教科版 高中物理教案 机械振动与机械波

教科版 高中物理教案 机械振动与机械波
教科版 高中物理教案 机械振动与机械波

第十二章 机械振动和机械波

知识网络:

第1单元 机械振动

一、基本概念

1、机械振动——物体(或物体一部分)在某一中心位置附近所做的往复运动

2.回复力:振动物体所受的总是指向平衡位置的合外力,使物体返回平衡位置的力

注意:①恢复力不一定是物体所受的合力,例单摆 ③回复力的意义是指向平衡位置方向上的合力 ④恢复力是根据效果命名的

3.平衡位置:恢复力为零的位置,并非合外力为零的位置。例如单摆。 4.位移:是离开平衡位置的位移

5.简谐运动——物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。表达式为:F = -kx

F=-kx 是判断一个振动是不是简谐运动的充分必要条件。凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。

6.振幅:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱,无正负之分。 7.周期和频率:表示振动快慢的物理量。完成一次全振动所用的时间叫周期,单位时间内完成全振动次数叫频率,大小由系统本身的性质决定,所以叫固有周期和频率。任何简谐运动都有共同的周期公式:k

m T π2=(其中m 是振动物体的质量,k 是回复力系数,即

简谐运动的判定式F = -kx 中的比例系数,对于弹簧振子k 就是弹簧的劲度,对其它简谐运动它就不再是弹簧的劲度了)。

二、典型的简谐运动 1.弹簧振子

(1) 说明回复力、加速度、速度、动能和势能的变化规律(周期性和对称性)

①回复力指向平衡位置。②位移从平衡位置开始。

(2)周期k

m T π2=,与振幅无关,只由振子质量和弹簧的劲度决定。

(3)可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是k

m T π

2=。周期:

g

L T π2=

机械简谐

物理量:振幅、周期、

运动

简谐运动

阻尼振动 无阻尼

受力

回复力:F= -

弹簧振子:F= - 单

x L mg

F -

= 受迫

在介质中

的传播机 形成和传播类横

描述方

波的图象 波的公式:

vT =λ

x=vt 特

声波,超声波及其应

波的叠加 干涉 衍射

多普勒效应

这个结论可以直接使用。

(4)在水平方向上振动的弹簧振子的回复力是弹簧的弹力;在竖直方向上振动的弹簧振子的回复力是弹簧弹力和重力的合力。

证明:如图所示,设振子的平衡位置为O ,向下方向为正方向,此时弹簧的形变为0x ,根据胡克定律及平衡条件有00mg kx -= ①

当振子向下偏离平衡位置为x 时,回复力(即合外力)为

0()F mg k x x =-+回 ②

将①代人②得:F kx =-回,可见,重物振动时受力符合简谐运动

的条件.

【例1】 如图所示,质量为m 的小球放在劲度为k 的轻弹簧上,使小球上下振动而又始终未脱离弹簧。(1)最大振幅A 是多大?(2)在这个振幅下弹簧对小球的最大弹力F m 是多大?

解析:该振动的回复力是弹簧弹力和重力的合力。在平衡位置弹力和重力等大反向,合力为零;在平衡位置以下,弹力大于重力,F - mg =ma ,越往下弹力越大;在平衡位置以上,弹力小于重力,mg-F=ma ,越往上弹力越小。平衡位置和振动的振幅大小无关。因此振幅越大,在最高点处小球所受的弹力越小。极端情况是在最高点处小球刚好未离开弹簧,弹力为零,合力就是重力。这时弹簧恰好为原长。

(1)最大振幅应满足kA=mg , A =

k

mg

(2)小球在最高点和最低点所受回复力大小相同,所以有:F m -mg=mg ,F m =2mg 【例2】弹簧振子以O 点为平衡位置在B 、C 两点之间做简谐运动.B 、C 相距20 cm .某时刻振子处于B 点.经过0.5 s ,振子首次到达C 点.求:

(1)振动的周期和频率; (f =1Hz ) (2)振子在5 s 内通过的路程及位移大小;(10cm .)

(3)振子在B 点的加速度大小跟它距O 点4 cm 处P 点的加速度大小的比值(5:2) 【例3】一弹簧振子做简谐运动.周期为T ( D )

A .若t 时刻和(t +△t )时刻振子运动速度的大小相等、方向相反,则Δt 一定等于T /2的整数倍

D .若t 时刻和(t+△t )时刻振子运动位移的大小相等、方向相同,则△t 一定等于T 的整数倍

C .若△t =T /2,则在t 时刻和(t -△t )时刻弹簧的长度一定相等

D .若△t =T ,则在t 时刻和(t -△t )时刻振子运动的加速度一定相同

2.单摆。在一不可伸长、忽略质量的细线下端拴一质点,上端固定,构成的装置叫单

摆。⑴单摆的特点:○1单摆是实际摆的理想化,是一个理想模型; ○2单摆振动可看作简谐运动的条件:α<10℃。○3单摆的等时性(伽利略),在振幅很小的情况下,单摆的振动周期

与振幅、摆球的质量等无关; ④单摆的回复力由重力沿圆弧方向的分力提供

⑵ 周期公式:g

l

T π

2= (惠更斯) 半径方向:r

v m mg T 2

cos =-θ

向心力改变速度方向 切线方向:回复力=m g sin θ 改变速度大小

若θ角很小,则有 sin θ = tan θ = x / L,而且回复力指向平衡位置,与位移方向相反,所以对于回复力F ,有kx x L

mg L x mg

F === k 是常数 ⑶单摆周期公式的应用

x

1、 测量当地的重力加速度测定重力加速度g,g=2

24T

L

π (l 为等效摆长,是悬点到球心的距离。)

2、 摆钟(振动周期是2秒的单摆叫秒摆)

3、惠更斯在1656年利用等时性发明了带摆的计时器

(4)摆钟问题。单摆的一个重要应用就是利用单摆振动的等时性制成摆钟。在计算摆钟类的问题时,利用以下方法比较简单:在一定时间内,摆钟走过的格子数n 与频率f 成正比(n 可以是分钟数,也可以是秒数、小时数…),再由频率公式可以得到:

l

l g f n 121∝

=

∝π

(5)另:意大利的伽利略首先发现等时性,即在角度很小时,单摆的周期与振幅无关。 荷兰的惠更斯确立了单摆的周期公式,周期跟摆长的二次方根成正比,跟重力加速度的二次方根成反比,跟振幅和摆球的质量无关

例4:三根长度相等都为L 的细线一端系于C 点,另两端固定

于天花板上相距为L 的A 、B 两点,剩下的一端系一小球。当小球

垂直于纸面振动时,其周期为 ;当小球左右摆动时,其周期为 ; 答案:g

L g L

ππ2)231(2;+

例5:如图,长为l 的轻绳一端系于固定点O ,另一端系质量

为m 的小球,将小球从O 点正下方l/4处以一定的初速度水平向右抛出,经一定的时间,绳被拉直。以后小球将以O 为圆心在竖

直平面内摆动,已知绳刚被拉直时,绳与竖直线成600

角。求:⑴小球水平抛出的初速度V 0

⑵小球摆到最低点时,拉力T (答案:

