圆锥曲线大题归类

圆锥曲线大题归类
圆锥曲线大题归类

圆锥曲线大题归类

一.定点问题

例1.已知椭圆C :x 2a 2+y 2

=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :(x -3)2+(y -1)2=3相切. (1)求椭圆C 的方程;

(2)若不过点A 的动直线l 与椭圆C 交于P ,Q 两点,且AP →·AQ →

=0,求证:直线l 过定点,并求该定点的坐标.

[解析] (1)圆M 的圆心为(3,1),半径r = 3. 由题意知A (0,1),F (c,0),

直线AF 的方程为x

c +y =1,即x +cy -c =0, 由直线AF 与圆M 相切,得

|3+c -c |

c 2+1

=3, 解得c 2=2,a 2=c 2+1=3, 故椭圆C 的方程为x 23+y 2

=1.

(2)方法一:由·=0知AP ⊥AQ ,从而直线AP 与坐标轴不垂直,故可设直线AP 的方程为y =kx +1,直线AQ 的方程为y =-1

k x +1.

联立???

y =kx +1,x 23+y 2

=1,

整理得(1+3k 2)x 2+6kx =0,

解得x =0或x =-6k

1+3k 2

故点P 的坐标为(-6k 1+3k 2,1-3k 2

1+3k 2

),

同理,点Q 的坐标为(6k

k 2+3,k 2-3k 2+3)

∴直线l 的斜率为k 2-3k 2+3-

1-3k 2

1+3k 26k k 2+3-

-6k 1+3k 2=k 2-1

4k ,

∴直线l 的方程为y =k 2-14k (x -6k

k 2+3)+k 2-3k 2+3,

即y =k 2-14k x -12.

∴直线l 过定点(0,-1

2).

方法二:由·=0知AP ⊥AQ ,从而直线PQ 与x 轴不垂直,故可设直线l 的方程为y =kx +t (t ≠1),

联立????

?

y =kx +t ,x 23

+y 2

=1,

整理得(1+3k 2)x 2+6ktx +3(t 2-1)=0. 设P (x 1,y 1),Q (x 2,y 2)则?????

x 1+x 2=-6kt

1+3k 2,

x 1x 2=3(t 2-1)

1+3k 2,(*)

由Δ=(6kt )2-4(1+3k 2)×3(t 2-1)>0,得 3k 2>t 2-1.由·=0,

得·=(x 1,y 1-1)·(x 2,y 2-1)=(1+k 2)x 1x 2+k (t -1)(x 1+x 2)+(t -1)2=0, 将(*)代入,得t =-1

2, ∴直线l 过定点(0,-1

2).

例2.已知抛物线C :y 2=2px (p >0)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点.

(1)求抛物线C 的方程;

(2)若直线OA ,OB 的斜率之积为-1

2,求证:直线AB 过x 轴上一定点. [解析] (1)因为抛物线y 2

=2px (p >0)的焦点坐标为(1,0),所以p

2=1,所以p

=2.

所以抛物线C 的方程为y 2=4x .

(2)证明:①当直线AB 的斜率不存在时, 设A (t 24,t ),B (t 2

4,-t ).

因为直线OA ,OB 的斜率之积为-1

2, 所以t t 24·-t t 24

=-1

2,化简得t 2=32.

所以A (8,t ),B (8,-t ),此时直线AB 的方程为x =8.

②当直线AB 的斜率存在时,设其方程为y =kx +b ,A (x A ,y A ),B (x B ,y B ),

联立得???

y 2

=4x ,y =kx +b ,

化简得ky 2-4y +4b =0.

根据根与系数的关系得y A y B =4b

k ,

因为直线OA ,OB 的斜率之积为-12,所以y A x A

·y B x B

=-

1

2,

即x A x B +2y A y B =0.即y 2A 4·

y 2

B

4+2y A y B =0,

解得y A y B =0(舍去)或y A y B =-32.所以y A y B =4b

k =-32,即b =-8k , 所以y =kx -8k ,y =k (x -8).综上所述,直线AB 过定点(8,0).

圆锥曲线中定点问题的两种解法

(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.

(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 二.定值问题

例3.已知椭圆C :x 2a 2+y 2

b 2=1(a >b >0)的两个焦点分别为F 1(-2,0),F 2(2,

0),点M (1,0)与椭圆短轴的两个端点的连线互相垂直.导学号 30072628

(1)求椭圆C 的方程;

(2)过点M (1,0)的直线l 与椭圆C 相交于A ,B 两点,设点N (3,2),记直线AN ,BN 的斜率分别为k 1,k 2,求证:k 1+k 2定值. [解析] (1)依题意,由已知得c =2,则a 2-b 2=2,

由已知易得b =|OM |=1,所以a =3,所以椭圆的方程为x 23+y 2

=1. (2)①当直线l 的斜率不存在时,不妨设A (1,63),B (1,-6

3),则k 1+k 2=2-632+2+63

2=2为定值.

