方向。 2.3.8连续运转1小时,测定,记录电机电流值、电压值、振动值,检查减速机是否有不正常响声等其它异常现象。 2.3.9观察塔体震动状况 2.3.10如上述2.8条不在设计范围内,则关闭风机,调整叶片安装角直到符合要求。 2.3.11连续运行4小时停机后: 2.3.11.1复验各部件的位臵有否走动。 2.3.11.2检查各连接件,紧固件有否松动。 2.3.11.3检查各密封部件是否漏油。 2.3.11.4检查电机、减速机温度是否符合要求。

动力电池用正极材料磷酸铁锂的研究进展

2010年第7期广东化工 第37卷总第207期https://www.360docs.net/doc/7415258113.html, · 59 · 动力电池用正极材料磷酸铁锂的研究进展 侯贤华,胡社军,彭薇 (华南师范大学物理与电信工程学院,广东广州 510006) [摘要]文章综述了锂离子动力电池关键正极材料磷酸铁锂的产业化制备方法,市场状况分析和近年来国内外对该正极材料的研究进展情况。结果表明:产业化制备方法目前主要是固相反应法和水热合成,市场需求大于市场供给,具有很好的市场前景,高倍率磷酸铁锂将成为未来的一个重要研究方向。 [关键词]磷酸铁锂;正极材料;倍率性能 [中图分类号]TM912 [文献标识码]A [文章编号]1007-1865(2010)07-0059-02 Research Progress of LiFePO4 Cathode Materials for Power Lithium-ion Battery Hou Xianhua, Hu Shejun, Peng Wei (School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China) Abstract: The research progress in LiFePO4 Cathode materials for lithium ion battery was reviewed. The emphasis was expressed preparation method of industrialization, market analysis and cathode materials progress for the past few years. The result suggested that the industrialized method have solid state reaction and hydrothermal synthesis, market requirement is more than supply, this product has excellent market prospects, high rate property will become one of the research fields in the future. Keywords: LiFePO4;cathode material;rate property 锂离子电池因具有电压高、比能量高、工作温度范围广、 环境友好等优点,而被广泛应用于各种便携式电子产品[1-2], 如手机、数码相机、笔记本电脑和电动工具等,并有望成为未 来混合动力汽车和纯动力汽车的能源供给之一[3]。正极材料是 决定锂离子电池综合性能优劣的关键因素之一,目前商业化正 极材料主要是LiCoO2,因钴为战略资源,由此导致电池的成 本较高(目前在整个电池成本中,正极材料成本占35 %),且 LiCoO2安全性较差,因而限制了其使用范围。LiFePO4具有稳 定的橄榄石结构,理论容量约为170 mAh/g,原材料价格低廉 丰富,工作电压适中、电容量大、高放电功率、可快速充电且 循环寿命长、稳定性高,是一种理想的动力电池用正极材料。 1 磷铁铁锂晶体结构 LiFePO4晶体是有序的橄榄石型结构,属于正交晶系,空间群为Pnma,晶胞参数a = 1.0329 nm,b = 0.60072 nm,c= 0. 46905 nm。在LiFePO4晶体中氧原子呈微变形的六方密堆积,磷原子占据四面体空隙,锂原子和铁原子占据八面体空隙。八面体结构的FeO6在晶体的bc面上相互连接,在b轴方向上八面体结构的LiO6相互连接成链状结构。1个FeO6与2个LiO6共边,1个PO4和FeO6共用一条边,与LiO6共用两条边。 充放电反应是在LiFePO4和FePO4两相之间进行,如图1所示。在充电过程中,LiFePO4逐渐脱出锂离子形成FePO4,在放电过程中锂离子插入FePO4形成LiFePO4。在锂离子反复嵌入与脱出的过程中,当晶格结构由LiFePO4转变为Li1-x FePO4时,磷酸根离子(FePO4-)可稳定整个材料的晶格结构。由于在这2种物相互变过程中铁氧配位关系变化很小,故此电极材料虽然存在物相的变化,但是没有影响电化学效应的体积效应产生。当磷酸铁锂进行充电时,材料本身的体积约减少6.5 %,这也是材料具有良好循环性能的主要原因。LiFePO4的电化学曲线非常平坦,具有较高的理论容量,约为170 mAh/g。 2 磷酸铁锂产业化制备方法 目前产业化制备LiFePO4材料最常用的方法是固相法,此法工艺简单,制备条件容易控制和规模化,缺点是球磨的均匀程度以及强度同样制约了产物的性能,产物颗粒不均匀,晶形无规则,粒径分布范围广,实验周期长。S.A.Anna等测试了LiFePO4在不同温度下的充放电性能,发现即使在85 ℃下,它仍然能稳定工作,而且经过20次循环以后,60 ℃下测试的样品比23 ℃下测试的样品中的Fe3+含量低了14 % ,说明在较低温度下,锂离子的嵌入比较困难。 图1 充放电前后LiFePO4和FePO4两相图 Fig.1 The structural modes of LiFePO4 and FePO4 before and after charge/discharge 水热法也是制备磷酸铁锂的另一种常见方法,具有操作简单、物相均匀、粒径小的优点。在密闭体系中,以水为溶剂,在一定温度下,在水的自生压强下,溶液内部的金属盐具有较高的活性,在溶液中进行结晶反应。S.Yang等对水热法合成LiFePO4晶体进行了大量研究。他们发现pH值对实验结果的影响不大,而且水热法比高温固相法合成的晶体颗粒要小,Fe2+含量高。A.K.Padhi等发现用水热法在还原性条件下可得LiFePO4晶体,在氧化性条件下则得LiFePO4(OH) 晶体。当锂盐的量很少时,则会有多孔的FePO4·2H2O生成,它在高温时失水生成电化学非活性的FePO4。在用水热法合成LiFePO4晶体时要保证锂盐的量,以防止电化学非活性的FePO4晶体的生成。 除了固相法和水热法两种产业化方法外,在研究过程中还有各种各样的合成方法涌现出来,包括共沉淀法,乳化干燥法,机械化学激活法,微波炉加热法等。 3 磷酸铁锂的市场状况 采用磷酸铁锂作为锂离子电池正极材料的电池被称为磷酸铁锂电池(简称铁电池),由于铁电池的众多优点被广泛使用于各个领域。其中主要应用领域有: (1)储能设备:风力发电系统的储能设备,太阳能电池的储能设备,如太阳能LED路灯(比亚迪已经生产出该类电池); (2)电动工具:高功率电动工具、电钻、除草机等;(3)电动车辆:电动摩托车、电动自行车、电动婴儿车、电动轮椅和电动 [收稿日期] 2010-4-19 [基金项目] 国家自然科学基金资助项目(50771046) [作者简介] 侯贤华(1977-),男,湖北恩施人,博士后,主要研究方向为清洁能源材料。LiFePO4 FePO4 充电 放电

