高中物理二轮专题——弹簧模型(解析版)

高中物理二轮专题——弹簧模型(解析版)
高中物理二轮专题——弹簧模型(解析版)

高中物理第二轮专题——弹簧模型

高考分析:

轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高.在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能等多个物理概念和规律,所以弹簧类问题也就成为高考中的重、难、热点.我们应引起足够重视. 弹簧类命题突破要点:

1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.

2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.

3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(

21kx 22-2

1kx 12),弹力的功等于弹性势能增量的负值或弹力的功等于弹性势能的减少.弹性势能的公式E p =21kx 2,高考不作定量要求,该公式通常不能直接用来求弹簧的弹性势能,只可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.

一、“轻弹簧”类问题

在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故簧轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹一端受力为F ,另一端受力一定也为F 。若是弹簧秤,则弹簧秤示数等于弹簧自由端拉力的大小.

【例1】如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能

忽略,弹簧及挂钩质量不计,施加水平方向的力1F 、2F ,且12F F >,

则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .

【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m

-= 仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .

说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的. 【答案】12F F a m

-= 1F 二、质量不可忽略的弹簧

【例2】如图所示,一质量为M 、长为L 的均质弹簧平放在光滑的

水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析

弹簧上各部分的受力情况.

【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M

=

,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:

x x F x T ma M F L M L === 【答案】x x T F L

=

三、弹簧长度的变化问题(胡克定律的理解与应用)

【例3】如图所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴

接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统

处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .

【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的

增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.

由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长

量分别为:1211()m m g k +和122

1()m m g k + 故物块2的重力势能增加了

221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 【答案】221221()m m m g k + 211212

11()()m m m g k k ++ 四、与物体平衡相关的弹簧问题

【例4】如图所示,用完全相同的轻弹簧A 、B 、C 将两个相同的小球连接

并悬挂,小球处于静止状态,弹簧A 与竖直方向的夹角为30o ,弹簧C 水

平,则弹簧A 、C 的伸长量之比为

A .4:3 B.3:4 C. 1:2 D. 2:1

【解析】将两小球看做一个整体,对整体受力分析,可知整体受到重力、A 、C 的拉力共3个力的作用,由于弹簧处于平衡状态,将轻弹簧A 的拉力沿竖直方向和水平方向分解可知水平方向上满足sin 30Ax A C F F F =?=,故:2:1A C F F =,又三个弹簧的劲度系数相同,据胡克定律F kx =可知弹簧A 、C 的伸长量之比为2:1。

【答案】D

练习:如图所示,在水平板左端有一固定挡板,挡板上连接一轻质弹簧。紧贴弹簧放一质量为m 的滑块,此时弹簧处于自然长度。已知滑块与挡板的动摩擦因数及最大静摩擦因数均为3/3。现将板的右端缓慢抬起使板与水平面间的夹角为θ,最后直到板竖直,此过程中弹簧弹力的大小F 随夹角

θ的变化关系可能是图中的( )

【解析】选取滑块为研究对象,其肯定受到竖直向下的重力mg 、垂直斜面向上的支持力N (大小为mgcosθ)和沿斜面向上的摩擦力f 的作用,可能还会受到沿斜面向上的弹簧弹力F 的作用,当θ较小,即mgsinθ<μmgcosθ时,弹簧弹力F=0,代入数据可得此时θ<π/6,据此可排除选项AB ;当mgsinθ>μmgcosθ,即θ>π/6时,F≠0,根据平衡条件可得F=mgsinθ-μmgcosθ,当θ=π/3时,F=33

mg >21mg ,所以选项C 正确,D 错误。本题答案为C 。

五、弹簧弹力的双向性

弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解

. 【例

5】如图所示,质量为m 的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均

为0120,已知弹簧a b 、对质点的作用力均为F ,则弹簧c 对质点作用力的

大小可能为 ( )

A 、0

B 、F mg +

C 、F mg -

D 、mg F - 【解析】 由于两弹簧间的夹角均为0120,弹簧a b 、对质点作用力的合力仍为F ,弹簧a b 、对质点有可能是拉力,也有可能是推力,因F 与mg 的大小关系不确定,故上述四个选项均有可能.正确答案:ABCD

六、弹簧串、并联组合

弹簧串联或并联后劲度系数会发生变化,弹簧组合的劲度系数可以用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特点要掌握:弹簧串联时,每根弹簧的弹力相等;原长相同的弹簧并联时,每根弹簧的形变量相等.

【例6】 如图所示,两个劲度系数分别为12k k 、的轻弹簧竖直悬挂,下端用光滑

细绳连接,并有一光滑的轻滑轮放在细线上;滑轮下端挂一重为G 的物体后滑轮下

降,求滑轮静止后重物下降的距离.

【解析】 两弹簧从形式上看似乎是并联,但因每根弹簧的弹力相等,故两弹簧实

为串联;两弹簧的弹力均2G ,可得两弹簧的伸长量分别为112G x k =,222G x k =,两弹簧伸长量之和12x x x =+,故重物下降的高度为:1212()24G k k x h k k +=

= 七、与动力学相关的弹簧问题

【例7】如图所示,一轻质弹簧竖直放在水平地面上,小球A 由弹簧正上方某高度

自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那

么在小球压缩弹簧的过程中,以下说法中正确的是( )

A.小球加速度方向始终向上

B.小球加速度方向始终向下

C.小球加速度方向先向下后向上

D.小球加速度方向先向上后向下

参考答案:C (试分析小球在最低点的加速度与重力加速度的大小关系)

练习1:如图所示,一轻质弹簧一端系在墙上的O 点,自由伸长到B 点.今用一小物体m 把弹簧压缩到A 点,然后释放,小物体能运动到C 点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是 ( )

A.物体从A 到B 速度越来越大,从B 到C 速度越来越小

B.物体从A 到B 速度越来越小,从B 到C 加速度不变

C.物体从A 到B 先加速后减速,从B 一直减速运动

D.物体在B 点受到的合外力为零

参考答案:C

练习2:如图所示,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O 点位置时弹簧没有形变,现用力将物体压缩至A 点,然后放手。物体向右运动至C 点而静止,AC 距离为L 。第二次将物体与弹簧相连,仍将它压缩至A 点,则第二次物体在停止运动前经过的总路程s 可能为:

A.s=L

B.s>L

C.s

D.条件不足,无法判断

参考答案:AC(建议从能量的角度、物块运动的情况考虑)

练习3: 如图,一倾角为θ的斜面固定在水平地面上,一质量为m 有小球与弹簧测力计相连在一木板的端点处,且将整个装置置于斜面上,设木板与斜面的动摩擦因数为μ,现将木板以一定的初速度0v 释放,小球与木板之间的摩擦不计,则( )

A .如果0μ=,则测力计示数也为零

B .如果θtan >u ,则测力计示数大于sin mg θ

C .如果tan μθ=,则测力计示数等于sin mg θ

D .无论μ取何值,测力计示数都不能确定

【解析】本例是将弹簧模型迁移到斜面上,而且设置了木板与斜面之间的动摩擦因数不同来判断测力计的示数的变化。依题意可知,当0μ=时,测力计示数为零;当θtan >u 时,球与木板的加速度为sin cos g g θμθ-,隔离分析小球就可知道B 答案正确;同理可分析C 答案正确,从而选择A 、B 、C 答案。

【点评】本例是动力学在弹簧模型中的应用,求解的关键是分析整体的加速度,然后分析小球的受力来确定测力计示数的大小。

练习4:如图所示,劲度数为k 的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m 的物体接触(未连接),弹簧水平且无形变。用水平力F 缓慢推动物体,在弹性限度内弹簧长度被压缩了0

x ,此时物体静止。撤去F 后,物体开始向左运动,运动的最大距离为40x 。物

体与水平面间的动摩擦因数为μ,重力加速度为g 。则

A .撤去F 后,物体先做匀加速运动,再做匀减速运动

B .撤去F 后,物体刚运动时的加速度大小为0kx g

m μ-

C .物体做匀减速运动的时间为

D .物体开始抽左运动到速度最大的过程中克服摩擦力做的功为0()mg mg x k μμ-

答案【BD 】

思维发散:若F 为恒力,从弹簧原长处压缩弹簧,分析以后的运动情况。并和例5相对比。

八、弹簧弹力瞬时问题(弹簧的弹力不能突变)

弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.