②当直线l 的斜率存在时,设直线l 的方程为y =k (x -1), 由????

?

y =k (x -1),x 23

+y 2

=1,得(3k 2+1)x 2-6k 2x +3k 2-3=0,

依题意知,直线l 与椭圆C 必相交于两点,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=6k 2

3k 2+1,x 1x 2=3k 2-33k 2+1,又y 1=k (x 1-1),y 2=k (x 2-1),

所以k 1+k 2=2-y 13-x 1+2-y 23-x 2=(2-y 1)(3-x 2)+(2-y 2)(3-x 1)

(3-x 1)(3-x 2)

=[2-k (x 1-1)](3-x 2)+[2-k (x 2-1)](3-x 1)(3-x 1)(3-x 2)

=12-2(x 1+x 2)+k [2x 1x 2-4(x 1+x 2)+6]9-3(x 1+x 2)+x 1x 2

=12-2×6k 23k 2+1+k [2×3k 2-33k 2+1-4×6k 2

3k 2+1+6]

9-3×6k 2

3k 2+1+

3k 2-33k 2+1=12(2k 2+1)

6(2k 2+1)=2,

综上,得k 1+k 2为定值2. 例4 (2016北京理科) 求定值问题常见的方法

(1)从特殊入手,求出定值,再证明这个值与变量无关.

(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 三.探索性问题

例5.(2015·新课标全国Ⅱ,12分,理)已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .

(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;

(2)若l 过点(m

3,m ),延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.

[解析] (1)设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).

将y =kx +b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx +b 2-m 2=0,故 x M =x 1+x 22=-kb k 2+9,y M =kx M +b =9b k 2+9

.

于是直线OM 的斜率k OM =y M x M

=-9

4,即k OM ·k =-9.

所以直线OM 的斜率与l 的斜率的乘积为定值.

(2)四边形OAPB 能为平行四边形.

因为直线l 过点(m

3,m ),所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3.

由(1)得OM 的方程为y =-9

k x . 设点P 的横坐标为x P .

由?????

y =-9k x ,9x 2+y 2=m 2

得x 2P =k 2m 29k 2+81,即x P =±km 3k 2+9. 将点(m

3,m )的坐标代入l 的方程得b =m (3-k )3,因此x M =k (k -3)m 3(k 2+9).

四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M .

于是±km

3k 2+9=2×k (k -3)m 3(k 2+9),解得k 1=4-7,k 2=4+7. 因为k i >0,k i ≠3,i =1,2,

所以当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形. 例6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),右顶点为A ,且|AF |

=1.

(1)求椭圆C 的标准方程;

(2)若动直线l :y =kx +m 与椭圆C 有且只有一个交点P ,且与直线x =4交于点Q ,问:是否存在一个定点M (t,0),使得·=0.若存在,求出点M 的坐标;若不存在,说明理由.

[解析] (1)由c =1,a -c =1,得a =2,∴b =3, 故椭圆C 的标准方程为x 24+y 2

3=1.

(2)由?

??

y =kx +m ,3x 2+4y 2

=12, 消去y 得(3+4k 2)x 2+8kmx +4m 2-12=0,

∴Δ=64k 2m 2-4(3+4k 2)(4m 2-12)=0,即m 2=3+4k 2. y P =kx P +m =-4k 2m +m =3m ,即P (-4k m ,3m ). ∵M (t,0),Q (4,4k +m ),

∴=(-4k m -t ,3

m ),=(4-t,4k +m ),

∴·=(-4k m -t )·(4-t )+3m ·(4k +m )=t 2-4t +3+4k

m (t -1)=0恒成立, 故???

t =1,t 2-4t +3=0,即t =1. ∴存在点M (1,0)符合题意. 设P (x P ,y P ),则x P =-

4km 3+4k

2=-4k

m , y P =kx P +m =-4k 2m +m =3m ,即P (-4k m ,3

m ). ∵M (t,0),Q (4,4k +m ),

∴=(-4k m -t ,3

m ),=(4-t,4k +m ),

∴·=(-4k m -t )·(4-t )+3m ·(4k +m )=t 2-4t +3+4k

m (t -1)=0恒成立, 故???

t =1,t 2-4t +3=0,即t =1. ∴存在点M (1,0)符合题意.

四、取值范围问题

例7.(2015·浙江,15分)已知椭圆x 22+y 2

=1上两个不同的点A ,B 关于直线y =mx +1

2对称.

(1)求实数m 的取值范围;

(2)求△AOB 面积的最大值(O 为坐标原点).