锂离子电池简介及主要应用

锂离子电池简介 使用煤炭,石油和天然气的很长一段时间以来,都是以化石燃料为主要能源,这样的能源结构,使得环境污染严重,并且由此导致的全球变暖问题和生态环境恶化问题受到越来越多的关注。所以,可再生能源和新能源的发展成为在未来技术领域和未来经济世界的一个最具有决定性的影响。锂离子电池作为一种新的二次清洁,且可再生能源,其具有工作电压高,质量轻,能量密度大等优点,在电动工具,数码相机,手机,笔记本电脑等领域得到了广泛的应用,并且显示出强大的发展趋势。 锂离子电池的发展历史 第二十世纪六十、七十年代,几乎在锂电池是发明的同时,研究发现许多插层化合物可以与金属锂的可逆反应,构成锂电池[1]。早在第二十世纪七十年代提出了分层组织作为阴极的斯梯尔最有代表性的一种,金属锂作为阳极的Li-TiS2系统。 1976年Whittingham证实了系统的可靠性。随后,埃克森公司的Li-TiS2系统进行深入研究,并希望其商业化。但是,系统很快就暴露出许多致命的缺陷。首先,活性金属锂容易导致有机电解液的分解,导致电池内部压力。由于锂电极表面的表面电位分布不均匀,在锂金属的电荷将在锂沉积的阴极,产生锂“枝晶”。一方面会造成可逆嵌锂容量损失,另一方面,枝晶可以穿透隔膜和负极连接,造成电池内部短路,瞬间吸收大量的热,发生爆炸,导致严重的安全隐患。这一系列因素导致金属锂电池的循环性能和安全两差异,所以Li-TiS2系统未能实现商业化。 1980,阿尔芒首次提出摇椅电池的想法。使用低锂嵌入化合物锂化合物代替金属锂作为阳极,采用高嵌锂电位嵌锂化合物作正极。同年,在美国德州大学Goodenough教授的国家提出了一系列的锂过渡金属氧化物LixMO2(M=Co 、Ni 或Mn)为两电池正极材料锂。1987,奥邦成功组装了浓差电池MO2 (WO2)/LiPF6-PC/LiCoO2和证明“摇椅电池”的想法的可行性,但由于负电极材料形成LiMoO2 CLiWO2嵌入电位高(0.7-2.0 V vs.Li/Li+)嵌锂容量较低,并没有显示高电压的锂离子二次电池的优点,比容量高。