2

3gl

;2mg ) 【例6】 将一个力电传感器接到计算机上,可以测

量快速变化的力。用这种方法测得的某单摆摆动过程中悬线上拉力大小随时间变化的曲线如右图所示。由此图

线提供的信息做出下列判断:①t =0.2s 时刻摆球正经

过最低点;②t =1.1s 时摆球正处于最高点;③摆球摆

动过程中机械能时而增大时而减小;④摆球摆动的周期

约是T =0.6s 。上述判断中正确的是

A .①③

B .②④

C .①②

D .③④

解析:注意这是悬线上的拉力图象,而不是振动图象。当摆球到达最高点时,悬线上的拉力最小;当摆球到达最低点时,悬线上的拉力最大。因此①②正确。从图象中看出摆球到达最低点时的拉力一次比一次小,说明速率一次比一次小,反映出振动过程摆球一定受到阻力作用,因此机械能应该一直减小。在一个周期内,摆球应该经过两次最高点,两次最低点,因此周期应该约是T =1.2s 。因此答案③④错误。本题应选C 。

三、简谐运动的图象 ⑴图象的描绘

2

.1

2

.0

1.9 1

.8

0 0.4 0.8 1.2

1.6 F

/N t /s

B A C

x t

1、 描点

2 实验模拟法

⑵振动图象的研究方法——把实际振动和图象对应起来 可以从图像中得到以下信息: ①直接读出振幅(注意单位) ②直接读出周期

③确定某一时刻物体的位移

④判定任一时刻运动物体的速度方向(最大位移处无方向)和加速度方向 ⑤判定某一段时间内运动物体的速度、加速度、动能及势能大小的变化情况 ⑥计算一段时间内的路程:A T

t

S 4?=

⑶振动图象的应用任何复杂的振动都可以看成是若干个简谐振动的合成

【例7】 劲度系数为20N /cm 的弹簧振子,它的振动图象如图所示,在图中A 点对应的时刻(B .)

A . 振子所受的弹力大小为0.5N ,方向指向x 轴的负方向

B .振子的速度方向指向x 轴的正方向

C . 在0~4s 内振子作了1.75次全振动

D 。在0~4s 内振子通过的路程为0.35cm ,位移为0

【例8】 摆长为L 的单摆做简谐振动,若从某时刻开始计时,(取作t =0),当振动至 g

L

t 23π

=时,摆球具有负向最大速度,则单摆的振动图象是图中的( D )

例9.如图所示,一块质量为2 kg 、涂有碳黑的玻璃板,在拉力F 的作用下竖直向上做匀变速直线运动.一个频率为5 Hz 的振动方向为水平且固定的振针,在玻璃板上画出了如图所示的图线,量得OA =1 cm ,OB =4

cm ,OC =9 cm .求拉力F 的大小. (不计一切摩擦阻力,取g =10 m/s 2

解:OA =1 cm AB =3 cm BC =5 cm

因为:T OA =T AB =T BC =T /2=0.1 s 根据:Δs =aT 2

a =

2

2T

AB BC T s -=?=2 m/s 2

F -mg =ma 得:F =mg +ma =24 N

四、受迫振动与共振 (1)振动能量 = 动能 + 势能 = 最大位移的势能 = 平衡位置的动能

由振幅决定,与周期和频率无关 (2)阻尼振动和无阻尼振动

1、阻尼振动 存在阻力做负功,能量减小,振幅减小(减幅振动)

2. 无阻尼振动(等幅振动)

在振动中,为保持振幅不变(能量不变),应及时地补充能量,使A 不变 (3)受迫振动

1.得到持续的,等幅振动的最简单的办法是用周期性的外力(驱动

力)作用于物体,物体在驱动力作用下的振动,叫受迫振动.

2.物体做受迫振动的频率由驱动力决定,等于驱动力频率,而与固

有频率无关(奴隶,奴隶主)如:钟摆 , 秋千

(4)共振——在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大

B

(5)、共振的防止和应用

(1)利用共振的有:共振筛、转速计、微波炉、打夯机、跳板跳水、打秋千……

(2)防止共振的有:机床底座、航海、军队过桥、高层建筑、火车车厢……

偏心轮

共振筛

【例10】把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它每转一周,给筛子一个驱动力,这就做成了一个共振筛。不开电动机让这个筛子自由振动时,完成20次全振动用15s;在某电压下,电动偏心轮的转速是88r/min。已知增大电动偏心轮的电压可以使其转速提高,而增加筛子的总质量可以增大筛子的固有周期。为使共振筛的振幅增大,以下做法正确的是

A.降低输入电压 B.提高输入电压

C.增加筛子质量 D.减小筛子质量

解析:筛子的固有频率为f固=4/3Hz,而当时的驱动力频率为f驱=88/60Hz,即f固

【例11】一物体做受迫振动,驱动力的频率小于该

物体的固有频率。当驱动力的频率逐渐增大时,该物体的

振幅将:( D)

A.逐渐增大 B.先逐渐减小后逐渐增大

C.逐渐减小 D.先逐渐增大后逐渐减小

【例12】如图所示,在一根张紧的水平绳上,悬挂有

a、b、c、d、e五个单摆,让a摆略偏离平衡位置后无初

速释放,在垂直纸面的平面内振动;接着其余各摆也开始振

动。下列说法中正确的有:(A、B )

A.各摆的振动周期与a摆相同

B.各摆的振幅大小不同,c摆的振幅最大

C.各摆的振动周期不同,c摆的周期最长

D.各摆均做自由振动

第二单元机械波

(一)机械波的产生和传播波的概念

一、机械波——机械振动在弹性介质中的传播

二、形成条件

1、振动的物体――振源波源、波的发源地,最先振动的质点,不是自由振动,

而应是受迫振动,有机械振动,不一定有机械波,有机械波必有机械振动。

2、传播振动的媒介物――介质应具有弹性的媒质,这里的弹性与前述弹性不

同,能形成波的媒质叫弹性媒质。

三、波的特点和传播

1、 把介质看成是由大量的质点构成的,规定离振源近的称为前一质点,离振源远的称为后一个质点。相邻的质点间存在着相互作用力,振动时,前一质点带动后一质点振动

2、 各个质点在平衡位置附近往复振动,不随波的传播而迁移(水中的树叶) 举例:足球人浪,体操表演

3、 质点做受迫振动,各质点开始振动时的振动方向、频率、振幅,对简谐波而言都和振源相同。

4、 各个质点启动同向不同时

【例】 在均匀介质中有一个振源S ,它以50H Z

的频率上下振动,该振动以40m/s 的速度沿弹性绳向左、右两边传播。开始时刻S 的速度方向向下,试画出在t =0.03s 时刻的波形。

解析:从开始计时到t =0.03s 经历了1.5个周期,

波分别向左、右传播1.5个波长,该时刻波源S 的速

度方向向上,所以波形如右图所示。 5、 振动速度和波速的区别。在均匀媒质中波是匀速、直线前进的,波由一种媒质进入另一种媒质,f 不变,而v 变,而质点的振动是变加速运动,二者没有必然联系,不能混淆。

四、波的意义

1、 传播振动的能量——启动 受迫(机械波传播机械能,电磁波传播电磁能。)

2、 传播振动的形式——振幅 周期 频率(振源如何振动,质点就如何振动)