[解析] (1)由题意知m ≠0,可设直线AB 的方程为y =-1

m x +b .由

?????

x 22+y 2=1,

y =-1m x +b ,

消去y ,得(12+1m 2)x 2-2b m x +b 2-1=0.因为直线y =-1

m x +b

与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4

m 2>0,①

设M 为AB 的中点,则M (2mb m 2+2,m 2b

m 2+2),

代入直线方程y =mx +1

2,解得b =-m 2+22m 2.② 由①②得m <-63或m >6

3.

(2)令t =1m ∈(-62,0)∪(0,6

2),则且O 到直线AB 的距离d =t 2+12

t 2+1.

设△AOB 的面积为S (t ),所以 S (t )=12|AB |·d =12

-2(t 2-12)2+2≤22,当且仅当t 2=1

2时,等号成立.

故△AOB 面积的最大值为2

2.|AB |=t 2+1·

-2t 4+2t 2+3

2t 2

+12

例8.已知圆x 2

+y 2

=1过椭圆x a 2+y b 2=1(a >b >0)的两焦点,与椭圆有且仅有

两个公共点,直线l :y =kx +m 与圆x 2

+y 2

=1相切,与椭圆x 2a 2+y 2

b 2=1相交于

A ,

B 两点.记λ=OB OA ?·,且23≤λ≤3

4. (1)求椭圆的方程; (2)求k 的取值范围;

(3)求△OAB 的面积S 的取值范围.

解:(1)由题意知2c =2,所以c =1.因为圆与椭圆有且只有两个公共点,从而b =1,故a =2,所以所求椭圆方程为x 22+y 2

=1.

(2)因为直线l :y =kx +m 与圆x 2+y 2=1相切,所以原点O 到直线l 的距离为|m |12+k 2=1,即m 2=k 2

+1.由?????

y =kx +m ,x 22

+y 2

=1得(1+2k 2)x 2+4kmx +2m 2-2=0.

设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-21+2k 2

.λ=·=x 1x 2+y 1y 2=(1

+k 2)x 1x 2+km (x 1+x 2)+m 2

=k 2+11+2k

2,由23≤λ≤34,得12≤k 2≤1,即k 的取值范围是??????-1,-22∪????

??22,1.

(3)|AB |2=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2-2(2k 2+1)2,由

1

2≤k 2≤1,得62≤|AB |≤43.设△OAB 的AB 边上的高为d ,则S =12|AB |d =1

2|AB |,所以64≤S ≤23.即△OAB 的面积S 的取值范围是????

??64,23.

例9.已知椭圆E :x t +y 3=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)

的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .

(1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围.

【解】 (1)设M (x 1,y 1),则由题意知y 1>0.当t =4时,E 的方程为x 24+y 2

3=1,A (-2,0).由已知及椭圆的对称性知,直线AM 的倾斜角为π

4.因此直线AM

的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0.解得y =0或y =12

7,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=144

49.

(2)由题意知t >3,k >0,A (-t ,0).将直线AM 的方程y =k (x +t )代入x 2

t

+y 23=1得(3+tk 2)x 2+2t ·tk 2x +t 2k 2

-3t =0.由x 1·(-t )=t 2k 2-3t 3+tk 2得x 1=t (3-tk 2)3+tk 2,故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk 2

. 由题设知,直线AN 的方程为y =-1k (x +t ),故同理可得|AN |=6k t (1+k 2)3k 2+t .

由2|AM |=|AN |得

23+tk 2=k

3k 2+t

, 即(k 3-2)t =3k (2k -1).当k =3

2时上式不成立,因此

t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,

即k -2k 3-2<0.由此得??? k -2>0,k 3-2<0,或???

k -2<0,k 3-2>0, 解得32

2,2).

五.最值问题

例10.平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2

b 2=1(a >b >0)的离心率为3

2,左、右焦点分别是F 1,F 2.以F 1为圆心、以3为半径的圆与以F 2为圆心、以1为半径的圆相交,且交点在椭圆C 上.

(1)求椭圆C 的方程;

(2)设椭圆E :x 24a 2+y 2

4b 2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .

①求|OQ |

|OP |的值;

②求△ABQ 面积的最大值. 解】 (1)由题意知2a =4,则a =2.

又c a =3

2,a 2-c 2=b 2,可得b =1, (2)由(1)知椭圆E 的方程为x 216+y 2

4=1. ①设P (x 0,y 0),|OQ |

|OP |=λ, 由题意知Q (-λx 0,-λy 0). 因为x 20

4+y 20=1,

又(-λx 0)216+(-λy 0)24=1,即λ24? ????x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2. 所以椭圆C 的方程为x 24+y 2

=1. ②设A (x 1,y 1),B (x 2,y 2).

将y=kx+m代入椭圆E的方程,

可得(1+4k2)x2+8kmx+4m2-16=0,由Δ>0,可得m2<4+16k2.①

则有x1+x2=-8km

1+4k2,x1x2=

4m2-16

1+4k2

.