动力电池的研究进展

动力电池的研究进展 作者:胡信国来源:《化学与物理电源系统》编辑:樊晓琳 摘要:本文综述了动力电池的研发历程,对各类车载电池的性能、价格等进行了比较,介绍了动力电池在EV、HEV和EB的应用市场。着重讨论了VRLA电池作为HEV和电动自行车(EB)的车载动力存在的问题和解决方案,以及Li-ion动力电池的安全问题和新型安全正极活性材料。 关键词:动力电池,VRLA,Li-ion,Ni-MH,DMFC,PEMFC Abstract:The research history of motive power batteries was reviewed. The properties and price of various batteries for vehicle were compared. The applications of motive power batteries in EV, HEV and EB were introduced. The emphasis lies in the problems and solutions of VRLA batteries for HEV and EB, the safety and advanced positive active material of lithium-ion power battery. Key words: Motive battery; VRLA; Ni-MH; Li-ion; DMFC; PEMFC 1、前言 图1 世界石油消耗趋势 全球石油危机日益严重,石油储量仅剩人类使用约40年。但是石油消耗量的快速增长趋势仍没有得到缓解,世界石油消耗量统计与预测如图1所示。从美国石油消耗的结构(图2)来看,美国汽车消耗的石油占总消耗的60%,2004年全球汽车消耗8亿多吨汽油,占石油总消耗的50%。汽车燃油排放大量的CO、NOx等有害气体,严重地污染了人类的生活环境,目前全球汽车饱有量约8亿辆,2005年中国汽车产量600万辆,到2010年汽车饱有量也将达到7000万辆,高速发展的中国汽车业对世界环境和能源的影响越来越大。据统计,全球大气污染42%来源于交通车辆的污染,大城市的交通车辆更使大气污染的比例高达60%。为此,世界各国对发展电动车和混合电动车高度重视,2002年美国推出“Freedom car &Technologies”计划;2000年以来,中国政府实施“清洁汽车行动”,电动自行车业有了巨大发展,电动车列入了863计划,加快了EV和HEV的研发进程,作为车载动力的动力电池的研发,成为EV和HEV发展的主要瓶颈。

(完整版)冷却塔维护保养方案

冷却塔维护保养方案 冷却塔的运行保养阶段 在冷却塔的使用过程中,可分为三个阶段维护及保养。停机后的清洗保养,开机前的检查调试,正式开机运行中的巡视检查。 (一)冷却塔停机后的清洗、保养 1、散水系统 ①检查冷却塔主水管、分水管、喷头有无破损松动,及时时行修补、固定。彻底清除布水管及喷头内部的污物,以保证水管畅通,喷头布水均匀。 ②彻底冲洗冷却塔水盘及出水过滤网罩,避免水垢污物积存堵塞管道。清洗完毕应打开泄水 阀门,放尽水盘内积水,以免冻坏。 ③检查水盘、塔脚是否漏水,如有漏点,及时补胶。 2、散热系统 ①清洗冷却塔所有换热材(填料),彻底清除掉热材表面、孔间的水垢污物,保证换热材的洁净。拆装换热材时行修补更换。装填时注意布放紧密,不留间隙。 ②清洗挡水帘、消音毯,去除污物。对破损处进行修补更换。挡水帘码放时要求紧密,防止漂水。将冷却塔充水,检查是否漏水(特别是塔体连接处),若漏则更换密封件。 3、传动系统