3、传播信息 (声波、光波、电磁波) 五、波的分类

1横波――质点的振动方向与波的传播方向垂直(水波、绳波……) 2、纵波——质点的振动方向与波的传播方向共线 (声波) 练习:都在水平面的振动也可以形成横波 地震波有横波也有纵波

(二)机 械 波 的 图 象 一、波的图象

用x 表示波的传播方向的各个质点的平衡位置,用y 表示某一时刻各个质点偏离平衡位置的位移,并规定在横波中位移的方向向上为正。

取得方法:1、描点法――找到某一时刻介质的各个质点偏离平衡位置的位移 2、拍照 二、波的意义

横轴:介质各个质点的平衡位置

纵轴:某一时刻介质的各个质点偏离平衡位置的位移 三、对比振动图象和波的图象

x (m ) y (m )

1 2 3 4 t (s ) 1 2 3 4 x (m )

振动图象和波动图象的联系与区别 v v 1.2 0.8 0.4 0

y x 0 y x 0

联系:波动是振动在介质中的传播,两者都是按正弦或余弦规律变化的曲线;振动图象和波的图象中的纵坐标均表示质点的振动位移,它们中的最大值均表示质点的振幅。

区别:①振动图象描述的是某一质点在不同时刻的振动情况,图象上任意两点表示同一质点在不同时刻偏离平衡位置的位移;波的图象描述的是波在传播方向上无数质点在某一时刻的振动情况,图象上任意两点表示不同的两个质点在同一时刻偏离平衡位置的位移。

②振动图象中的横坐标表示时间,箭头方向表示时间向后推移;波的图象中的横坐标表示离开振源的质点的位置,箭头的方向可以表示振动在介质中的传播方向,即波的传播方向,也可以表示波的传播方向的反方向。

③振动图象随时间的延续将向着横坐标箭头方向延伸,原图象形状不变;波的图象随着时间的延续,原图象的形状将沿横坐标方向整个儿地平移,而不是原图象的延伸。

4在不同时刻波的图象是不同的;对于不同的质点振动图象是不同的。 四、振动方向和波的传播方向的联系

前一质点带动后一质点运动

1、 由传波方向确定振动方向

2、由振动方向确定传播方向

3、画出一定时间的机械波的图象

(三) 描绘机械波的物理量 一、周期和频率

在波动中,各个质点的振动周期是相同的,它们都等于波源的振动周期,这个周期也叫做波的周期。同样,各个质点的振动频率也是波的频率。 二、波长(λ)和波的推进

在波动中,相对于平衡位置的位移总相等的两个相邻质点间的距离,叫做波长

1、在横波中,两个相邻的波峰或波谷间的距离等于波长,在纵波中两个相邻的密部或疏部间的距离等于波长。

2、波动在一个周期中向前推进一个波长

3、在一个周期内波峰或波谷向前推进一个波长

4、波的传播方向就是波峰或波谷的推进方向

三、波速——1、波的传播速度(公式) 2、波峰或波谷的推进速度

3、与波源无关,所以波从一种媒质进入另一种媒质时f 不变、v 变化,波速也是波的能量传播速度。

s v t T v f λλ=

==

注意:1、频率或周期取决于振源(受迫振动)

2、 速取决于介质,波由一种介质进入到另外一种介质时,波速改变,但是频率不变。类比:频率相同,“步长”不同

四 波的多解问题

时间的周期性 距离的周期性 方向的双向性

例1:如图为t=0时刻波形,波向左传。已知在t 1=0.7s 时P 点第二次出现波峰,则

①质点A 和B 的位移在t=0时刻相等 ②在t=0时刻C 向上运动

完整版机械振动和机械波测试题

简谐运动,关于振子下列说法正确的是( A. 在a 点时加速度最大,速度最大 B ?在0点时速度最大,位移最大 C ?在b 点时位移最大,回复力最大 D.在b 点时回复力最大,速度最大 5. 一质点在水平方向上做简谐运动。如图,是该质点在0 的振动图象,下列叙述中正确的是( ) A. 再过1s ,该质点的位移为正的最大值 B ?再过2s ,该质点的瞬时速度为零 C. 再过3s ,该质点的加速度方向竖直向上 D. 再过4s ,该质点加速度最大 6. 一质点做简谐运动时,其振动图象如图。由图可知,在 时刻,质点运动的( ) A.位移相同 B .回复力大小相同 C.速度相同 D .加速度相同 7. 一质点做简谐运动,其离开平衡位置的位移 与时间 如图所示,由图可知( ) A.质点振动的频率为4 Hz B .质点振动的振幅为2cm C. 在t=3s 时刻,质点的速率最大 D. 在t=4s 时刻,质点所受的合力为零 8. 如图所示,为一列沿x 轴正方向传播的机械波在某一时刻的图像, 这列波的振幅A 、波长入和x=l 米处质点的速度方向分别为:( 高二物理选修3-4《机械振动、机械波》试题 一、选择题 1. 关于机械振动和机械波下列叙述正确的是:( ) A .有机械振动必有机械波 B .有机械波必有机械振动 C .在波的传播中,振动质点并不随波的传播发生迁移 D .在波的传播中,如振源停止振动,波的传播并不会立即停止 2. 关于单摆下面说法正确的是( ) A. 摆球运动的回复力总是由摆线的拉力和重力的合力提供的 B. 摆球运动过程中经过同一点的速度是不变的 C. 摆球运动过程中加速度方向始终指向平衡位置 D. 摆球经过平衡位置时加速度不为零 3. 两个质量相同的弹簧振子,甲的固有频率是 3f .乙的固有频率是4f ,若它们 均在频率为5f 的驱动力作用下做受迫振动.则( ) A 、振子甲的振幅较大,振动频率为3f B 、振子乙的振幅较大.振动频率为4f C 、振子甲的振幅较大,振动频率为5f D 、振子乙的振幅较大.振动频率为5f 班级: 姓名: 成绩: 4. 如图所示,水平方向上有一弹簧振子, 0点是其平衡位置,振子在a 和b 之间做 t 的关系 )

上海高一物理机械波的产生和描述

学科教师辅导讲义

(4)三者关系:________________________________________ 2、波动图像:表示在波的传播方向上,介质中的各个质点在________________相对平衡位置的________。当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线. (1)由波的图像可获取的信息 ①从图像可以直接读出振幅(注意单位). ②从图像可以直接读出波长(注意单位). > ③可求任一点在该时刻相对平衡位置的位移(包括大小和方向) ④可以确定各质点振动的加速度方向(加速度总是指向平衡位置) ⑤在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向. (2)波动图像与振动图像的比较: 振动图象波动图象研究对象一个振动质点沿波传播方向所有的质点 一个质点的位移随时间变化规律某时刻所有质点的空间分布规律@ 研究内容 图象 物理意义表示一质点在各时刻的位移表示某时刻各质点的位移 随时间推移,图象沿传播方向平移图象变化, 随时间推移图象延续,但已有形状不 变 一个完整曲线占横坐标距离表示一个周期表示一个波长 例3、一列简谐波在x轴上传播,其波形图如图7-32-4所示,其中实线,虚线分别表示t1=0,t2=时的波形,求⑴这列波的波速 ⑵若波速为280m/s,其传播方向如何此时质点P从图中位置运动至波谷位置 的最短时间是多少 :