【例8】如图所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块

A 和

B 的加速度分别是A a = 与B a =

【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.

以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,

木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .

【答案】0 ,1.5g 说明:区别于不可伸长的轻质绳中张力瞬间可以突变.

九、与弹簧相关的图像问题

【例9】一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m ,它们

的一端固定,另一端自由,弹力与形变量的关系如图所示,求这两根

弹簧的劲度系数k 1(大弹簧)和k 2(小弹簧)分别为多少?

(参考答案: F=kx ΔF=kΔx k 1=100N/m k 2=200N/m)

练习1:一个实验小组在“探究弹力和弹簧伸长量的关系”的实验中,使用两条

不同的轻质弹簧a 和b ,得到弹力与弹簧长度的关系图象如图8所示.下列表

述正确的是 ( )

A .a 的原长比b 的长

B .a 的劲度系数比b 的大

C .a 的劲度系数比b 的小

D .测得的弹力与弹簧的长度成正比

答案:B

练习2:某同学在做“探究弹力和弹簧伸长的关系”的实验时,他先把弹簧平放在桌面上,使其自然伸长,用直尺测出弹簧的原长L 0,再把弹簧竖直悬挂起来,挂上钩码后测出弹簧伸长后的长度L ,把L -L 0作为弹簧的伸长量x ,这样操作,由于弹簧自身重力的影响,最后得出的图线,可能是图中的(

)

答案:C 十、弹簧形变量可以代表物体的位移

弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与

物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来

编成习题.

【例10】如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连

接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一

固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移

d (重力加速度为g ).

【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==

解得:1sin A m g x k

θ= 在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开

挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x k

θ= 设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--=

解得:()sin A B A

F m m g a m θ-+= 因物体A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即

()sin A

B m m g d k

θ+= 十一.与弹簧相关的临界问题

通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论.

提示:两物体分离之前加速度与速度均相同,刚分离时二者之间弹力为零。

【例11】如图所示,A B 、两木块叠放在竖直轻弹簧上,已知木块A B 、的质量分别为0.42kg 和0.40kg ,弹簧的劲度系数100/k N m =,若在A 上作用一个竖直向上的力F ,使A 由静止开始以20.5/m s 的加速度竖直向上做匀加速运动(210/g m s =)求:

(1) 使木块A 竖直做匀加速运动的过程中,力F 的最大值;

(2)若木块由静止开始做匀加速运动,直到A B 、分离的过程中,弹簧的弹性势能减少了0.248J ,求这一过程中F 对木块做的功.

【解析】 此题难点在于能否确定两物体分离的临界点.当0F =(即不加竖直向上F 力)时,设

木块A B 、叠放在弹簧上处于平衡时弹簧的压缩量为x ,有: ()A B kx m m g =+,即()A B m m g x k

+= ①

对木块A 施加力F ,A 、B 受力如图3-7-10所示,对木块A 有: A A F N m g m a +-= ② 对木块B 有: 'B B kx N m g m a --= ③

可知,当0N ≠时,木块A B 、加速度相同,由②式知欲使木块A 匀加速运动,随N 减小F 增大,当0N =时, F 取得了最大值m F ,即: () 4.41m A F m a g N =+=

又当0N =时,A B 、开始分离,由③式知,弹簧压缩量'()B kx m a

g =+,则()'B

m a g x k +=④ 木块A 、B 的共同速度:22(')v a x x =- ⑤

由题知,此过程弹性势能减少了0.248P P W E J ==

设F 力所做的功为F W ,对这一过程应用功能原理,得:

21()()(')2

F A B A B P W m m v m m g x x E =

+++-- 联立①④⑤⑥式,且0.248P E J =,得:29.6410F W J -=? 练习1:如图所示,轻弹簧上端固定,下端连接一质量为m 的重物,先由托盘托住m ,使弹簧比自然长度缩短L ,然后由静止开始以加速度a 匀加速向下运动。已知a g ,弹簧劲度系数为k ,求经过多少时间托盘M 将与m 分开?

【解析】当托盘与重物分离的瞬间,托盘与重物虽接触但无相互作用力,此时重物只受到重力和弹簧的作用力,在这两个力的作用下,当重物的加速度也为a 时,重物与托盘恰好分离。由于g a <,故此时弹簧必为伸长状态,然后由牛顿第二定律和运动学

公式求解:

根据牛顿第二定律得:mg kx ma -=

① 由①得:()x m g a k -=

由运动学公式有:2

12L x at += ② 联立①②式有:()212kL m g a at k +-= ③

解得[]ka

a g m kL t )(2-+= 【点评】本题属于牛顿运动定律中的临界状态问题。求解本类题型的关键是找出临界条件,同时还要能从宏观上把握其运动过程,分析出分离瞬间弹簧的状态。我们还可这样探索:若将此题条件改为g a >,情况又如何呢?

练习2: 一弹簧秤的秤盘质量m 1=1.5kg ,盘内放一质量为m 2=10.5kg 的物体P ,弹簧质量不计,其劲度系数为k =800N/m ,系统处于静止状态,如图2所示。现给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在最初0.2s 内F 是变化的,在0.2s 后是恒定的,

求F 的最大值和最小值各是多少?(g=10m/s 2)

解析 因为在t =0.2s 内F 是变力,在t =0.2s 以后F 是恒力,所以在t =0.2s 时,P 离开秤盘。此时P 受到盘的支持力为零,由于盘的质量m 1=1.5kg ,所以此时弹簧不能处于原长。设在0~0.2s 这段时间内P 向上运动的距离为x ,对物体P 受力分析,根据牛顿第二定律可得: F +F N -m 2g =m 2a ,

对于盘和物体P 整体应用牛顿第二定律可得: a m m g m m x k g m m k F )()()(212121+=+-??

????-++, 令F N =0,并由上述二式求得k a m g m x 12-=,而22

1at x =, 所以求得

a =6m/s 2,

m M

当P 开始运动时拉力最小,此时对盘和物体P 整体有F min =(m 1+m 2)a =72N ,

当P 与盘分离时拉力F 最大,F max =m 2(a +g )=168N 。

点评 弹簧长度改变,弹力发生变化问题:要从牛顿第二定律入手先分析加速度,从而分析物体运动规律。而物体的运动又导致弹力的变化,变化的规律又会影响新的运动,由此画出弹簧的几个特殊状态(原长、平衡位置、最大长度)尤其重要。

十二、弹力做功与弹性势能的变化问题

弹簧伸长或压缩时会储存一定的弹性势能,因此弹簧的弹性势能可以与机械能守恒规律综合应用,弹簧在相对原长相等形变量时所具有的弹性势能相等一般是考试热点.