所以|x1-x2|=416k2+4-m2

1+4k2

.

因为直线y=kx+m与y轴交点的坐标为(0,m),所以△OAB的面积

S=1

2|m||x1-x2|=

216k2+4-m2|m|

1+4k2

=2(16k2+4-m2)m2

1+4k2

=2

?

?

?

?

?

4-

m2

1+4k2

m2

1+4k2

.

m2

1+4k2

=t.

将y=kx+m代入椭圆C的方程,

可得(1+4k2)x2+8kmx+4m2-4=0,

由Δ≥0,可得m2≤1+4k2.②

由①②可知0

因此S=2(4-t)t=2-t2+4t,

故S≤2 3.

当且仅当t=1,即m2=1+4k2时取得最大值2 3. 由①知,△ABQ的面积为3S,

所以△ABQ面积的最大值为6 3.

例11.定圆M :(x +3)2+y 2=16,动圆N 过点F (3,0)且与圆M 相切,记圆心N 的轨迹为E .

①求轨迹E 的方程;

②设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且|AC | =|BC |,当△ABC 的面积最小时,求直线AB 的方程.

(2)解:①∵F (3,0)在圆M :(x +3)2+y 2=16内,∴圆N 内切于圆M .∵|NM |+|NF |

=4>|FM |,∴点N 的轨迹E 为椭圆,且2a =4,c =3,∴b =1,∴轨迹E 的方程为x 24+y 2

=1.

②a.当AB 为长轴(或短轴)时, S △ABC =1

2|OC |·|AB |=2.

b .当直线AB 的斜率存在且不为0时,设直线AB 的方程为y =kx ,A (x A ,y A ),联立方程?????

x 24

+y 2=1y =kx

得,x 2A =

41+4k 2,y 2A =4k 21+4k

2,∴|OA |2=x 2A +y 2

A =4(1+k 2)1+4k 2.将上式中的k 替换为-1k ,可得|OC |2

=4(1+k 2

)k 2+4

.

∴S △ABC =2S △AOC =|OA |·|OC | =

4(1+k 2)

1+4k 2

·

4(1+k 2)k 2+4=4(1+k 2)

(1+4k 2)(k 2+4)

. ∵(1+4k 2)(k 2

+4)≤(1+4k 2)+(k 2

+4)2

=5(1+k 2)2,∴S △ABC ≥8

5,当且仅当1+4k 2=k 2+4,即k =±1时等号成立,此时△ABC 面积的最小值是85.∵2>85,∴△ABC 面积的最小值是8

5,此时直线AB 的方程为y =x 或y =-x .

圆锥曲线题型归类大全 17

高考圆锥曲线的常见题型 典型例题 题型一:定义的应用 例1、动圆M 与圆C 1:(x+1)2+y 2=36内切,与圆C 2:(x-1)2+y 2 =4外切,求圆心M 的轨迹方程。 例2、方程 表示的曲线是 题型二:圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): 1、椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。 2、双曲线:由, 项系数的正负决定,焦点在系数为正的坐 标轴上; 3、抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 典型例题 例1、已知方程 1212 2=-+-m y m x 表示焦点在y 轴上的椭圆,则m 的 取值范围是 例2、k 为何值时,方程 1592 2=---k y k x 的曲线:(1)是椭圆;(2)是双曲线. 题型三:圆锥曲线焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题

1、椭圆焦点三角形面积2 tan 2α b S = ;双曲线焦点三角形面积 2 cot 2α b S = 2、常利用第一定义和正弦、余弦定理求解 3、22,,,n m mn n m n m +-+四者的关系在圆锥曲线中的应用; 典型例题 例1、 椭圆x a y b a b 222210+=>>()上一点P 与两个焦点F F 12,的张角∠F P F 12= α, 求证:△F 1PF 2的面积为b 22 tan α 。 例2、已知双曲线的离心率为2,F 1、F 2是左右焦点,P 为双曲线上一点,且, .求该双曲线的标准方程 题型四:圆锥曲线中离心率,渐近线的求法 1、a,b,c 三者知道任意两个或三个的相等关系式,可求离心率,渐进线的值; 2、a,b,c 三者知道任意两个或三个的不等关系式,可求离心率,渐进线的范围;