练习2、如图7-32-5所示,甲为某一波在t=时的图象,乙为对应该波动的P质点的振动图象。 ⑴说出两图中AA’的意义 ⑵说出甲图中OA’B图线的意义 ⑶求该波速v= ⑷在甲图中画出再经时的波形图。 % ⑸求再经过时P质点的路程s和位移。 练习题: 1.在波的传播过程中,下列有关介质中质点的振动说法正确的是( ) A.质点在介质中做自由振动 B.质点在介质中做受迫振动 · C.各质点的振动规律都相同 D.各质点的振动速度都相同 2.下列关于横波与纵波的说法中,正确的是( ) A.振源上下振动形成的波是横波 B.振源左右振动形成的波是纵波 C.振源振动方向与波的传播方向相互垂直,形成的是横波 D.在固体中传播的波一定是横波 3.传播一列简谐波的介质中各点具有相同的( )

2019-2020学年高中物理 第二章 机械波单元复习教案 教科版选修3-4.doc.doc

2019-2020学年高中物理第二章机械波单元复习教案教科版选修 3-4 教学目标 1.通过观察,认识波是振动传播的形式和能量传播的形式。能区别横波和纵波。能用图像描述横波。理解波速、波长和频率(周期)的关系。 2.了解惠更斯原理,能用来分析波的反射和折射。 3.通过实验,认识波的干涉现象、衍射现象。 4.通过实验感受多普勒效应。解释多普勒效应产生的原因。列举多普勒效应的应用实例。重点难点 重点:理解波速、波长和频率(周期)的关系。波的图像。 难点:认识波的干涉现象、衍射现象。 设计思想 本章是上一章“机械振动”教学内容的延伸和扩展。机械振动只讨论物体的运动状态随时间的变化,而波动讨论的是振动在空间介质中的传播。本章着重介绍有关波的共性的知识,如波的形成与传播、波长、频率、波速、波传播的规律、波的图像、波的反射和折射、波的干涉、衍射、多普勒效应等。 教学资源《机械波复习》多媒体课件 教学设计 【课堂学习】 学习活动一:理解基本概念 问题1:什么是机械波?机械波产生的条件?机械波的分类? 问题2:描述机械波的物理量? 问题3:波的图象特点、意义、应用? 问题4:波的干涉、衍射现象? 问题5:什么是多普勒效应? 学习活动二:掌握基本规律 问题1:描述机械波的物理量关系?() 问题2:波的传播方向与质点的振动方向关系确定方法? 问题3:波的叠加原理? 问题4:波的独立传播原理? 学习活动三:熟悉基本题型 问题1:波动图像的分析 【例题】一简谐横波沿x轴正方向传播,某时刻其波形如图所示。下列说法正确的是 A 由波形图可知该波的波长 B 由波形图可知该波的周期 C 经1/4周期后质元P运动到Q点 D 经1/4周期后质元R的速度变为零 解析:由波的图象的物理意义,可直接得出波长为4cm ,A项正确;波传递的是能量和振动形式,并不发生质点的迁移,质点只能在各自的平衡位置振动,C错误,D正确;波长、

(完整word版)机械振动和机械波知识点复习及练习

机械振动和机械波 一 机械振动知识要点 1. 机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动 条件:a 、物体离开平衡位置后要受到回复力作用。b 、阻力足够小。 ? 回复力:效果力——在振动方向上的合力 ? 平衡位置:物体静止时,受(合)力为零的位置: 运动过程中,回复力为零的位置(非平衡状态) ? 描述振动的物理量 位移x (m )——均以平衡位置为起点指向末位置 振幅A (m )——振动物体离开平衡位置的最大距离(描述振动强弱) 周期T (s )——完成一次全振动所用时间叫做周期(描述振动快慢) 全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程 频率f (Hz )——1s 钟内完成全振动的次数叫做频率(描述振动快慢) 2. 简谐运动 ? 概念:回复力与位移大小成正比且方向相反的振动 ? 受力特征:kx F -= 运动性质为变加速运动 ? 从力和能量的角度分析x 、F 、a 、v 、E K 、E P 特点:运动过程中存在对称性 平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小 最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大 ? v 、E K 同步变化;x 、F 、a 、E P 同步变化,同一位置只有v 可能不同 3. 简谐运动的图象(振动图象) ? 物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律 可直接读出振幅A ,周期T (频率f ) 可知任意时刻振动质点的位移(或反之) 可知任意时刻质点的振动方向(速度方向) 可知某段时间F 、a 等的变化 4. 简谐运动的表达式:)2sin( φπ +=t T A x 5. 单摆(理想模型)——在摆角很小时为简谐振动 ? 回复力:重力沿切线方向的分力 ? 周期公式:g l T π 2= (T 与A 、m 、θ无关——等时性) ? 测定重力加速度g,g=2 24T L π 等效摆长L=L 线+r 6. 阻尼振动、受迫振动、共振 阻尼振动(减幅振动)——振动中受阻力,能量减少,振幅逐渐减小的振动 受迫振动:物体在外界周期性驱动力作用下的振动叫受迫振动。 特点:驱受f f = ? 共振:物体在受迫振动中,当驱动力的频率跟物体的固有频率相等的时候,受迫振动的振 幅最大,这种现象叫共振 ? 条件:固驱f f =(共振曲线) 【习题演练一】 1 一弹簧振子在一条直线上做简谐运动,第一次先后经过M 、N 两点时速度v (v ≠0)相同,那么,下列说法正确的是( ) A. 振子在M 、N 两点受回复力相同 B. 振子在M 、N 两点对平衡位置的位移相同 C. 振子在M 、N 两点加速度大小相等 D. 从M 点到N 点,振子先做匀加速运动,后做匀减速运动 2 如图所示,一质点在平衡位置O 点两侧做简谐运动,在它从平衡位置O 出发向最大位移A 处运动过程中经0.15s 第一次通过M 点,再经0.1s 第2次通过M 点。则此后还要经多长时间第3次通过M 点,该质点振动的频率为 3 甲、乙两弹簧振子,振动图象如图所示,则可知( ) A. 两弹簧振子完全相同 B. 两弹簧振子所受回复力最大值之比F 甲∶F 乙=2∶1

高一物理 机械振动

高一物理机械振动 【教学结构】 一、机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 二、简谐振动 1.定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2.简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3.简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 三、描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1.振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2.周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。 振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期 和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固 有周期和固有频率。 四、单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线 的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆 做简谐振动的条件是:最大摆角小于5°,单摆的回复力F 是重力在圆弧切线方向的分力。如图1所示,单摆的周期公图1

