宣钢150吨转炉氧枪喷头优化改造

宣钢150吨转炉氧枪喷头优化改造

氧枪设计

氧枪设计 顶底复吹转炉是在氧气射流对熔池的冲击作用下进行的,依靠氧气射流向熔池供氧并搅动熔池,以保证转炉炼钢的高速度。因此氧气射流的特性及其对熔池作用对转炉炼钢过程产生重大影响,氧枪设计就是要保证提供适合于转炉炼钢过程得氧气射流。 转炉氧枪由喷头、枪身和尾部结构三部分组成,喷头一般由锻造紫铜加工而成,也可用铸造方法制造,枪身由无缝钢管制作得三层套管组成。尾部结构是保证氧气管路、进水和出水软管便于同氧枪相连接,同时保证三层管之间密封。需要特别指出的是当外层管受热膨胀时,尾部结构必须保证氧管能随外层管伸缩移动,氧管和外层管之间的中层管时冷却水进出的隔水套管,隔水套管必须保证在喷头冷却水拐弯处有适当间隙,当外层管受热膨胀向下延伸时,为保证这一间隙大小不变,隔水套管也应随外层管向下移动。 (1)喷头设计:喷头是氧枪的核心部分,其基本功能可以说是个能量转换器,将氧管中氧气的高压能转化为动能,并通过氧气射流完成对熔池的作用。 1)设计主要要求为: A 正确设计工况氧压和喷孔的形状、尺寸,并要求氧气射流沿轴线的衰减应尽可能的慢。 B 氧气射流在熔池面上有合适的冲击半径。 C 喷头寿命要长,结构合理简单,氧气射流沿氧枪轴线不出现负压区和强的湍流运动。 2)喷头参数的选择: A 原始条件: 类别\成分(%) C Si Mn P S 铁水预处理后设定值 3.60 0.10 0.60 0.004 0.005 冶炼Q235A,终点钢水C=0.10%根据铁水成分和所炼钢种进行的物料平衡计算,取每吨钢铁料耗氧量为50.4m3(物料平衡为吨钢耗氧52m3),吹氧时间为20min 。转炉炉子参数为:内径6.532m ,熔池深度为1.601m ,炉容比0.92m3/t 。转炉公称容量270t ,采用阶段定量装入法。 B 计算氧流量 每吨钢耗氧量取 52m3,吹氧时间取20min min /70220270523m Q =? = C 选用喷孔出口马赫数为2.0、采用5孔喷头(如下图3-3所示),喷头夹角为14°喷孔为拉瓦尔型。 图3-3 五孔喷头

转炉氧枪装置设计

转炉氧枪装置设计 摘要:通过对转炉氧枪装置设计过程介绍,分析了氧枪横移车、升降小车以及氧枪刮渣器设计中的要点,提出了针对氧枪装置在保证转炉炼钢生产过程的连续性、可靠性以及安全性和维护便利性等方面的一套全新的设计方案,使氧枪装置使用维护性能得到较大提高,所提到的新型结构氧枪已在多个转炉炼钢生产现场得到验证。 关键词:事故提升系统;防坠枪装置;快速换枪;可控力矩刮渣器 氧枪装置用于向转炉内吹氧,使钢水脱碳;并加大冶炼强度,实现快速炼钢。 氧枪装置是转炉炼钢系统连续生产的重要在线设备,设置于转炉上方。氧枪工作时需插入转炉内吹氧,处于高温、液态渣包裹之中,因此,其对设备的运行安全性、可靠性、连续性设计提出了很高要求,因而设计中需要对这些需求提出切实可行的解决办法,以满足其复杂控制需求和适应其所处的恶劣工况。 氧枪装置设计依据来自于工艺专业的任务书,设备设计首先需要明确的是运行负荷,接下来进行方案设计、结构设计、施工图设计。 运行负荷:卷扬升降负荷应考虑升降小车、氧枪、金属软管、管内积水、枪体挂渣、刮渣器的刮渣力以及氮封塞、钢绳重量;横移车运行阻力按横移运行设备重量的0.025%计算[1];横移锁紧装置的锁紧能力按运行阻力的4倍考虑;刮渣力按2~3t考虑。 横移车为一钢结构小车,分为上下两层,上层设置有升降卷扬装置及钢绳平衡器,下层设置横移传动装置,上下层之间由活动导轨和钢结构相连。升降卷扬机设有主传动和事故传动两套传动系统,通过离合器实现转换;卷扬控制设有两台绝对型编码器(一用一备、互相比照)控制升降行程、主传动电动机尾部装有增量型编码器控制升降速度;另装有钢绳张力传感器、位置行程开关等电控元件。钢绳平衡器吊挂在上层平台下部,既可调钢绳安装误差,又可在小车升降过程中平衡两根钢绳变形差,使两根钢绳受力始终一样。 事故传动是独立于主传动之外的事故提升系统,当出现车间停电、主电机故障、制动器电液推杆失效等事故时,可利用事故提升系统安全地将氧枪提出炉外,避免更大的事故发生。我们设计的事故提升系统形式为:在卷扬减速机的高速轴上设置气动离合器,增加一级减速,事故电机传动,EPS电源供电,制动器设置开闸气缸,采用气、电结合方式控制。事故提升时,控制室操作人员按下事故提升按钮,离合器电磁阀由UPS电源给电,离合器合上,舌簧开关给出信号后,事故电机给电启动,电机力矩建立起来后,制动器气缸用电磁阀由UPS电源给电,气缸将制动器打开,开始提枪。将氧枪提出炉口一定高度(由2台事故提枪位接近开关判断)后,制动器电磁阀断电(制动器抱闸),然后事故电机停电。最后离合器电磁阀断电复位。整个过程一键自动完成。