圆锥曲线大题专题训练答案和题目

圆锥曲线大题专题训练 1.如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心.以(0)t t >为半径的圆分别 与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C . (Ⅰ)求点A 的横坐标a 与点C 的横坐标 c 的关系式 (Ⅱ)设曲线G 上点D 的横坐标为2a +, 求证:直线CD 的斜率为定值. 1.解: (Ⅰ)由题意知,(A a . 因为OA t =,所以2 2 2a a t +=.由于0t > 由点(0)(0)B t C c ,,,的坐标知,直线BC 的方程为 1c t +=. 又因点A 在直线BC 上,故有 1a c +=,将(1)代入上式,得1a c =, 解得2c a =+ (Ⅱ)因为(2D a +,所以直线CD 的斜率为 1CD k = ===-. 所以直线CD 的斜率为定值. 2.设F 是抛物线2 :4G x y =的焦点. (I )过点(04)P -,作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足0FA FB =u u u r u u u r g ,延长AF ,BF 分别交抛物线G 于点C D ,,求 四边形ABCD 面积的最小值. 2.解:(I )设切点2 004x Q x ?? ???,.由2x y '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为 2000()42x x y x x -=-. 即2 04 24x x y x =-. 因为点(0)P -4,在切线上. 所以2 044 x -=-,2 016x =,04x =±.所求切线方程为24y x =±-. (II )设11()A x y ,,22()C x y ,. 由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >.

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

新课标高考《圆锥曲线》大题专题含答案

新课标高考《圆锥曲线》大题专题含答案

全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 1 .(2013年高考江西卷(理)) 过点2,0) 引直线l 与曲线2 1y x = +相交于 A,B 两点,O 为坐标原点,当?AOB 的面积取最大值时,直线 l 的斜 率 等 于 ( ) A .y E B B C CD =++3 B .3 C .3± D .32 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版)) 双曲线 2 214 x y -=的顶点到其渐近线的距离等于 ( ) A .25 B .4 5 C 25 D 453 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版)) 已知中心在原 点的双曲线C 的右焦点为()3,0F ,离心率等于3 2 ,在双曲线C 的方程 是 ( ) A .22 145 x -= B .22 145 x y -= C . 22 125 x y -= D . 22 125 x -=

4 .(2013年高考新课标1(理)) 已知双曲线C : 22 2 21x y a b -=(0,0a b >>)的离心率为52 ,则C 的渐近 线 方 程为 ( ) A .14y x =± B .13 y x =± C . 12 y x =± D .y x =± 5 .(2013年高考湖北卷(理)) 已知04π θ<<,则双曲线 22 122:1 cos sin x y C θθ -=与22 2222 :1sin sin tan y x C θθθ -=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦 距相等 D .离心率相等 6 .(2013年高考四川卷(理)) 抛物线2 4y x =的焦点到双曲线 2 21 3 y x -=的渐近线的距 离 是 ( ) A .12 B .3 2 C .1 D 3

(完整版)高考圆锥曲线经典真题

高考圆锥曲线经典真题 知识整合: 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能. 1.(江西卷15)过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线 分别交于A 、B 两点(A 在y 轴左侧),则 AF FB = .1 3 2 (2008年安徽卷)若过点A(4,0)的直线l 与曲线 22 (2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( ) A. [3,3] B. (3,3) C. 33[33- D. 33 (,33- 3(2008年海南---宁夏卷)设双曲线22 1916x y -=的右顶点为A,右焦点为F,过点F 平行双曲线的一条渐近线的直线与双曲线交于点B,则三角形AFB 的面积为-___________. 热点考点探究: 考点一:直线与曲线交点问题 例1.已知双曲线C :2x2-y2=2与点P(1,2) (1)求过P(1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点. 解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.当l

的斜率存在时,设直线l 的方程为y -2=k(x -1),代入C 的方程,并整理得 (2-k2)x2+2(k2-2k)x -k2+4k -6=0 (*) (ⅰ)当2-k2=0,即k=± 2 时,方程(*)有一个根,l 与C 有一个交点 (ⅱ)当2-k2≠0,即k ≠±2 时 Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k -6)=16(3-2k) ①当Δ=0,即 3-2k=0,k=23 时,方程(*)有一个实根,l 与C 有一个交点. ②当Δ>0,即k <23 ,又 k ≠± 2 ,故当k <- 2 或-2 <k < 2 或 2<k <2 3 时,方程(*)有两不等实根,l 与C 有两个交点. ③当Δ<0,即 k >23 时,方程(*)无解,l 与C 无交点. 综上知:当k=±2,或k=23 ,或 k 不存在时,l 与C 只有一个交点; 当2<k <23 ,或-2<k <2,或k <- 2 时,l 与C 有两个交点; 当 k >23 时,l 与C 没有交点. (2)假设以Q 为中点的弦存在,设为AB ,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2 ∴2(x1-x2)=y1-y1 即kAB= 2 121x x y y --=2 但渐近线斜率为±2,结合图形知直线 AB 与C 无交点,所以假设不正确,即以 Q 为中点的弦不存在.