高中物理《机械波》知识梳理

《机械波》知识梳理 【波动形成和传播】 机械波:机械振动在介质中的传播过程叫机械波,机械波产生的条件有两个:一是要有做机械振动的物体作为波源,二是要有能够传播机械振动的介质。 横波和纵波: 质点的振动方向与波的传播方向垂直的叫横波。质点的振动方向与波的传播方向在同一直线上的叫纵波。气体、液体、固体都能传播纵波,但气体和液体不能传播横波,声波在空气中是纵波。 【波的图像】 横波的图象 用横坐标x表示在波的传播方向上各质点的平衡位置,纵坐标y表示某一时刻各质点偏离平衡位置的位移。 简谐波的图象是正弦曲线,也叫正弦波 简谐波的波形曲线与质点的振动图象都是正弦曲线,但他们的意义是不同的。波形曲线表示介质中的“各个质点”在“某一时刻”的位移,振动图象则表示介质中“某个质点”在“各个时刻”的位移。 【波长频率与波速】 波长:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长。振动在一个周期内在介质中传播的距离等于波长。 频率f:波的频率由波源决定,在任何介质中频率保持不变。 波速v:单位时间内振动向外传播的距离。波速的大小由介质决定。 【波的反射和折射】 惠更斯原理:介质中任一波面上的各点,都可以看作发射子波的波源,而后任意时刻,这些子波在波前进方向的包络面便是新的波面。 波的反射:波遇到障碍物会返回来继续传播 反射规律:入射线、法线、反射线在同一平面内,入射线与反射线分居法线两侧,反射角等于入射角。 波的折射:波从一种介质进入另一种介质时,波的传播方向发生了改变的现象叫做波的折射. 折射规律:折射定律:入射线、法线、折射线在同一平面内,入射线与折射线分居法线两侧.入射角的正弦跟折射角的正弦之比等于波在第一种介质中的速度跟波在第二种介质中的速度之比: 【波的衍射】 波绕过障碍物或小孔继续传播的现象。产生显著衍射的条件是障碍物或孔的尺寸比波长小或与波长相差不多。 【波的干涉】 干涉:频率相同的两列波叠加,使某些区域的振动加强,使某些区域振动减弱,并且振动加强和振动减弱区域相互间隔的现象。产生稳定干涉现象的条件是:两列波的频率相同,相差恒定。 【多普勒效应】 多普勒效应:由于波源和观察者之间有相对运动,使观察者感到频率变化的现象叫做多普勒效应。他是奥地利物理学家多普勒在1842年发现的。 多普勒效应的应用: ①现代医学上使用的胎心检测器、血流测定仪等有许多都是根据这种原理制成。 ②根据汽笛声判断火车的运动方向和快慢,以炮弹飞行的尖叫声判断炮弹的飞行方向等。 1

最新精编高中物理5.5机械波公开课优质课教学设计

§55机械波 5.5.1、机械波 机械振动在介质中的传播形成机械波,波传递的是振动和能量,而介质本身并不迁移。 自然界存在两种简单的波:质点振动方向与波的传播方向垂直时,称为横波;与传播方向一致时,叫纵波,具有切变弹性的介质能传播横波;具有体变弹性的介质可传播纵波,固体液体中可以同时有横波和纵波,而在气体中一般就只有纵波存在了。 在波动中,波上相邻两个同相位质点间的距离,叫做一个波长,也就是质点作一个全振动时,振动传播的距离。由于波上任一个质点都在做受迫振动,因此它们的振动频率都与振的振动频率相等,也就是波的频率,在波动中,波长λ、频率f 与传播速度v 之间满足 T f v λ λ== (1) 注意:波速不同于振动质点的运动速度,波速与传播介质的密度及弹性性质有关。 5.5.2、波动方程 如图5-5-1所示,一列横波以速度v 沿x 轴正方向传播,设波O 点的振动方程为: )c o s (0?ω+=t A y 在x 轴上任意点P 的振动比O 点滞后时间 图5-5-1

v x t p =,即当O 点相位为)(0?ω+t 时,P 点的相位为????? ?+-0)(?ωv x t ,由f πω2=,f v λ=, T l f =,P 点振动方程为 ??????+-=0)(cos ?ωv x t A y ) 22c o s (0λπ?πx ft A --= )22c o s (0λπ?πx t T A -+= 这就是波动方程,它可以描述平面简谐波的传播方向上任意点的振动规律。当波向x 轴负方向传播时,(2)式只需改变v 的正负号。由波动方程,可以 (1)求某定点1x 处的运动规律 将1x x =代入式(6-14),得 )22cos(101λπ?πx t T A y -+= )c o s (1?ω+=t A 其中λπ??1012x -=为1x 质点作简谐振动的初相位。 (2)求两点1x 与2x 的相位差 将2x x =代入(2)式,得两点1x 、2x 的相位差 λπ???12212x x -=-=? 若k k x x (2212?=-λ 为整),则π?k 2=?,则该两点同相,它们的位移和速度都相同。若k k x x (2)12(12λ +=-为整),则π?)12(+=?k ,则该两点相位相反, 它们的位移和速度大小相同,速度方向刚好相反。 球面波的波动方程与平面波相比,略有不同,对于球面波,其振幅随传播距离的

机械振动与机械波 答案

衡水学院 理工科专业《大学物理B 》机械振动 机械波 习题解答 命题教师:杜晶晶 试题审核人:杜鹏 一、填空题(每空2分) 1、一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取坐标原点。若t =0时质点第一次通过x =-2cm 处且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为23 s 。 2、一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。 (a )若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为cos(2//2)x A t T ππ=-。 (b )若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为cos(2//3)x A t T ππ=+。 3、频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为π/3,则此两点相距 0.5 m 。。 4、一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π,则振幅是 0.02m ,波长是 2.5m ,频率是 100 Hz 。 5、产生机械波的条件是有 波源 和 连续的介质 。 二、单项选择题(每小题2分) (C )1、一质点作简谐振动的周期是T ,当由平衡位置向x 轴正方向运动时,从1/2最大位移处运动到最大位移处的这段路程所需的时间 为( ) (A )T /12 (B )T /8 (C )T /6 (D ) T /4 ( B )2、两个同周期简谐振动曲线如图1所示,振动曲线1的相位比振动曲线2的相位( ) 图1 (A )落后2π (B )超前2 π (C )落后π (D )超前π ( C )3、机械波的表达式是0.05cos(60.06)y t x ππ=+,式中y 和x 的单位是m ,t 的单位是s ,则( ) (A )波长为5m (B )波速为10m ?s -1 (C )周期为13s (D )波沿x 正方向传播 ( D )4、如图2所示,两列波长为λ的相干波在p 点相遇。波在S 1点的振动初相是1?,点S 1到点p 的距离是r 1。波在S 2点的振动初相是2?,点S 2到点p 的距离是r 2。以k 代表零或正、负整数,则点p 是干涉极大的条件为( ) (A )21r r k π-= (B )212k ??π-= (C )()21212/2r r k ??πλπ-+-= 图2

高中物理机械振动机械波习题含答案解析

机械振动、机械波 第一部分五年高考题荟萃 2009年高考新题 一、选择题 1.(09·全国Ⅰ·20)一列简谐横波在某一时刻的波形图如图1所示,图中P、Q两质点的横坐标分别为x=1.5m 和x=4.5m。P点的振动图像如图2所示。 在下列四幅图中,Q点的振动图像可能是(BC ) 解析:本题考查波的传播.该波的波长为4m.,PQ两点间的距离为3m..当波沿x轴正方向传播时当P在平衡位置向上振动时而Q点此时应处于波峰,B正确.当沿x轴负方向传播时,P点处于向上振动时Q点应处于波谷,C对。 2.(09·全国卷Ⅱ·14)下列关于简谐振动和简谐波的说法,正确的是(AD ) A.媒质中质点振动的周期一定和相应的波的周期相等 B.媒质中质点振动的速度一定和相应的波的波速相等 C.波的传播方向一定和媒质中质点振动的方向一致 D.横波的波峰与波谷在振动方向上的距离一定是质点振幅的两倍 解析:本题考查机械波和机械振动.介质中的质点的振动周期和相应的波传播周期一致A正确.而各质点做简谐