五孔氧枪喷头在300吨转炉的应用

龙源期刊网 https://www.360docs.net/doc/7418748513.html, 五孔氧枪喷头在300吨转炉的应用 作者:张世伟 来源:《科学与财富》2015年第22期 摘要:为了降低转炉终渣TFe,提高转炉金属收得率,对马钢300吨顶底复吹转炉氧枪喷头参数进行优化。通过氧枪喷头参数的优化,脱磷率和金属收得率有一定提高,终渣TFe有所下降。 关键词:氧枪喷头;转炉;应用 随着顶底复吹转炉的发展,合理选择氧枪喷头的工艺参数是实现高效、平稳吹炼的有效途径。马钢四炼钢装备3座300吨的顶底辅吹转炉,采用6孔拉瓦尔喷头超音速氧枪,在冶炼过程中转炉终渣TFe含量偏高,转炉终点控制存在炉渣过泡现象。为了提高转炉终点控制水平,在氧枪设计上将原来的六孔氧枪改进YP356D型五孔氧枪,取得了一定的效果。 1.工艺试验方案 为了验证YP356D型五孔氧枪的试验效果,特选定一座转炉作为试验对象,供氧制度和氧枪相关参数如表1所示。由表1可知:YP356D 5孔喷头与6孔喷头的参数对比略有变化,考虑到5孔枪供氧强度较大,氧气流对液面的冲击力较大,氧气射流穿入熔池较深,接触面积较小,化渣及脱P效果较6孔枪应较差,实际操作时将整体枪位略有提高。 2.铁水条件 进厂铁水较稳定,从生产过程中的实际数据统计得出,YP356D型五孔氧枪试验炉次与六孔氧枪的铁水条件波动不大,对比数据真实可靠。具体铁水条件比较如表2 所示。 3.实验结果 3.1转炉终点控制对比 从表3可以看出,在终点温度控制相当的情况下,耗氧量降低约58标准立方,终点氧降低55ppm,终渣TFe含量降低2.5%。 3.2过程化渣和脱磷效果 从图3和图4的吹炼过程声呐化渣和过程参数看,化渣过程未见明显异常,脱磷效率较6孔喷头高0.65%。 3.3 钢铁料消耗对比