圆锥曲线大题归类

圆锥曲线大题归类 一.定点问题 例1.已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M : (x -3)2+(y -1)2=3相切. (1)求椭圆C 的方程; (2)若不过点A 的动直线l 与椭圆C 交于P ,Q 两点,且AP →·AQ → =0,求证:直线l 过定点,并求该定点的坐标. [解析](1)圆M 的圆心为(3,1),半径r = 3. 由题意知A (0,1),F (c,0), 直线AF 的方程为x c +y =1,即x +cy -c =0, 由直线AF 与圆M 相切,得|3+c -c |c 2+1 =3, 解得c 2=2,a 2=c 2+1=3, 故椭圆C 的方程为x 23+y 2=1. (2)方法一:由·=0知AP ⊥AQ ,从而直线AP 与坐标轴不垂直, 故可设直线AP 的方程为y =kx +1,直线AQ 的方程为y =-1k x +1. 联立??? y =kx +1, x 23+y 2=1,整理得(1+3k 2)x 2+6kx =0,

解得x =0或x =-6k 1+3k 2 , 故点P 的坐标为(-6k 1+3k 2,1-3k 2 1+3k 2 ), 同理,点Q 的坐标为(6k k 2+3,k 2-3k 2+3 ) ∴直线l 的斜率为k 2-3k 2+3-1-3k 2 1+3k 26k k 2+3--6k 1+3k 2 =k 2-14k , ∴直线l 的方程为y =k 2-14k (x -6k k 2+3)+k 2-3k 2+3 , 即y =k 2-14k x -12. ∴直线l 过定点(0,-12). 方法二:由·=0知AP ⊥AQ ,从而直线PQ 与x 轴不垂直,故可设直线l 的方程为y =kx +t (t ≠1), 联立????? y =kx +t ,x 23+y 2=1, 整理得(1+3k 2)x 2+6ktx +3(t 2-1)=0. 设P (x 1,y 1),Q (x 2,y 2)则????? x 1+x 2=-6kt 1+3k 2, x 1x 2=3(t 2-1)1+3k 2, (*) 由Δ=(6kt )2-4(1+3k 2)×3(t 2-1)>0,得 3k 2>t 2-1.由·=0,

文科圆锥曲线专题练习与答案

文科圆锥曲线 1.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32 a x =上一点,12PF F ?是底角为30o 的等腰三 角形,则E 的离心率为( ) () A 12 () B 23 () C 3 4 () D 4 5 【答案】C 【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题. 【解析】∵△21F PF 是底角为030的等腰三角形, ∴0 260PF A ∠=,212||||2PF F F c ==,∴2||AF =c ,∴322 c a = ,∴e =34, 2.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162 =的准线交于,A B 两点,AB =;则C 的实轴长为( ) ()A ()B ()C 4 ()D 8 【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题. 【解析】由题设知抛物线的准线为:4x =,设等轴双曲线方程为:2 2 2 x y a -=,将4x =代入等轴双曲线方程解 得y =,∵||AB =a =2, ∴C 的实轴长为4,故选C. 3.已知双曲线1C :22 221(0,0)x y a b a b -=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距 离为2,则抛物线2C 的方程为 (A) 2x y = (B) 2x y = (C)28x y = (D)216x y = 考点:圆锥曲线的性质 解析:由双曲线离心率为2且双曲线中a ,b ,c 的关系可知a b 3=,此题应注意C2的焦点在y 轴上,即(0,p/2) 到直线x y 3= 的距离为2,可知p=8或数形结合,利用直角三角形求解。 4.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 (A ) 2211612x y += (B )221128x y += (C )22184x y += (D )22 1124 x y += 【命题意图】本试题主要考查了椭圆的方程以及性质的运用。通过准线方程确定焦点位置,然后借助于焦距和准线求解参数,,a b c ,从而得到椭圆的方程。 【解析】因为242c c =?=,由一条准线方程为4x =-可得该椭圆的焦点在x 轴上县2 2448a a c c =?==,所以222 844b a c =-=-=。故选答案C 5.已知1F 、2F 为双曲线22 :2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=

圆锥曲线经典例题及总结(全面实用)

圆锥曲线经典例题及总结 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程2 2 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。

圆锥曲线大题20道(含答案)

1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+ =kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>?OB OA (其 中O 为原点). 求k 的取值范围. 解:(Ⅰ)设双曲线方程为12222=-b y a x ).0,0(>>b a 由已知得.1,2,2,32222==+== b b a c a 得再由 故双曲线C 的方程为.13 22 =-y x (Ⅱ)将得代入13 222 =-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得?????>-=-+=?≠-. 0)1(36)31(36)26(, 0312 222 k k k k 即.13 1 22<≠ k k 且 ① 设),(),,(B B A A y x B y x A ,则 ,22,319 ,31262 2>+>?--=-= +B A B A B A B A y y x x OB OA k x x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x .1 37 3231262319)1(22222 -+=+-+--+=k k k k k k k 于是解此不等式得即,01393,213732 222>-+->-+k k k k .33 1 2<

圆锥曲线经典例题及总结(全面实用,你值得拥有!)