①电机:检查电机的接线端子是否完好,电机转动是否正常,电机接丝盒作密封,电机轴承加油润滑,电机外壳重新喷漆。长期停机,建议业主每个月至少运转电机3 个小时,保持电机线圈干燥,并润滑轴承表面。 ②减速器:检查减速器转动是否正常,如有异声,立即更换减速机轴承。 ③皮带、皮带轮:调节顶丝,松开皮带,延长皮带使用寿命。检查皮带有无破损、裂纹,必要时建议业主更换新皮带。校核皮带轮,马达架水平度,紧固松动螺栓,有锈蚀螺栓予以更换。 ④风扇:清洗扇叶表面污物,检查扇叶角度,扇叶与风胴间隙,并进行调整。 4、塔体外观 ①对风胴、塔、入风导板进行彻底清洗,保证外观清洁美观。 ②重新紧固各部位螺栓,并更换生锈螺栓。 ③检查塔体外观有无破损、裂纹,及时予以修补。 ④检查塔体壁板立缝处是否严密,必要时重新刷胶修补。 5、冷却塔附件 ①检查自动补水装置--浮球有无损坏、工作是否正常。发现异常及时修理、更换。 ②对冷却塔铁件螺栓重新紧固、更换生锈螺栓,对锈蚀铁件新刷漆。 ③检查进、出水管,补水管的塔体法兰盘有无破损、漏水、冷却塔清洗保养完毕,建议业主用彩条围挡布将冷却塔风胴包裹密封,以防杂物进入冷却塔内部 (二)冷却塔开机前的检查、调式

如何选择动力锂电池的正极材料及安全性分析

如何选择动力锂电池的正极材料及安全性分析 目前,在锂离子电池中使用量最多的正极材料有以下几种:钴酸锂(LiCoO2),锰酸锂(LiMn2O4),镍钴锰酸锂(LiCoxNiyMnzO2)以及磷酸铁锂(LiFePO4)。究竟选择哪种正极材料的锂电池?下文会做详细地分析。 测试锂离子电池的安全问题,过充(指充电电压超过其充电截止电压,对锂离子电池来说,一般可以将10V/节定为过充电压)是一个很好的方法。谈到过充,我们应该首先了解一下锂离子电池的充电原理(如图1所示)。锂离子电池的充电过程是Li 从正极跑出来,通过电解液游到负极并得到电子,嵌入到负极材料中,而放电的过程则相反。 衡量正极材料安全性主要考验: A:容不容易在充电时形成枝晶。 锂离子电池的充电过程就是Li 从正极跑出来,通过电解液游到负极被还原并嵌入到负极材料中;放电的过程则相反,负极材料中的锂被氧化,通过电解液,嵌入正极材料。 基于循环性地考虑,钴酸锂(LiCoO2 )材料的实际使用容量只有其理论容量的二分之一,即使用钴酸锂作为正极材料的锂离子电池在正常充电结束后(即充电至截止电压4.2 V左右),LiCoO2正极材料中的Li 将还有剩余。可用以下的简式表示:LiCoO2→0.5Li Li0.5CoO2 (正常充电结束)。此时如果充电电压继续升高,那么LiCoO2正极材料中的剩余的Li 将会继续脱嵌,游向负极,而此时负极材料中能容纳Li 的位置已被填满,Li 只能以金属的形式在其表面析出。一方面,金属锂的表面沉积非常容易聚结成枝杈状锂枝晶,从而刺穿隔膜,造成正负极直接短路;另外,金属锂非常活泼,会直接和电解液反应放热;同时,金属锂的