弹簧弹力做功等于弹性势能的减少量.弹簧的弹力做功是变力做功,一般可以用以下四种方法求解:

(1)因该变力为线性变化,可以先求平均力,再用功的定义进行计算;

(2)利用F x -图线所包围的面积大小求解;

(3)用微元法计算每一小段位移做功,再累加求和;

(4)根据动能定理、能量转化和守恒定律求解.

由于弹性势能仅与弹性形变量有关,弹性势能的公式高考中不作定量要求,因此,在求弹力做功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解.特别是涉及两个物理过程中的弹簧形变量相等时,往往弹性势能的改变可以抵消或替代求解.

【例12】如图所示,挡板P 固定在足够高的水平桌面上,物块A 和B 大小可忽略,它们分别带有A Q +和B Q +的电荷量,质量分别为A m 和B m .两物块由绝缘的轻弹

簧相连,一个不可伸长的轻绳跨过滑轮,一端与B 连接,另一端连接

轻质小钩.整个装置处于场强为E 、方向水平向左的匀强电场中,A 、

B 开始时静止,已知弹簧的劲度系数为k ,不计一切摩擦及A 、B 间的

库仑力, A 、B 所带电荷量保持不变,B 不会碰到滑轮.

(1)若在小钩上挂质量为M 的物块C 并由静止释放,可使物块A 对挡板P 的压力恰为零,但不会离开P ,求物块C 下降的最大距离h .

(2)若C 的质量为2M ,则当A 刚离开挡板P 时, B 的速度多大?

【解析】 通过物理过程的分析可知,当物块A 刚离开挡板P 时,弹力恰好与A 所受电场力平衡,弹簧伸长量一定,前后两次改变物块C 质量,在第(2)问对应的物理过程中,弹簧长度的变化及弹性势能的改变相同,可以替代求解.

设开始时弹簧压缩量为1x ,由平衡条件1B kx Q E =,可得1B Q E x k

= ① 设当A 刚离开挡板时弹簧的伸长量为2x ,由2A kx Q E =,可得: 2A Q E x k

= ② 故C 下降的最大距离为: 12h x x =+ ③

由①②③三式可得: ()A B E h Q Q k

=

+ ④ (2)由能量守恒定律可知,物块C 下落过程中,C 重力势能的减少量等于物块B 电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和.

当C 的质量为M 时,有:B MgH Q Eh E =+?弹 ⑤ 当C 的质量为2M 时,设A 刚离开挡板时B 的速度为v ,则有:

212(2)2

B B MgH Q Eh E M m v =+?++弹 ⑥ 由④⑤⑥三式可得A 刚离开P 时B 的速度为:

v = ⑦ 练习1:图示为某探究活动小组设计的节能运动系统。斜面轨道倾角为30°,

质量为M 的木箱与轨道的动摩擦因数为6/3。木箱在轨道顶端时,自动装

货装置将质量为m 的货物装入木箱,然后木箱载着货物沿轨道无初速滑下,

当轻弹簧被压缩至最短时,

自动卸货装置立刻将货物卸下,然后木箱恰好被

弹回到轨道顶端,再重复上述过程。下列选项正确的是( )

A.m =M

B.m =2M

C.木箱不与弹簧接触时,上滑的加速度大于下滑的加速度

D.在木箱与货物从顶端滑到最低点的过程中,减少的重力势能全部转化为弹簧的弹性势能 答案:BC

练习2:如图所示,光滑斜面倾角为θ,c 为斜面上固定挡板,物块a 和b 通过轻质弹簧连接,a 、b 处于静止状态,弹簧压缩量为x .现对a 施加沿斜面向下的外力使弹簧再压缩3x ,之后突然撤去外力,经时间t ,物块a 沿斜面向上运动的速度为v ,此时物块b 刚要离开挡板.已知两物块的质量均为m ,重力加速度为g .下列说法正确的是

A. 弹簧的劲度系数为sin mg x θ

B .物块b 刚要离开挡板时,a 的加速度为sin g θ

C .物块a 沿斜面向上运动速度最大时,物块b 对挡板c 的压力为0

D .撤去外力后,经过时间t ,弹簧弹力对物块a 做的功为2

15sin 2mgx m θυ+

【解析】

问题拓展1:求在时间t 内物块A 运动的最大速度。

问题拓展2:求物块A 运动到弹簧原长时的速度。

练习3:如图所示,质量为1m 的物体A 经一轻质弹簧与下方地面上的质量为2m 的物体B 相连,弹簧的劲度系数为k ,物体A B 、都处于静止状态.一不可伸长的轻绳一端绕过轻滑轮连接物体A ,另一端连接一轻挂钩.开始时各段绳都处于伸直状态,物体A 上方的一段绳沿竖直方向.现给挂钩挂一质量为2m 的物体C 并从静止释放,已知它恰好能使物体B 离开地面但不继续上升.若将物体C 换成另一质量为12()m m +的物体D ,仍从上述初始位置由静止释放,则这次物体B 刚离地时物体D 的速度大小是多少?已知重力加速度为g

【解析】 开始时物体A B 、静止,设弹簧压缩量为1x ,则有:11kx m g =

悬挂物体C 并释放后,物体C 向下、物体A 向上运动,设物体B 刚要离地时弹

簧伸长量为2x ,有22kx m g =

B 不再上升表明此时物体A 、

C 的速度均为零,物体C 己下降到其最低点,与初

状态相比,由机械能守恒得弹簧弹性势能的增加量为:

212112()()E m g x x m g x x ?=+-+

物体C 换成物体D 后,物体B 离地时弹簧势能的增量与前一次相同,由能量关

系得:

22211211211211()()()()22m m v m v m m g x x m g x x E ++=++-+-?联立上式解得题中所求速

度为:v =

(word完整版)高中物理弹簧问题

弹簧问题 轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。 无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。合力恒等于零。 弹簧读数始终等于任意一端的弹力大小。 弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。 性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。 其伸长量等于弹簧任意位置受到的力和劲度系数的比值。 性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性; 有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。 性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。 分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。 弹簧问题的题目类型 1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数) 2、求与弹簧相连接的物体的瞬时加速度 3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断v S a F变化) 4、有弹簧相关的临界问题和极值问题 除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题 1、弹簧问题受力分析 受力分析对象是弹簧连接的物体,而不是弹簧本身 找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。(灵活运用整体法隔离法); 通过弹簧形变量的变化来确定物体位置。(高度,水平位置)的变化 弹簧长度的改变,取决于初末状态改变。(压缩——拉伸变化) 参考点,F=kx 指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。 抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。合力恒等于零的特点求解。 注:如果a相同,先整体后隔离。 隔离法求内力,优先对受力少的物体进行隔离分析。 2、瞬时性问题 题型:改变外部条件(突然剪断绳子,撤去支撑物) 针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析 3、动态过程分析 三点分析法(接触点,平衡点,最大形变点) 竖直型: 水平型:明确有无推力,有无摩擦力。物体是否系在弹簧上。 小结:弹簧作用下的变加速运动, 速度增减不能只看弹力,而是看合外力。(比较合外力方向和速度方向判断) 加速度等于零常常是出现速度极值的临界点。速度等于零往往加速度达到最大值。