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两 个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22 2 21x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 22 ,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

高考数学试题分类汇编圆锥曲线

高考数学试题分类汇编 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离及点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (41,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11 c a < 2 2 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④

D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C . D . 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离及P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .9 2 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8, A B C D -

(完整word版)2019-2020年高考数学大题专题练习——圆锥曲线(一)

2019-2020年高考数学大题专题练习——圆锥曲线(一) 1.设F 1,F 2为椭圆22 143 x y +=的左、右焦点,动点P 的坐标为(-1,m ),过点F 2的直线与 椭圆交于A ,B 两点. (1)求F 1,F 2的坐标; (2)若直线P A ,PF 2,PB 的斜率之和为0,求m 的所有整数值. 2.已知椭圆2 214 x y +=,P 是椭圆的上顶点.过P 作斜率为k (k ≠0)的直线l 交椭圆于另一点A ,设点A 关于原点的对称点为B . (1)求△P AB 面积的最大值; (2)设线段PB 的中垂线与y 轴交于点N ,若点N 在椭圆内部,求斜率k 的取值范围. 3.已知椭圆()22 22:10x y C a b a b +=>>的离心率为5,定点()2,0M ,椭圆短轴的端点是 1B ,2B ,且21MB MB ⊥. (1)求椭圆C 的方程; (2)设过点M 且斜率不为0的直线交椭圆C 于,A B 两点,试问x 轴上是否存在定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标,若不存在,说明理由.

4.已知椭圆C 的标准方程为22 1 1612x y +=,点(0,1)E . (1)经过点E 且倾斜角为 3π 4 的直线l 与椭圆C 交于A 、B 两点,求||AB . (2)问是否存在直线p 与椭圆交于两点M 、N 且||||ME NE =,若存在,求出直线p 斜率的取值范围;若不存在说明理由. 5.椭圆1C 与2C 的中心在原点,焦点分别在x 轴与y 轴上,它们有相同的离心率2 e =,并且2C 的短轴为1C 的长轴,1C 与2C 的四个焦点构成的四边形面积是22. (1)求椭圆1C 与2C 的方程; (2)设P 是椭圆2C 上非顶点的动点,P 与椭圆1C 长轴两个顶点A ,B 的连线PA ,PB 分别与椭圆1C 交于E ,F 点. (i)求证:直线PA ,PB 斜率之积为常数; (ii)直线AF 与直线BE 的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型 总论:常用的八种方法 1、定义法 2、韦达定理法 3、设而不求点差法 4、弦长公式法 5、数形结合法 6、参数法(点参数、K 参数、角参数) 7、代入法中的顺序 8、充分利用曲线系方程法 七种常规题型 (1)中点弦问题 (2)焦点三角形问题 (3)直线与圆锥曲线位置关系问题 (4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题 1.曲线的形状已知--------这类问题一般可用待定系数法解决。 2.曲线的形状未知-----求轨迹方程 (6) 存在两点关于直线对称问题 (7)两线段垂直问题 常用的八种方法 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、设而不求法 解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 02 20=+k b y a x 。(其中K 是直线AB 的斜率) (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有 020 20=-k b y a x (其中K 是直线AB 的斜率) (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. (其中K 是直线AB 的斜率) 4、弦长公式法 弦长公式:一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 2 0++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·| |12a k △ ·+,若直接用结论,能减少配方、开方等运算过程。 5、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来

《圆锥曲线解题十招全归纳》

《圆锥曲线解题十招全归纳》 招式一:弦的垂直平分线问题 例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。 招式二:动弦过定点的问题 例题2、已知椭圆C :22 221(0)x y a b a b +=>>, 且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。 (I )求椭圆的方程; (II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论

招式三:过已知曲线上定点的弦的问题 例题4、已知点A 、B 、C 是椭圆E :22221x y a b += (0)a b >>上的三点,其中点A 是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。(I)求点C 的坐标及椭圆E 的方程; (II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线x =PQ 的斜率。 招式四:共线向量问题 1:如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上,点N 在CM 上,且满足N 点,0,2=?=的轨迹为曲线E.I )求曲线E 的方程;II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足λ=,求λ的取值范围.