动力电池的四种冷却方式 动力电池及电池管理系统BMS

动力电池的四种冷却方式 目前动力电池系统的热管理主要可分为四类,自然冷却、风冷、液冷、直冷。其中自然冷却是被动式的热管理方式,而风冷、液冷、直流是主动式的,这三者的主要区别在于换热介质的不同。 温度因素对动力电池性能、寿命、安全性有着至关重要的影响。一般来说我们期望电池系统能在15~35℃的区间内运行,从而实现最佳的功率输出和输入、最大的可用能量,以及最长的循环寿命(虽然低温存储更能延长电池的日历寿命,但在应用上实践低温存储的意义并不大,这一点上电池和人非常相似)。 目前动力电池系统的热管理主要可分为四类,自然冷却、风冷、液冷、直冷。其中自然冷却是被动式的热管理方式,而风冷、液冷、直流是主动式的,这三者的主要区别在于换热介质的不同。 1.自然冷却 自然冷却没有额外的装置进行换热。例如BYD在秦,唐,宋,E6,腾势等采用LFP电芯的车型上都采用了自然冷却。据了解后续BYD在采用三元电芯的车型将切换为液冷。 2.风冷

风冷采用空气作为换热介质。常见的有两种,第一种姑且称为被动风冷,直接采用外部空气换热。第二种则为主动风冷,可预先对外部空气进行加热或冷却后再进入电池系统。早期许多日韩系的电动车型采用风冷方案。 3.液冷 液冷采用防冻液(比如乙二醇)作为换热介质。方案中一般会有多路不同的换热回路,例如VOLT具有散热器回路、空调回路、PTC回路,电池管理系统根据热管理策略进行响应调节和切换。而TESLA Model S有一个与电机冷却串联的回路,当电池在低温状态下需要加热时,电机冷却回路与电池冷却回路串联,电机可为电池加热。当动力电池处于高温时,电机冷却回路与电池冷却回路将被调节为并联,两套冷却系统独立散热。 4.直冷

冻干机用冷却循环水系统维护、保养标准操作规程

冻干机用冷却循环水系统使用、维护、保养 标准操作规程 1.目的:建立一个冻干机用冷却循环水系统使用、维护、保养的标准操作规程,指导规范操作。 2.范围:冻干机用冷却循环水系统包括型冷却塔、型立式泵(一用一备)、蓄水池及管路系统,其作用是为冻干机的压缩机提供冷却用水,本规程适用于冻干机用冷却循环水系统的操作。 3.职责:冻干岗位操作人员及机修人员对本规程的实施负责。 4.程序: 4.1开机前的准备工作 4.1.1检查蓄水池的水位是否接近浮球,如果水位接近浮球,打开补水阀,可直接开机,如果水位较低,则不能开机,需打开补水阀向蓄水池内加水至接近浮球处,方可开机。 4.1.2检查进水管压力表判断泵前管道内是否充满水,如压力表显示有0.1Mpa 压力,则泵前管道内充满水,可直接开机,如没有压力,则需向管路内补满水后,方可开机。 4.1.3打开常用水泵及冷却塔的电源。 4.2开机 4.2.1水泵起动 4.2.1.1全开进口阀门,关闭吐出管路阀门。 4.2.1.2按下常用水泵的绿色按钮,起动电机,观察泵运行是否正确。 4.2.1.3调节出口阀开度至所需压力。 4.2.1.4检查轴封泄漏情况,正常时机械密封泄漏应小于3滴/分。 4.2.1.5检查电机,轴承处温度≤70℃。 4.2.2冷却塔启动 4.2.2.1检查冷却水进水管路温度,若高于25℃,则需开启冷却塔。 4.2.2.2按下冷却塔电机的绿色按钮,起动电机,观察电机及风扇运转是否正常。 4.3停车 4.3.1水泵停车 4.3.1.1关闭吐出管路阀门。 4.3.1.2按下常用水泵的红色按钮,停止电机。 4.3.1.3关闭进口阀门。 4.3.1.4如长期停车,应将泵内液体放尽。 4.3.2冷却塔停车 4.3.2.1按下冷却塔电机的红色按钮,停止电机。 4.4维护、保养 4.4.1水泵的维护 4.4.1.1运行中的维护

相关文档
最新文档