运动速度随时间作周期性的变化,但波在介质中是匀速向前传播的,所以不相等,B错.对于横波而言传播方向和振动方向是垂直的,C错.根据波的特点D正确。 3.(09·北京·15)类比是一种有效的学习方法,通过归类和比较,有助于掌握新知识,提高学习效率。在类比过程中,既要找出共同之处,又要抓住不同之处。某同学对机械波和电磁波进行类比,总结出下列内容,其中的是( D ) 不正确 ... A.机械波的频率、波长和波速三者满足的关系,对电磁波也适用 B.机械波和电磁波都能产生干涉和衍射现象 C.机械波的传播依赖于介质,而电磁波可以在真空中传播 D.机械波既有横波又有纵波,而电磁波只有纵波 解析:波长、波速、频率的关系对任何波都是成立的,对电磁波当然成立,故A选项正确;干涉和衍射是波的特性,机械波、电磁波都是波,这些特性都具有,故B项正确;机械波是机械振动在介质中传播形成的,所以机械波的传播需要介质而电磁波是交替变化的电场和磁场由近及远的传播形成的,所以电磁波传播不需要介质,故C项正确;机械波既有横波又有纵波,但是电磁波只能是横波,其证据就是电磁波能够发生偏振现象,而偏振现象是横波才有的,D项错误。故正确答案应为D。 4.(09·北京·17)一简谐机械波沿x轴正方向传播,周期为T,波长为 。若在x=0处质点的振动图像如右图所示,则该波在t=T/2时刻的波形曲线为( A ) 解析:从振动图上可以看出x=0处的质点在t=T/2时刻处于平衡位置,且正在向下振动,四个选项中只有A图符合要求,故A项正确。 5.(09·上海物理·4)做简谐振动的单摆摆长不变,若摆球质量增加为原来的4倍,摆球经过平衡位置时速度减小为原来的1/2,则单摆振动的( C )A.频率、振幅都不变B.频率、振幅都改变 C.频率不变、振幅改变D.频率改变、振幅不变

高中物理《机械波》典型题(精品含答案)

《机械波》典型题 1.(多选)某同学漂浮在海面上,虽然水面波正平稳地以1.8 m/s 的速率向着海滩传播,但他并不向海滩靠近.该同学发现从第1个波峰到第10个波峰通过身下的时间间隔为15 s .下列说法正确的是( ) A .水面波是一种机械波 B .该水面波的频率为6 Hz C .该水面波的波长为3 m D .水面波没有将该同学推向岸边,是因为波传播时能量不会传递出去 E .水面波没有将该同学推向岸边,是因为波传播时振动的质点并不随波迁移 2.(多选)一振动周期为T 、振幅为A 、位于x =0点的波源从平衡位置沿y 轴正向开始做简谐运动.该波源产生的一维简谐横波沿x 轴正向传播,波速为v ,传播过程中无能量损失.一段时间后,该振动传播至某质点P ,关于质点P 振动的说法正确的是( ) A .振幅一定为A B .周期一定为T C .速度的最大值一定为v D .开始振动的方向沿y 轴向上或向下取决于它离波源的距离 E .若P 点与波源距离s =v T ,则质点P 的位移与波源的相同 3.(多选)一列简谐横波从左向右以v =2 m/s 的速度传播,某时刻的波形图如图所示,下列说法正确的是( ) A .A 质点再经过一个周期将传播到D 点 B .B 点正在向上运动 C .B 点再经过18T 回到平衡位置

D.该波的周期T=0.05 s E.C点再经过3 4T将到达波峰的位置 4.(多选)图甲为一列简谐横波在t=2 s时的波形图,图乙为媒质中平衡位置在x=1.5 m处的质点的振动图象,P是平衡位置为x=2 m的质点,下列说法中正确的是( ) A.波速为0.5 m/s B.波的传播方向向右 C.0~2 s时间内,P运动的路程为8 cm D.0~2 s时间内,P向y轴正方向运动 E.当t=7 s时,P恰好回到平衡位置 5.(多选)一列简谐横波沿x轴正方向传播,在x=12 m处的质点的振动图线如图甲所示,在x=18 m处的质点的振动图线如图乙所示,下列说法正确的是( ) A.该波的周期为12 s B.x=12 m处的质点在平衡位置向上振动时,x=18 m处的质点在波峰 C.在0~4 s内x=12 m处和x=18 m处的质点通过的路程均为6 cm D.该波的波长可能为8 m E.该波的传播速度可能为2 m/s 6.(多选)从O点发出的甲、乙两列简谐横波沿x轴正方向传播,某时刻两列波分别形成的波形如图所示,P点在甲波最大位移处,Q点在乙波最大位移处,

高中物理机械波单元测试及答案

机械波单元测试 一、选择题 1..关于机械振动和机械波下列叙述正确的是() A.有机械振动必有机械波 B.有机械波必有机械振动 C.在波的传播中,振动质点并不随波的传播方向发生迁移 D.在波的传播中,如振源停止振动,波的传播并不会立即停止 2.一列波由波源向周围扩展开去,由此可知() A、介质中各质点由近及远地传播开去 B、介质点的振动形式由近及远传播开去 C、介质点振动的能量由近及远传播开去 D、介质点只是振动而没有迁移 3.关于超声波和次声波,以下说法正确的是() A、频率低于20Hz的声波为次声波,频率高于20000Hz的声波为超声波。 B、次声波的波长比可闻波短,超声波的波长比可闻波长长 C、次声波的波速比可闻波小,超声波的波速比可闻波大 D、在同一种均匀介质中,在相同的温度条件下,次声波、可闻波和超声波的波速相等 4.一列沿x轴传播的简谐横波, 某时刻的图象如图1所示. 质点A的位置坐标为(-5,0), 且此时它正沿y轴正方向运动, 再经2 s将第一次到达正方向最大位移, 由此可知 ( ) A. 这列波的波长为20 m B. 这列波的频率为 Hz C. 这列波的波速为2.5 m/s 图1 D. 这列波是沿x轴的正方向传播的 图2

5.一列机械波在某时刻的波形如图2中实线所示,经过一段时间后,波形图象变成如图2中虚线所示,波速大小为1 m/s .那么这段时间可能是( ) A .3 s B .4 s C .5 s D .6 s 6.一列沿x 轴传播的简谐波,波速为4 m/s ,某时刻的波形图象如图3所示.此时x =8 m 处的质点具有正向最大速度,则再过 s ( ) A .x =4 m 处质点具有正向最大加速度 B .x =2 m 处质点具有负向最大速度 C .x =0处质点具有负向最大加速度 D .x =6 m 处质点通过的路程为20 cm 7.如图4所示,在xoy 平面内,有一沿x 轴正方向传播的简谐横波,波速为1 m/s ,振幅为4 cm ,频率为 Hz .P 点、Q 点平衡位置相距0.2m 。在t =0时,P 点位于其平衡位置上方最大位移处,则Q 点 ( ) A .在 s 时的位移为4 cm B .在 s 时的速度最大 C .在 s 时速度方向向下 D .在0~ s 内的路程为4 cm 8.一列沿x 轴传播的简谐横波某时刻的波形图象如图5甲所示.若从此时刻开始 计时,则图5乙表示a 、b 、c 、d 中哪个质点的振动图象 ( ) A .若波沿x 轴正方向传播,则乙图为a 图4 甲 乙 图5 2图3