2:已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线2 14 y x =的焦点,离心率 为 5 .(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ=,2MB BF λ= ,求证:1210λλ+=-. 3、已知△OFQ 的面积S=26, 且m FQ OF =?。设以O 为中心,F 为焦点的双曲线经过Q , 2)14 6 ( ,||c m c -==,当||取得最小值时,求此双曲线方程。 类型1——求待定字母的值 例1设双曲线C :)0(12 22>=-a y a x 与直线L :x+y=1相交于两个不同的点A 、B ,直线L 与y 轴交 于点P ,且PA=PB 12 5 ,求a 的值

2019-2020年高考数学大题专题练习——圆锥曲线

1.椭圆C 1:()22210x y a b a b +=>>的离心率为3,椭圆C 1截直线y x =所得的弦长为410. 过椭圆C 1的左顶点A 作直线l 与椭圆交于另一点M ,直线 l 与圆C 2:()()2 2240x y r r -+=>相切于点N . (Ⅰ)求椭圆C 1的方程; (Ⅱ)若43 AN MN =u u u r u u u u r ,求直线l 的方程和圆C 2的半径r . 2.已知椭圆C :112 162 2=+ y x 左焦点F ,左顶点A ,椭圆上一点B 满足x BF ⊥轴,且点B 在x 轴下方,BA 连线与左准线l 交于点P ,过点P 任意引一直线与椭圆交于C ,D ,连结AD ,BC 交于点Q ,若实数21,λλ满足:CQ BC 1λ=,DA QD 2λ=. (1)求21λ?λ的值; (2)求证:点Q 在一定直线上. 3.已知椭圆C :)0(12 42 2>>=+ b a y x 上顶点为D ,右焦点为F ,过右顶点A 作直线DF l //,

且与y 轴交于点),0(t P ,又在直线t y =和椭圆C 上分别取点Q 和点E ,满足OE OQ ⊥(O 为坐标原点),连接EQ . (1)求t 的值,并证明直线AP 与圆222=+y x 相切; (2)判断直线EQ 与圆222=+y x 是否相切?若相切,请证明;若不相切,请说明理由. 4.如图,△AOB 的顶点A 在射线)0(3:> =x x y l 上,A ,B 两点关于x 轴对称,O 为坐标原点,且线段AB 上有一点M 满足3||||=?MB AM ,当点A 在l 上移动时,记点M 的轨迹为W . (1)求轨迹W 的方程; (2)设)0,(m P 为x 轴正半轴上一点,求||PM 的最小值)(m f . 5.已知点P 是椭圆C 上任一点,点P 到直线1l :2x =-的距离为1d ,到点(10)F -,的距离为 2d ,且 212 d d =.直线l 与椭圆C 交于不同两点A 、B (A 、B 都在x 轴上方),且

(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型 一.选择题(共10小题) 1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离 心率的范围是() A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是() A.B.C. D. 3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为() A.B. C.D. 4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D. 5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此 双曲线的离心率的取值范围是() A.(2,+∞)B.(1,2) C.(1,)D.(,+∞) 6.已知双曲线C:的右焦点为F,以F为圆心和双曲线 的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()

A.B.C.D.2 7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的 左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x 8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心 率的取值范围是() A.(,+∞) B.(1,)C.(2.+∞)D.(1,2) 9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是() A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为() A.B.C.D. 二.填空题(共2小题) 11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是. 12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为. 三.解答题(共4小题)

圆锥曲线大题专题训练答案和题目

4 1 ?如图,曲线G 的方程为y 2 2x(y > 0) ?以原点为圆心?以t(t 0)为半径的圆分别 点C , D ,求四边形 ABCD 面积的最小值. 由题意知,直线 AC 的斜率 k 存在,由对称性,不妨设 k 2 X 。 2.解:(I )设切点Q X 0, 4 X g 亍,知抛物线在Q 点处的切线斜率为肓,故所求切线方程为 X 0(X X 。) ? 因为点P(0, )在切线上. 所以4 2 ,X 0 16 , ?所求切线方程为y 2x 4 ? (II )设 A(X 1,屮),C(X 2, y 2) ? 与曲线G 和y 轴的正半轴相交于点 A 与点B .直线AB 与x 轴相交于点C ? (I)求点 A 的横坐标a 与点C 的横坐标 c 的关系式 (n)设曲线G 上点D 的横坐标为a 2 , 求证:直线 CD 的斜率为定值. 1?解:(I) 由题意知,A(a, '2a). 因为|0A t ,所以a 2 2a t 2 .由于t 0 , 故有"O 由点B(0, t), C(c,0)的坐标知,直线 BC 的方程为x y 1 c t 又因点A 在直线BC 上,故有a ' 2a 1,将(1 )代入上式,得 a c t * 2a .a(a 2) 解得 c a 2 ,2(a 2) ? (n)因为D(a 2,、.2(a 2)),所以直线CD 的斜率为 ■2(a 2) a 2 c 2@—2) v 2(a ,2) a 2 (a 2 .、2(a 2)) 2(a 2) 所以直线CD 的斜率为定值. 2 ?设F 是抛物线G: X 2 4y 的焦点. (I )过点P(0, 4)作抛物线G 的切线,求切线方程; (II )设A, B 为抛物线G 上异于原点的两点,且满足 0 ,延长AF , BF 分别交抛物线G 于 B 萌 2a : (1 5

相关文档
最新文档