动量守恒定律弹簧模型

动量守恒定律弹簧模型

弹簧模型+子弹打木块模型 弹簧模型 1.两物块A、B用轻弹簧相连,质量均为2kg,初始时弹簧处于原长,A、B两物块都以v=6m/s 的速度在光滑的水平地面上运动,质量为4kg的物块C静止在前方,如图4所示.B与C碰撞后二者会粘在一起运动.则在以后的运动中: (1)当弹簧的弹性势能最大时,物块A的速度为多大? (2)系统中弹性势能的最大值是多少? 2.(多选)光滑水平地面上,A、B两物体质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时() A.A、B系统总动量仍然为mv B.A的动量变为零 C.B的动量达到最大值 D.A、B的速度相等 3.如图所示,质量相等的两个滑块位于光滑水平桌面上,其中弹簧两端分别与静止的滑块N和

挡板P相连接,弹簧与挡板的质量均不计;滑块M以初速度v0向右运动,它与档板P碰撞(不粘连)后开始压缩弹簧,最后滑块N以速度v0向右运动。在此过程中( ) A.M的速度等于0时,弹簧的弹性势能最大 B.M与N具有相同的速度时,两滑块动能之 和最小 C.M的速度为v0/2时,弹簧的长度最长 D.M的速度为v0/2时,弹簧的长度最短 4.如图甲所示,一轻弹簧的两端与质量分别是m1和m2的两木块A、B相连,静止在光滑水平面上.现使A瞬间获得水平向右的速度v=3 m/s,以此时刻为计时起点,两木块的速度随时间变化规律如图乙所示,从图示信息可知() A.t1时刻弹簧最短,t3时刻弹簧最长 B.从t1时刻到t2时刻弹簧由伸长状态恢复到原长 C.两木块的质量之比为m1:m2=1:2

高中物理弹簧专题总结

高中物理弹簧专题总结弹簧涉及的力学问题通常是动态的,常与能量、电场、简谐振动相结合,综合性强、能力要求高,且与日常生活联系密切,近几年来成为高考的热点。下面从几个角度分析弹簧的考查。 一弹簧中牛顿定律的考查与弹簧相连的物体运动时通常会引起弹力及合力发生变化,给物体的受力分析带来一定难度,这类问题关键是挖掘隐含条件,结合牛顿第二定律的瞬时性来分析。 例1 如图1 所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、N 固定于杆上,小球处于静止状态。设拔去销钉M 瞬间,小球加速度的大小为12m/s2,若不拔去销钉M 而拔去销钉N 瞬间,小球的加速度可能是(g 取10m/s2)(BC )A、22 m/s2,竖直向上B、22 m/s2,竖直向下 C、2 m/s2,竖直向上 D、2 m/s2,竖直向下 解析:开始小球处于平衡状态所受的合力为零,拔去销钉M 瞬间小球受的合力与上面弹簧弹力大小相等方向相反。若此时加速度方向向上,则上面弹簧弹力F= m × 12, 方向向下。若拔去销钉N 瞬间则小球受到本身的重力和F,故加速度a=22m/s2,方向竖直向下; 反之则为C。 图2 图1 练习1如图 2 所示,质量为m 的物体A,放置在质量为连,它们一起在光滑的水平面上做简谐运动,振动过程中的物体 B 上,B与轻质弹簧相 A、B 之间无相对运动,设弹簧的劲 度系数为k,当物体离开平衡位置的位移为x时,A、B 间的摩擦力的大小等于( mm kx D 、kx M M m A 、0 B、kx C、D、 练习2如图3所示,托盘 A 托着质量为m的重物B, 弹簧的上端悬于O 点,开始时弹簧竖直且为原长。今让托盘 速直线运动,其加速度为a(a

高中物理问题详解弹簧类模型中的最值问题

弹簧类模型中的最值问题 在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。一、最大、最小拉力问题 例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2)。求此过程中所加外力的最大和最小值。 图1 解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量?l mg k m ==025.,末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,??l l m '.==025,故对A 物体有212 2?l at =,代入数据得a m s =42/。刚开始时F 为最小且F ma N N min ===15460×,B 物体刚要离开地面时,F 为最大且有 F mg mg ma max --=,解得F mg ma N max =+=2360。 二、最大高度问题 例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。 、

物理建模轻杆轻绳轻弹簧模型

物理建模轻杆轻绳轻弹簧 模型 Revised by BLUE on the afternoon of December 12,2020.

物理建模 1.轻杆、轻绳、轻弹簧模型 模型阐述 轻杆、轻绳、轻弹簧都是忽略质量的理想模型,与这三个模型相关的问题在高中物理中有相当重要的地位,且涉及的情景综合性较强,物理过程复杂,能很好地考查学生的综合分析能力,是高考的常考问题. 为结点) 图2-1-8 【典例2】 一轻弹簧两端分别连接物体a 、b ,在水平力作用下共同向右做匀加速运动,如图2-1-9所示,在水平面上时,力为F 1,弹簧长为L 1,在斜面上时,力为F 2,弹簧长为L 2,已知a 、b 两物体与接触面间的动摩擦因数相同,则轻弹簧的原长为( ). 图2-1-9 A.L 1+L 2 2 B. F 1L 1-F 2L 2 F 2-F 1 C. F 2L 1-F 1L 2F 2-F 1 D.F 2L 1+F 1L 2 F 2+F 1 即学即练 (2013·石家庄质检,18)如图2-1-10所示,一个“Y”形弹弓顶部跨度为L ,两根相同的橡皮条自由长度均为L ,在两橡皮条的末端用一块软羊皮(长度不计)做成裹片.若橡皮条的弹力与形变量的关系满足胡克定律,且劲度系数为k ,发射弹丸时每根橡皮条的最大长度为2L (弹性限度内),则发射过程中裹片对弹丸的最大作用力为( ). 图2-1-10 A .kL B .2kL C. 32kL D.15 2 kL 附:对应高考题组(PPT 课件文本,见教师用书) 1.(2010·新课标全国卷,15)一根轻质弹簧一端固定,用大小为F 1的力压弹簧的另一端,平衡时长度为l 1;改用大小为F 2的力拉弹簧,平衡时长度为l 2.弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为( ). A. F 2-F 1l 2-l 1 B.F 2+F 1 l 2+l 1

高中物理经典问题---弹簧类问题全面总结解读

高中物理经典问题---弹簧类问题全面总结解读 一:专题训练题 1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板 将物体托住,并使弹簧处于自然长度。如图7所示。现让木板由静止开始以加速度a(a <g = 匀加速向下移动。求经过多长时间木板开始与物体分离。 分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。据牛顿第二定律有: mg-kx-N=ma 得N=mg-kx-ma 当N=0时,物体与平板分离,所以此时k a g m x )(-= 因为221at x =,所以ka a g m t )(2-=。 2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静 止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。现在给P 施加一个竖直向上的力F , 使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒 力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。 .分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离 开秤盘。此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于 原长。在0_____0.2s 这段时间内P 向上运动的距离: x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m t x a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有 F min =ma=240N. 当P 与盘分离时拉力F 最大,F max =m(a+g)=360N. 3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的 物体A 、B 。物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面 物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个 过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求: (1)此过程中所加外力F 的最大值和最小值。 (2)此过程中外力F 所做的功。 解:(1)A 原来静止时:kx 1=mg ① 当物体A 开始做匀加速运动时,拉力F 最小,设为F 1,对物体A 有: F 1+kx 1-mg =ma ② 当物体B 刚要离开地面时,拉力F 最大,设为F 2,对物体A 有: F 2-kx 2-mg =ma ③ 对物体B 有:kx 2=mg ④ 对物体A 有:x 1+x 2=22 1at ⑤ 由①、④两式解得 a =3.75m/s 2 ,分别由②、③得F 1=45N ,F 2=285N F 图8 A B F 图 9 图7