机械振动和机械波知识点总结教学教材

机械振动和机械波 一、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在 圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)机械振动的应用——受迫振动和共振现象的分析 (1)物体在周期性的外力(策动力)作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关。 (2)在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣。 2机械波中的应用问题 1. 理解机械波的形成及其概念。 (1)机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质。 (2)机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同。 (3)机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移。 (4)描述机械波的物理量关系:v T f ==? λ λ 注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定。 2. 会用图像法分析机械振动和机械波。 振动图像,例:波的图像,例: 振动图像与波的图像的区别横坐标表示质点的振动时间横坐标表示介质中各质点的平衡位置 表征单个质点振动的位移随时间变 化的规律 表征大量质点在同一时刻相对于平衡位 置的位移 相邻的两个振动状态始终相同的质 点间的距离表示振动质点的振动周 期。例:T s =4 相邻的两个振动始终同向的质点间的距 离表示波长。例:λ=8m

高中物理-机械振动、机械波高考真题演练

高中物理-机械振动、机械波高考真题演练1.[·山东理综,38(1)](多选)如图, 轻弹簧上端固定,下端连接一小物块,物块沿竖直方向做简谐运动。以竖直向上为正方向,物块简谐运动的表达式为y=0.1sin(2.5πt)m。t=0时刻,一小球从距物块h高处自由落下;t=0.6 s时,小球恰好与物块处于同一高度。取重力加速度的大小g=10 m/s2。以下判断正确的是() A.h=1.7 m B.简谐运动的周期是0.8 s C.0.6 s内物块运动的路程是0.2 m D.t=0.4 s时,物块与小球运动方向相反 2.(·天津理综,3)图甲为一列简谐横波在某一时刻的波形图,a、b 两质点的横坐标分别为x a=2 m和x b=6 m,图乙为质点b从该时刻开始计时的振动图象。下列说法正确的是() A.该波沿+x方向传播,波速为1 m/s B.质点a经4 s振动的路程为4 m C.此时刻质点a的速度沿+y方向

D.质点a在t=2 s时速度为零 3.(·北京理综,15) 周期为2.0 s的简谐横波沿x轴传播,该波在某时刻的图象如图所示,此时质点P沿y轴负方向运动,则该波() A.沿x轴正方向传播,波速v=20 m/s B.沿x轴正方向传播,波速v=10 m/s C.沿x轴负方向传播,波速v=20 m/s D.沿x轴负方向传播,波速v=10 m/s 4.(·四川理综,2)平静湖面传播着一列水面波(横波),在波的传播方向上有相距3 m的甲、乙两小木块随波上下运动,测得两小木块每分钟都上下30次,甲在波谷时,乙在波峰,且两木块之间有一个波峰。这列水面波() A.频率是30 Hz B.波长是3 m C.波速是1 m/s D.周期是0.1 s 5.(·福建理综,16)简谐横波在同一均匀介质中沿x轴正方向传播,波速为v。若某时刻在波的传播方向上,位于平衡位置的两质点a、b 相距为s,a、b之间只存在一个波谷,则从该时刻起,下列四幅波形图中质点a最早到达波谷的是()

(完整版)沪科版高一物理教案模板下册《机械波的运动》

沪科版高一物理教案模板下册《机械波的运动》 目标: 1.掌握机械波的产生条件和机械波的传播特点(规律); 2.掌握描述波的物理量——波速、周期、波长; 3.正确区分振动图象和波动图象,并能运用两个图象解决有关问题4.知道波的特性:波的叠加、干涉、衍射;了解多普勒效应 教学重点:机械波的传播特点,机械波的三大关系(波长、波速、周期的关系;空间距离和时间的关系;波形图、质点振动方向和波的传播方向间的关系) 教学难点:波的图象及相关应用 教学方法:讲练结合,计算机辅助教学

教学过程: 一、机械波 1.机械波的产生条件:波源(机械振动)传播振动的介质(相邻质点间存在相互作用力)。 2.机械波的分类 机械波可分为横波和纵波两种。 (1)质点振动方向和波的传播方向垂直的叫横波,如:绳上波、水面波等。 (2)质点振动方向和波的传播方向平行的叫纵波,如:弹簧上的疏密波、声波等。 分类质点的振动方向和波的传播方向关系形状举例 横波垂直凹凸相间;有波峰、波谷绳波等 纵波在同一条直线上疏密相间;有密部、疏部弹簧波、声波等

说明:地震波既有横波,也有纵波。 3.机械波的传播 (1)在同一种均匀介质中机械波的传播是匀速的。波速、波长和频率之间满足公式:v=λf。 (2)介质质点的运动是在各自的平衡位置附近的简谐运动,是变加速运动,介质质点并不随波迁移。 (3)机械波转播的是振动形式、能量和信息。 (4)机械波的频率由波源决定,而传播速度由介质决定。 4.机械波的传播特点(规律): (1)前带后,后跟前,运动状态向后传。即:各质点都做受迫振动,起振方向由波源来决定;且其振动频率(周期)都等于波源的振动频率(周期),但离波源越远的质点振动越滞后。 (2)机械波传播的是波源的振动形式和波源提供的能量,而不是质

机械振动与机械波相结合的综合应用(教案)

机械振动与机械波相结合的综合应用 【教学目标】 1、通过对比简谐运动与简谐波,掌握简谐运动与简谐波的特征及描述方法。 2、知道简谐运动与简谐波相结合的综合题的题型,掌握解决此类问题的基本方法。【教学过程】 一、核心知识 1、研究对象:简谐运动、简谐波 2、简谐运动与简谐波的对比 学生活动:学生先讨论课前独立填写的学案中的下表中红色内容(2分钟),然后 学生活动:①学生先小组讨论学案上按要求完成的内容(每一类问题2分钟),然后展示要难点问题,提请全班讨论解决。②第三类题型讨论完后,总结合归纳解题基本方法。 老师活动:①老师对重点突破共同难点问题,突破方法是通过提前预设的PPT进行分析。②对学生归纳的解题方法进行提炼和深化。③强调解题规范。 1、已知波的传播和波上质点振动的部分信息,分析问题 【例1】(2016年全国Ⅲ卷,34(1))(5分)由波源S形成的简谐横波在均匀介质中向左、右传播。波源振动的频率为20 Hz,波速为16 m/s。已知介质中P、Q两质点位于波源S的两侧,且P、Q和S的平衡位置在一条直线上,P、Q的平衡位置到S的平衡位置之间的距离分别为m、m,P、Q开始震动后,下列判断

正确的是_____。(填正确答案标号。选对1个得2分,选对2个得4分,选对3个得5分。每选错1个扣3分,最低得分为0分) A .P 、Q 两质点运动的方向始终相同 B .P 、Q 两质点运动的方向始终相反 C .当S 恰好通过平衡位置时,P 、Q 两点也正好通过平衡位置 、 D .当S 恰好通过平衡位置向上运动时,P 在波峰 E .当S 恰好通过平衡位置向下运动时,Q 在波峰 【答案】BDE 【考点】波的图像,波长、频率和波速的关系 【解析】根据题意信息可得1s 0.05s 20 T ==,16m/s v =,故波长为0.8m vT λ==,找P 点关于S 点的对称点P ',根据对称性可知P '和P 的振动情况完全相同,P '、 Q 两点相距15.814.630.80.82x λλ???=-= ??? ,为半波长的整数倍,所以两点为反相点,故P '、Q 两点振动方向始终相反,即P 、Q 两点振动方向始终相反,A 错误B 正确; P 点距离S 点3194 x λ=,当S 恰好通过平衡位置向上振动时,P 点在波峰,同理Q 点距离S 点1184 x λ'=,当S 恰好通过平衡位置向下振动时,Q 点在波峰,DE 正确。 巩固练习:(2016年全国Ⅱ卷,34(2)))(10分)一列简谐横波在介质中沿x 轴正向传播,波长不小于10cm .O 和A 是介质中平衡位置分别位于x =0和x=5cm 处的两个质点.t=0时开始观测,此时质点O 的位移为y =4cm ,质点A 处于波峰位置;1 s 3 t =时,质点O 第一次回到平衡位置,t=1s 时,质点A 第一次回到平衡位置.求: (ⅰ)简谐波的周期、波速和波长;(ⅱ)质点O 的位移随时间变化的关系式. 【答案】(i )T =4s ,v =s ,λ=30cm (ii )50.08sin(t )26y ππ=+或者10.08cos(t )23 y ππ=+ 【解析】(i )t =0s 时,A 处质点位于波峰位置 t =1s 时,A 处质点第一次回到平衡位置可知 1s 4 T =,T =4s … 1s 3 t =时,O 第一次到平衡位置,t =1s 时,A 第一次到平衡位置 可知波从O 传到A 用时2s 3 ,传播距离x =5cm 故波速7.5cm /s x v t ==,波长λ=vT =30cm (ⅱ)设0sin(t )y A ω?=+,可知2rad/s 2T ππω== 又由t =0s 时,y =4cm ;1s 3t =,y =0,代入得A =8cm ,再结合题意得056 ?π= 故50.08sin(t )26y ππ=+或者10.08cos(t )23 y ππ=+ 2、已知两个时刻的波形图和部分信息,分析问题

高中物理第十一章机械振动总结

高中物理第十一章 机械振动总结 一、机械振动: (一)简谐运动: 1、简谐运动的特征: 1)运动学特征:振动物体离开平衡位置的位移随时间按正弦规律变化 在振动中位移常指是物体离开平衡位置的位移 2)动力学特征:回复力的大小与振动物体离开平衡的位移成正比, 方向与位移方向相反(指向平衡位置) kx F -= ①回复力:使振动物体回到平衡位置的力叫做回复力。 ②回复力是根据力的效果来命名的。 ③回复力的方向总是指向平衡位置。 ④回复力可以是物体所受的合外力,也可以是几个力的合力,也可以是一个力,或者某个力的分力。 ⑤由回复力产生的加速度与位移成正比,方向与位移方向相反x m k a -= ⑥证明一个物体是否是作简谐运动,只需要看它的回复力的特征 2、简谐运动的运动学分析: 1)简谐运动的运动过程分析: (1)常用模型:弹簧振子(其运动过程代表了简谐运动的过程) (2)运动过程: 简谐运动的基本过程是两个加速度减小的加速运动过程和两个加速度增大的减速运动过程 (3)简谐运动的对称性: 做简谐运动的物体在经过关于平衡位置对称的两点时,两处的加速度、速度、回复力大小相等 (大小相等、相等)。动能、势能相等(大小相等、

相等)。 2)表征简谐运动的物理量: (1)振幅:振动物体离开平衡位置的最大距离叫做振动的振幅。 ①振幅是标量。 ②振幅是反映振动强弱的物理量。 (2)周期和频率: ①振动物体完成一次全振动所用的时间叫做振动的周期。 ②单位时间内完成全振动的次数叫做全振动的频率。 它们的关系是T=1/f 。 在一个周期内振动物体通过的路程为振幅的4倍;在半个周期内振动物体通过的路程为振幅2倍;在1/4个周期内物体通过的路程不一定等于振幅 3)简谐运动的表达式:)sin(?ω+=t A x 4)简谐运动的图像: 振动图像表示了振动物体的位移随时间变化的规律。 反映了振动质点在所有时刻的位移。 从图像中可得到的信息: ①某时刻的位置、振幅、周期 ②速度:方向→顺时而去;大小比较→看位移大小 ③加速度:方向→与位移方向相反;大小→与位移成正比 3、简谐运动的能量转化过程: 1)简谐运动的能量:简谐运动的能量就是振动系统的总机械能。 ①振动系统的机械能与振幅有关,振幅越大,则系统机械能越大。 ②阻尼振动的振幅越来越小。 2)简谐运动过程中能量的转化: 系统的动能和势能相互转化,转化过程中机械能的总量保持不变。

物理机械波知识点总结

物理机械波知识点总结 导读:高中物理选修3-4机械波重要知识点 描述机械波的物理量——波长、波速和频率(周期)的关系 ⑴波长λ:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长。振动在一个周期内在介质中传播的距离等于波长。 ⑵频率f:波的频率由波源决定,在任何介质中频率保持不变。 ⑶波速v:单位时间内振动向外传播的距离。波速的大小由介质决定。 波的干涉和衍射 衍射:波绕过障碍物或小孔继续传播的现象。产生显著衍射的条件是障碍物或孔的尺寸比波长小或与波长相差不多。 干涉:频率相同的两列波叠加,使某些区域的振动加强,使某些区域振动减弱,并且振动加强和振动减弱区域相互间隔的现象。产生稳定干涉现象的条件是:两列波的频率相同,相差恒定。 稳定的干涉现象中,振动加强区和减弱区的空间位置是不变的,加强区的振幅等于两列波振幅之和,减弱区振幅等于两列波振幅之差。 判断加强与减弱区域的方法一般有两种:一是画峰谷波形图,峰峰或谷谷相遇增强,峰谷相遇减弱。二是相干波源振动相同时,某点到二波源程波差是波长整数倍时振动增强,是半波长奇数倍时振动减弱。干涉和衍射是波所特有的现象。

高中物理选修3-4重要知识点 相对论的时空观 经典物理学的时空观(牛顿物理学的绝对时空观):时间和空间是脱离物质而存在的,是绝对的,空间与时间之间没有任何联系。 相对论的时空观(爱因斯坦相对论的相对时空观):空间和时间都与物质的运动状态有关。 相对论的时空观更具有普遍性,但是经典物理学作为相对论的特例,在宏观低速运动时仍将发挥作用。 时间和空间的相对性(时长尺短) 1.同时的相对性:指两个事件,在一个惯性系中观察是同时的,但在另外一个惯性系中观察却不再是同时的。 2.长度的相对性:指相对于观察者运动的物体,在其运动方向的长度,总是小于物体静止时的长度。而在垂直于运动方向上,其长度保持不变。 高中物理机械振动和机械波知识点 1.简谐运动 (1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动. (2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置. 简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度

相关文档
最新文档