高中物理复习教案专题复习2—弹簧类问题分析

弹簧类系列问题 [P3.] 复习精要 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,,引起足够重视. (一)弹簧类问题的分类 1、弹簧的瞬时问题 弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。 2、弹簧的平衡问题 这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx或△f=k?△x来求解。 3、弹簧的非平衡问题 这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。 4、弹力做功与动量、能量的综合问题 在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。 [P5.] (二)弹簧问题的处理办法 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:

弹簧10大模型

弹簧”模型 10 大问题 太原市第十二中学 姚维明 模型建构 : 在我们的日常生活中,弹簧虽然形态各异 , 大小不同 , 但是从弹簧秤 , 机动车的减震装置 , 各种复 位按钮和机械钟表内的动力装置等 , 弹簧处处在为我们服务 .因为弹簧本身的特性,如弹簧弹力的方 向与弹簧所处的伸缩状态有关、弹力的大小与弹簧形变量大小有关;而且,弹簧在伸缩过程中涉及 的物理过程较复杂,物理概念和规律较多,如力和加速度、功和能、冲量和动量等,因此,弹簧类 试题多年来深受物理命题专家的青睐。 【模型】弹簧 【特点】:( 1)一般问题中的轻弹簧是一种理想模型,不计质量。( 2) 弹簧弹力不能突变,弹 力变化需要形变量变化,需要时间的积累。 (3)弹力变化: F = kx 或△ F =k △x ,其中 F 为弹力(△ F 为弹力变化), k 为劲度系数, x 为形变量(△ x 为形变变化量)。( 4 )弹簧可以贮存能量,弹 力做功和弹性势 能的关系为: W =-△ E P 其中 W 为弹簧弹力做功, △ E P 为弹性势能变化。另外, 弹性势能计算公式暂不做要求。 、轻弹簧的弹力与弹簧秤的读数问题 【典案 1】如图 1,四个完全相同的轻弹簧都处于水平位置,它们的右端受到大小相等的拉力 F 作用,而左端的情况则各不相同: ⑴ 弹簧的左端固定在墙上 ⑵ 弹簧的左端受到大小也为 F 的拉力作用 以 l 1、l 2、 l 3、 l 4 依次表示四条弹簧的伸长量,则有 A 、 l 1 l 2 B 、 l 4 l 3 C 、 l 1 l 3 D 、 l 2 =l 4 〖解析〗因轻弹簧自身质量不计,则轻弹簧的伸长量与轻弹簧上的弹力大小成正 比,因为四种 状态中轻弹簧的弹力均为 F ,故四种状态轻弹簧的伸长量相同;选 D 【体验 1】如图 2,四个完全相同的弹簧秤都处于水平位置,它们的右端受到大小相等的拉力 F 作用,而左端的情况则各不相同: ⑴弹簧秤的左端固定在墙上 ⑵ 弹簧秤的左端受到大小也为 F 作用 ⑶ 弹簧秤的左端拴一小物块 块在光滑的水平面上滑动 ⑷ 弹簧秤的左端拴一个小物块 m 1,物块在粗糙的水平面上滑动 ⑶ 弹簧的左端拴一小物块 m ,物块在光滑的 水平面上滑动 图1 ⑷ 弹簧的左端拴一个小物块 m ,物块在粗糙的水平面上滑动 的拉力 m 1,物 图2

高中物理模型汇总

学习资料收集于网络,仅供参考 高中物理模型汇总大全 模型组合讲解一一爆炸反冲模型 [模型概述] “爆炸反冲”模型是动量守恒的典型应用,其变迁形式也多种多样,如炮发炮弹中的化学能转化为机械能;弹簧两端将物块弹射将弹性势能转化为机械能;核衰变时将核能转化为动能等。 [模型讲解] 例?如图所示海岸炮将炮弹水平射出,炮身质量(不含炮弹)为M,每颗炮弹质量为m, 当炮身固定时,炮弹水平射程为s,那么当炮身不固定时,发射同样的炮弹,水平射程将是多少? 解析:两次发射转化为动能的化学能E是相同的。第一次化学能全部转化为炮弹的动能;第二次化学能转化为炮弹和炮身的动能,而炮弹和炮身水平动量守恒,由动能和动量的关系 2 式E k二丄知,在动量大小相同的情况下,物体的动能和质量成反比,炮弹的动能 2m E, =-mv1 = E,E2 =1mvf M一E,由于平抛的射高相等,两次射程的比等于抛出时初 2 2 M +m 速度之比,即:处亠=.M,所以S2 M。 sv.YM+m *M+m 思考:有一辆炮车总质量为M,静止在水平光滑地面上,当把质量为平面成B角 发射出去,炮弹对地速度为v0,求炮车后退的速度。 提示:系统在水平面上不受外力,故水平方向动量守恒,炮弹对地的水平速度大小为 V o COSV,设炮车后退方向为正方向,则(M -m)v-mv o COSV - 0,v = mV ° C ° S M —m 评点:有时应用整体动量守恒,有时只应用某部分物体动量守恒,有时分过程多次应用动量守恒,有时抓住初、末状态动量即可,要善于选择系统,善于选择过程来研究。 [模型要点] 内力远大于外力,故系统动量守恒P i二p2,有其他形式的能单向转化为动能。所以“爆 m的炮弹沿着与水

高中物理弹簧专题

高中物理弹簧专题 在我们的日常生活中,弹簧形态各异,处处都在为我们服务。常见的弹簧是螺旋形的,叫螺旋弹簧。做力学实验用的弹簧秤、扩胸器的弹簧等都是螺旋弹簧。螺旋弹簧有长有短,有粗有细:扩胸器的弹簧就比弹簧秤的粗且长;在抽屉锁里,弹簧又短又细,约几毫米长;有一种用来紧固螺母的弹簧垫圈,只有一圈,在紧固螺丝螺母时都离不开它。螺旋弹簧在拉伸或压缩时都要产生反抗外力作用的弹力,而且在弹性限度内,形变越大,产生的弹力也越大;一旦外力消失,形变也消失。有的弹簧制成片形的或板形的,叫簧片或板簧。在口琴、手风琴里有铜制的发声簧片,在许多电器开关中也有铜制的簧片,在玩具或钟表里的发条是钢制的板簧,在载重汽车车厢下方也有钢制的板簧。它们在弯曲时会产生恢复原来形状的倾向,弯曲得越厉害,这种倾向越强。有的弹簧像蚊香那样盘绕,例如,实验室的电学测量仪表(电流计、电压计)内,机械钟表中都安装了这种弹簧。这种弹簧在被扭转时也会产生恢复原来形状的倾向,叫做扭簧。 形形色色的弹簧在不同场合下发挥着不同的功能: 1. 测量功能 我们知道,在弹性限度内,弹簧的伸长(或压缩)跟外力成正比。利用弹簧这一性质可制成弹簧秤。 2. 紧压功能 观察各种电器开关会发现,开关的两个触头中,必然有一个触头装有弹簧,以保证两个触头紧密接触,使导通良好。如果接触不良,接触处的电阻变大,电流通过时产生的热量变大,严重的还会使接触处的金属熔化。卡口灯头的两个金属柱都装有弹簧也是为了接触良好;至于螺口灯头的中心金属片以及所有插座的接插金属片都是簧片,其功能都是使双方紧密接触,以保证导通良好。在盒式磁带中,有一块用磷青铜制成的簧片,利用它弯曲形变时产生的弹力使磁头与磁带密切接触。在钉书机中有一个长螺旋弹簧它的作用一方面是顶紧钉书钉,另一方面是当最前面的钉被推出后,可以将后面的钉送到最前面以备钉书时推出,这样,

《弹簧振子》模型

“弹簧振子”模型 太原市第十二中学 姚维明 模型建构: 【模型】常见弹簧振子及其类型问题 在简谐运动中,我们对弹簧振子(如图1,简称模型甲)比较熟悉。在学习过程中,我们经常会遇到与此相类似的一个模型(如图2,简称模型乙)。认真比较两种模型的区别和联系,对于培养我们的思维品质,提高我们的解题能力有一定的意义。 【特点】①弹簧振子做简谐运动时,回复力F=-kx ,“回复力”为振子运动方向上的合力。加速度为m kx a -= ②简谐运动具有对称性,即以平衡位置(a=0)为圆心,两侧对称点回复力、加速度、位移都是对称的。这是解题的关键。 模型典案: 【典案1】把一个小球挂在一个竖直的弹簧上,如图2。当它平衡后再用力向下拉伸一小段距离后轻轻放手,使小球上下振动。试证明小球的振动是简谐振动。 〖证明〗设弹簧劲度系数为k ,不受拉力时的长度为l 0,小球质量为m ,当挂上小球平衡时,弹簧的伸长量为x 0。由题意得mg=kx 0 容易判断,由重力和弹力的合力作为振动的回复力 假设在振动过程中的某一瞬间,小球在平衡位置下方,离开平衡位置O 的距离为x,取向下的方向为正方向 则回复力F=mg+[-k(x 0+x)]=mg-kx 0-kx= -kx 根据简谐运动定义,得证 比较: (1)两种模型中,弹簧振子都是作简谐运动。这是它们的相同之处。 (2)模型甲中,由弹簧的弹力提供回复力。因此,位移(x),回复力(F),速度(v),加速度(a),各量大小是关于平衡位置O 点对称的。 (3)模型乙中,由弹簧的弹力和重力两者的合力提供回复力。弹簧的弹力大小关于平衡位置是不对称...的,这点要特别注意。但是,回复力(加速度)大小关于平衡位置是对称..的。在解题时我们经常用到这点。 【典案2】如图3所示,质量为m 的物块放在弹簧上, 弹簧在竖直方向上做简谐运动,当振幅为A 时,物体对弹 簧的最大压力是物重的1.8倍,则物体对弹簧的最小压力是 物重的多少倍?欲使物体在弹簧振动中不离开弹簧,其振幅 最大为多少? 〖解析〗1)选物体为研究对象,画出其振动过程的几个 特殊点,如图4所示, O 为平衡位置,P 为最高点,Q 为最低点。 图2 m 图3 P 点

板块模型-高中物理讲义

简单学习网课程讲义 学科:物理 专题:板块模型 金题精讲 题一 题面:如图所示,物体A 叠放在物体B 上,B 置于光滑水平面上。A ,B 质量分别为6.0 kg 和2.0 kg ,A 、B 之间的动摩擦因数为0.2。在物体A 上施加水平方向的拉力F ,开始时F =10 N ,此后逐渐增大,在增大到45N 的过程中,以下判断正确的是( ) A .两物体间始终没有相对运动 B .两物体间从受力开始就有相对运动 C .当拉力F <12 N 时,两物体均保持静止状态 D .两物体开始没有相对运动,当F >18 N 时,开始相对滑动 题二 题面:如图所示,光滑水平面上有一块木板,质量M = 1.0 kg ,长度L = 1.0 m .在木板的最左端有一个小滑块 (可视为质点),质量m = 1.0 kg .小滑块与木板之间的 动摩擦因数μ = 0.30.开始时它们都处于静止状态.某时刻起对小滑块施加一个F = 8.0 N 水平向右的恒力,此 后小滑块将相对木板滑动. 假设只改变M 、m 、μ、F 中一个物理量的大小,使得小滑块速度总是木板速度的2倍,请你通过计算确定改变后的那个物理量的数值(只要提出一种方案即可)。 题三 题面:如图所示,质量为M 的木板长为L ,木板的两个端点分别为A 、B ,中点为O ,木板置于光滑的水平面上并以v 0的水平初速度向右运动。若把质量为m 的小木块(可视为质点)置于木板的B 端,小木块的初速度为零,最终小木块随木板一起运动。小木块与木板间的动摩擦因数为μ,重力加速度为g 。求: (1)小木块与木板相对静止时,木板运动的速度;

第 - 1 - 页 (2)小木块与木板间的动摩擦因数μ的取值在什么范围内,才能使木块最终相对于木板静止时位于OA 之间。 题四 题面:质量M =8 kg 的小车放在水平光滑的平面上,在小车左端加一水平恒力F ,F =8 N ,当小车向右运动的速度达到1.5 m/s 时,在小车前端轻轻放上一个大小不计,质量为m =2 kg 的小物块,物块与小车间的动摩擦因数为0.2,小车足够长,求从小物块放上小车开始,经过t =1.5 s ,小物块通过的位移大小为多少? 讲义参考答案 题一答案:A 题二答案:令F =9 N 。 题三答案:(1) 0+M v M m (2))(20m M gL Mv +≥ μ ≥)(220m M gL Mv + 题四答案:2.1 m.

高中物理弹簧类问题专题

弹簧类问题专题 1、如图所示,a 、b 、c 为三个物块,M ,N 为两个轻质弹簧,R 为跨过光滑定滑轮的轻绳,它们连接如图所示并处于静止状态( ) A.有可能N 处于拉伸状态而M 处于压缩状态 B.有可能N 处于压缩状态而M 处于拉伸状态 C.有可能N 处于不伸不缩状态而M 处于拉伸状态 D.有可能N 处于拉伸状态而M 处于不伸不缩状态 2、图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d0。现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d ,则( ) A .若M = m ,则d = d0 B .若M >m ,则d >d0 C .若M <m ,则d <d0 D .d = d0,与M 、m 无关 3、如图所示,A 、B 质量均为m ,叠放在轻质弹簧上,当对A 施加一竖直向下的力,大小为F ,将弹簧压缩一段,而且突然撤去力F 的瞬间,关于A 的加速度及A 、B 间的相互作用力的下述说法正确的是( ) A 、加速度为0,作用力为mg 。 B 、加速度为m F 2,作用力为2F mg + C 、加速度为F/m ,作用力为mg+F D 、加速度为m F 2,作用力为2mg F + 4、如图所示,一根轻弹簧上端固定,下端挂一质量为m1的箱子,箱中有一质量为m2的物体.当箱静止时,弹簧伸长了L1,向下拉箱使弹簧再伸长了L2时放手,设弹簧处在弹性限度内,则放手瞬间箱对物体的支持力为:( ) A.g m L L 212)1(+ B..g m m L L ))(1(2112++ C.g m L L 212 D.g m m L L )(2112+ 5、如图所示,在一粗糙水平面上有两个质量分别为m1和m2的木块1和2,中间用一原长为L 、劲度系

高中物理实验探究弹力和弹簧伸长的关系

实验2探究弹力和弹簧伸长的关系 实验目的1.探究弹力与弹簧伸长的定量关系. 2.学会利用图象研究两个物理量之间的关系的方法. 实验原理弹簧受力会发生形变,形变的大小与受到的外力有关,沿着弹簧的方向拉弹簧,当形变稳定时,弹簧产生的弹力与使它发生形变的拉力在数值上是相等的.用悬挂法测量弹簧的弹力,运用的正是弹簧的弹力与挂在弹簧下面的钩码的重力相等.弹簧的长度可用刻度尺直接测出,伸长量可以由拉长后的长度减去弹簧原来的长度进行计算.这样就可以研究弹簧的弹力和弹簧伸长量之间的定量关系了,即寻求F=kx的关系. 实验器 材 弹簧、毫米刻度尺、铁架台、钩码若干、坐标纸. 实验步骤1.将弹簧的一端挂在铁架台上,让其自然下垂,用刻度尺测出弹簧自然伸长状态的长度l 0,即原长. 2.如下图所示,将已知质量的钩码挂在弹簧的下端,在平衡时测量弹簧的总长并计算钩码的重力,填写在记录表格里. 3.改变所挂钩码的质量,重复前面的实验过程多次. 4.以弹力F(大小等于所挂钩码的重力)为纵坐标,以弹簧的伸长量.x为横坐标,用描点法作图.连接各点,得出弹力F随弹簧伸长量x变化的图线. 5.尝试写出曲线的函数式,并解释式中常数的物理意义. 原理简图 注意事项(1)所挂钩码不要过重,以免弹簧被过分拉伸,超出它的弹性限度.要注意观察,适可而止. (2)每次所挂钩码的质量差尽量大一些,从而使坐标上描的点尽可能稀疏,这样作出的图线精确. (3)测弹簧长度时,一定要在弹簧竖直悬挂且处于平衡状态时测量,以免增大误差. (4)描点画线时,所画曲线不一定经过每一个点,但应注意一定要使各点均匀分布在曲线的两侧. (5)记录数据时要注意弹力及弹簧伸长量的对应关系及单位, 在探究弹力F与弹簧伸长x的关系时,得到几组数据,既可以由所测数据找出F 与x的对应关系,又可以作出F-x图象,从图象上看出F与x的关系.图象法很容易消除实验测量中的偶然误差. 1.某同学用如图所示装置做探究弹力和弹簧伸长关系的实验.他先测出不挂砝码时弹簧下端指针所指的标尺刻度,然后在弹簧下端挂上砝码,并逐个增加砝码,测出指针所指

高中物理中的弹簧问题归类

有关弹簧的题目在高考中几乎年年出现,由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高.在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能、冲量和动量等多个物理概念和规律,所以弹簧试题也就成为高考中的重、难、热点, 一、“轻弹簧”类问题 在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F . 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加水平方向的力1F 、2F ,且12F F >,则弹簧 秤沿水平方向的加速度为 ,弹簧秤的读数为 . 【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12 F F a m -= 仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F . 说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的. 【答案】12 F F a m -= 1F 二、质量不可忽略的弹簧 【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况. 【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M = ,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为: x x F x T ma M F L M L == = 【答案】x x T F L = 三、弹簧的弹力不能突变(弹簧弹力瞬时)问题 弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑, 当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a = 【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力 的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =. 以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g . 【答案】0 说明:区别于不可伸长的轻质绳中张力瞬间可以突变. 【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为0 30的光滑木板AB 托住,使 图 3-7-2 图 3-7-1 图 3-7-3 高中物理中的弹簧问题归类

弹簧10大模型

图 1 图2 “弹簧”模型10大问题 太原市第十二中学 姚维明 模型建构: 在我们的日常生活中,弹簧虽然形态各异,大小不同,但是从弹簧秤,机动车的减震装置,各种复位按钮和机械钟表内的动力装置等,弹簧处处在为我们服务.因为弹簧本身的特性,如弹簧弹力的方向与弹簧所处的伸缩状态有关、弹力的大小与弹簧形变量大小有关;而且,弹簧在伸缩过程中涉及的物理过程较复杂,物理概念和规律较多,如力和加速度、功和能、冲量和动量等,因此,弹簧类试题多年来深受物理命题专家的青睐。 【模型】弹簧 【特点】:(1)一般问题中的轻弹簧是一种理想模型,不计质量。(2) 弹簧弹力不能突变,弹力变化需要形变量变化,需要时间的积累。(3)弹力变化:F = kx 或△F =k △x ,其中F 为弹力(△F 为弹力变化),k 为劲度系数,x 为形变量(△x 为形变变化量)。(4)弹簧可以贮存能量,弹力做功和弹性势能的关系为:W =-△E P 其中W 为弹簧弹力做功, △E P 为弹性势能变化。另外, 弹性势能计算公式暂不做要求。 一、轻弹簧的弹力与弹簧秤的读数问题 【典案1】如图1,四个完全相同的轻弹簧都处于水平位置,它们的右端受到大小相等的拉力F 作用,而左端的情况则各不相同: ⑴弹簧的左端固定在墙上 ⑵弹簧的左端受到大小也为F 的拉力作用 ⑶弹簧的左端拴一小物块m ,物块在光滑的 水平面上滑动 ⑷弹簧的左端拴一个小物块m ,物块在粗糙的水平面上滑动 以1l 、2l 、3l 、4l 依次表示四条弹簧的伸长量,则有 A 、1l 2l B 、4l >3l C 、1l >3l D 、2l =4l 〖解析〗因轻弹簧自身质量不计,则轻弹簧的伸长量与轻弹簧上的弹力大小成正比,因为四种状态中轻弹簧的弹力均为F ,故四种状态轻弹簧的伸长量相同;选D 【体验1】如图2,四个完全相同的弹簧秤都处于水平位置,它们的右端受到大小相等的拉力F 作用,而左端的情况则各不相同: ⑴弹簧秤的左端固定在墙上 ⑵弹簧秤的左端受到大小也为F 的拉力 作用 ⑶弹簧秤的左端拴一小物块m 1,物 块在光滑的水平面上滑动 ⑷弹簧秤的左端拴一个小物块m 1,物块在粗糙的水平面上滑动

高中物理常见的物理模型及分析

高三物理总复习 专题高中物理常见的物理模型 方法概述 高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下: (1)选择题中一般都包含3~4道关于振动与波、原子物理、光学、热学的试题. (2)实验题以考查电路、电学测量为主,两道实验小题中出一道较新颖的设计性实验题的可能性较大. (3)试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧的连接体模型. 高考中常出现的物理模型中,有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论述和例举.斜面问题、叠加体模型、含弹簧的连接体模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述. 热点、重点、难点 一、斜面问题 在每年各地的高考卷中几乎都有关于斜面模型的试题.如2009年高考全国理综卷Ⅰ第25题、北京理综卷第18题、天津理综卷第1题、上海物理卷第22题等,2008年高考全国理综卷Ⅰ第14题、全国理综卷Ⅱ第16题、北京理综卷第20题、江苏物理卷第7题和第15题等.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法. 1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tan θ. 图9-1甲 2.自由释放的滑块在斜面上(如图9-1 甲所示): (1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左. 3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零(见一轮书中的方法概述). 图9-1乙 4.悬挂有物体的小车在斜面上滑行(如图9-2所示): 图9-2 (1)向下的加速度a=g sin θ时,悬绳稳定时将垂直于斜面; (2)向下的加速度a>g sin θ时,悬绳稳定时将偏离垂直方向向上; (3)向下的加速度a<g sin θ时,悬绳将偏离垂直方向向下. 5.在倾角为θ的斜面上以速度v0平抛一小球(如图9-3所示): 图9-3 (1)落到斜面上的时间t= 2v0tan θ g ; (2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关; (3)经过t c= v0tan θ g 小球距斜面最远,最大距离d= (v0sin θ)2 2g cos θ . 6.如图9-4所示,当整体有向右的加速度a=g tan θ时,m能在斜面上保持相对静止. 图9-4 7.在如图9-5所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab棒所能达到的稳定速度v m= mgR sin θ B2L2 .

高中物理弹簧类问题专题

弹簧类问题专题 1、如图所示,a、b、c为三个物块,M,N为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们连接如图所示并处于静止状态( ) A.有可能N处于拉伸状态而M处于压缩状态 B.有可能N处于压缩状态而M处于拉伸状态 C.有可能N处于不伸不缩状态而M处于拉伸状态 D.有可能N处于拉伸状态而M处于不伸不缩状态 2、图中a、b为两带正电的小球,带电量都是q,质量分别为M和m;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d0。现把一匀强电场作用于两小球,场强的方向由a指向b,在两小球的加速度相等的时刻,弹簧的长度为d,则( ) A.若M = m,则d = d0 B.若M>m,则d>d0 C.若M<m,则d<d0 D.d = d0,与M、m无关 3、如图所示,A、B质量均为m,叠放在轻质弹簧上,当对A施加一竖直向下的力,大小为F,将弹簧压缩一段,而且突然撤去力F的瞬间,关于A的加速度及A、B间的相互作用力的下述说法正确的是( )

A 、加速度为0,作用力为mg 。 B 、加速度为m F 2,作用力 为 2F mg + C 、加速度为F/m ,作用力为mg+F D 、加速度为m F 2,作用力为2mg F + 4、如图所示,一根轻弹簧上端固定,下端挂一质量为m1的箱子,箱中有一质量为m2的物体.当箱静止时,弹簧伸长了L1,向下拉箱使弹簧再伸长了L2时放手,设弹簧处在弹性限度内,则放手瞬间箱对物体的 支持力为:( ) A. g m L L 21 2 )1(+ B..g m m L L ))(1(2112++ C. g m L L 21 2 D. g m m L L )(211 2 + 5、如图所示,在一粗糙水平面上有两个质量分别为m1和m2的木块1和2,中间用一原长为L 、劲度系数为k 的轻弹簧连接起来,木块与地面间的滑动摩擦因数为μ。现用一水平力向右拉木块2,当两木块一起匀速运动时两木块之间的距离是( ) A . g m k L 1μ + B . g m m k L )(21++ μ C . g m k L 2μ + D . g m m m m k L )( 212 1++ μ

(完整版)动量守恒定律弹簧模型

弹簧模型+子弹打木块模型 弹簧模型 1.两物块A、B用轻弹簧相连,质量均为2kg,初始时弹簧处于原长,A、B两物块都以v=6m/s的速度在光滑的水平地面上运动,质量为4kg的物块C静止在前方,如图4所示.B 与C碰撞后二者会粘在一起运动.则在以后的运动中: (1)当弹簧的弹性势能最大时,物块A的速度为多大? (2)系统中弹性势能的最大值是多少? 2.(多选)光滑水平地面上,A、B两物体质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时() A.A、B系统总动量仍然为mv B.A的动量变为零 C.B的动量达到最大值 D.A、B的速度相等 3.如图所示,质量相等的两个滑块位于光滑水平桌面上,其中弹簧两端分别与静止的滑块N 和挡板P相连接,弹簧与挡板的质量均不计;滑块M以初速度v0向右运动,它与档板P碰撞(不粘连)后开始压缩弹簧,最后滑块N以速度v0向右运动。在此过程中( ) A.M的速度等于0时,弹簧的弹性势能最大 B.M与N具有相同的速度时,两滑块动能之和最小 C.M的速度为v0/2时,弹簧的长度最长 D.M的速度为v0/2时,弹簧的长度最短 4.如图甲所示,一轻弹簧的两端与质量分别是m1和m2的两木块A、B相连,静止在光滑水平面上.现使A瞬间获得水平向右的速度v=3 m/s,以此时刻为计时起点,两木块的速度随时间变化规律如图乙所示,从图示信息可知() A.t1时刻弹簧最短,t3时刻弹簧最长 B.从t1时刻到t2时刻弹簧由伸长状态恢复到原长 C.两木块的质量之比为m1:m2=1:2 D.在t2时刻两木块动能之比为E K1:E K2=1:4 5.质量为m的物块甲以3 m/s的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m的物块乙以4 m/s的速度与甲相向运动,如图所示,则()

高中物理专题试《皮带模型》

高中物理专题试《皮带模型》

————————————————————————————————作者:————————————————————————————————日期:

如图所示,一水平方向足够长的传送带以恒定的 速率v 1沿顺时针方向转动,传送带右端有一个与传送带等 高的光滑水平面。一物体以恒定速率v 2沿直线向左滑向传 送带后,经过一段时间又返回光滑水平面,速度为v 2′,则下列说法中正确的是 A .只有v 1= v 2时,才有v 2′= v 1 B .若v 1> v 2时,则v 2′= v 1 C .若v 1< v 2时,则v 2′= v 1 D .不管v 2多大,总有v 2′= v 2 答案:C 来源: 题型:单选题,难度:理解 如图所示,物体从曲面上的Q 点自由滑下,通过粗 糙的静止水平传送带后落到地面上的P 点。若传送带逆时 针转动,再把物体放到Q 点自由滑下,那么 A .它仍落在P 点 B .它将落在P 点左边 C .它将落在P 点右边 D .它可能落不到地面上 答案:A 来源: 题型:单选题,难度:理解 如图所示,一水平传送带以不变的速度v 向右运动。将质量为m 的小物块A 轻放在其左端,经t s 后,物体A 的速度也变为v ,再经t s 到达右端,下列说法中不正确的是 A.后t s 内A 与传送带间无摩擦力 B.A 从左端运动到右端的过程中,平均速度为3 v /4 C. A 与传送带之间的动摩擦因数为v/gt D.传送带对物体做的功和物体对传送带做功的绝对值相等 答案:D Q P

来源: 题型:单选题,难度:理解 如图所示,一水平的浅色长传送带上放置一质量为m的煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。初始时,传送带与煤块都是静止的。现让传送带以恒定的加速度a开始运动,当其速度达到υ后,便以此速度做匀速运动。经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。关于上述过程,以下判断正确的是(重力加速度为g) A.μ与a之间一定满足关系μ≥a/g B.黑色痕迹的长度为(a-μg)υ2/(2a2) C.煤块从开始运动到相对于传送带静止经历的时间为υ/(μg) D.煤块与传送带由于摩擦而产生的热量为mυ2/2 答案:C 来源: 题型:单选题,难度:理解 如图所示,一足够长的木板在光滑的水平面上以速度v匀速运动,现将质量为m的物体竖直向下轻轻地放置在木板上的P处,已知物体m和木板之间的动摩擦因数为μ,为保持木板的速度不变,从物体m放到木板上到它相对木板静止的过程中,必须对木板施一水平向右的作用力F,此过程中力F要对木板做功的数值是 A.mv2/4 B .mv2/2 C.mv2 D.2mv2 答案:C 来源: 题型:单选题,难度:理解 如图所示,水平传送带A、B间距离为10m,以恒定的速度1m/s匀速传动。现将一质量为0.2 kg的小物体无初速放在A端,物体与传送带间滑动摩擦系数为0.5,g取10m/s2,则

相关文档
最新文档