氧枪

高效氧枪喷头优化设计与应用 习晓峰,罗岩,李都宏(陕西龙门钢铁有限责任公司炼钢厂) 摘要: 龙钢炼钢厂50t 转炉原采用Ф168的四孔氧枪喷头, 在使用过程中存在马赫数高(2.05),冶炼终渣化不透,渣中带铁量高、喷溅率高、炉底上涨频繁的情况。根据现场实际情况, 改用四孔Ф180氧枪, 并对喷头的各项参数进行了优化设计和改造, 改造取得了良好的效果, 转炉化渣有了明显的改善,渣中带铁量由35%降至20%, 喷溅率由25%降至10%, 转炉炉型规则保持延长。 关键词: 转炉;氧枪;喷头;优化改造 1 前言 供氧制度包括确定合理的喷头结构、供氧强度、氧压和枪位控制,是控制整个吹炼过程的中心环节,直接影响吹炼效果和钢铁料消耗的高低。供氧制度还关系到造渣速度、化渣优劣、喷溅情况、终点碳高低、温度的控制和炉衬寿命;对转炉强化冶炼、提高钢水质量也有重要的影响。 龙钢炼钢厂现有4座混铁炉,4座50t转炉,4台方坯连铸机,09年以前氧枪一直使用Ф168的4孔拉瓦尔氧枪,喉口直径Φ25.7mm,出口直径33.5mm,马赫数2.05。从生产数据统计来看, 该枪在使用过程中,冶炼终渣化不透,渣中带铁量达35%、喷溅率在25%以上、炉底上涨频繁,使炼钢钢铁料消耗达到1094kg/t左右,直接影响成本。

另外,炉底的上涨导致炉型不规则,终点碳难于把握,对高拉碳影响较大。 2 高效氧枪喷头优化设计 2.1 马赫数的选择 马赫数(M)是设计喷头的一个重要参数,M的大小决定了氧气 流股的出口速度(V出)的大小,即决定了氧气流股对熔池的冲击能力的大小。M过大,流股对熔池的冲击能力越大,会导致喷溅严重;M 过小,又会使熔池得不到良好的搅拌。为使吹炼过程保持平稳,通过M与(P设)和(V出)三者之间(如图1)所示的关系。从图中可以看出, M—P 设和M—V 出两条曲线都是随着M的增大而单调增

转炉氧枪设计方案

广青金属有限公司 65T转炉φ180氧枪及氧枪喷头设计方案 山东崇盛冶金氧枪有限公司 2012年2月 65T转炉φ180氧枪及氧枪喷头设计方案

简介 山东崇盛冶金氧枪有限公司,系冶金氧枪及喷头的专业研究生产单位。位于中国潍坊高新技术产业开发区。技术力量雄厚,技术装备先进,检测手段齐全。我公司在转炉用氧枪设计方面有丰富的设计和制造经验,例如:宝钢300吨转炉炼钢φ406氧枪喷头,武钢三炼钢250吨转炉用φ355锥度氧枪及喷头,马钢300吨转炉用φ355锥度氧枪及喷头,济钢210吨转炉用φ355氧枪及喷头,新余三期210T 转炉炼钢φ325氧枪及喷头,上海罗泾150吨转炉炼钢φ299氧枪及喷头,河北承德钢铁、普阳钢铁、宁波钢铁、天铁、安阳钢铁、通化钢铁等150吨转炉炼钢φ299氧枪及喷头,目前均正常使用,效果良好。现国内120吨以上转炉用氧枪80%由我公司设计制造。 公司秉承“以人为本,科技领先”的发展战略,技术力量雄厚,拥有世界先进水平的科研机构、精良的机械加工设备及国内一流的检测设施,最大程度上保证产品最佳的使用性能。 65T转炉φ180×1孔喷头设计方案

一、设计工况参数: 1、出钢量:~65吨/炉 2、现场操作氧流量:~4200Nm3/hr 3、现场操作供氧压力:0.85~1.0Mpa (阀后压力) 4、纯吹氧吹炼时间:13~15min 5、冷却水压力:≥1.2MPa 6、进出水温差≤27℃(水温差根据现场实际情况要有所差异) 7、氧枪喷头形式:1孔拉瓦尔孔喷头 二、喷头参数设计 2.1马赫数的选择 流体力学中表征流体可压缩程度的一个重要的无量纲参数,记为,定义为流场中某点的速度v同该点的当地声速c之比,即=v/c, 在可压缩流中,气体流速相对变化dv/v同密度相对变化之间的关系是dρ/ρ=-2dv/v,即在流动过程中,马赫数愈大,气体表现出的可压缩性就愈大。另外,马赫数大于或小于1时,扰动在气流中的传播情况也大不相同。因此,从空气动力学的观点来看,马赫数比流速能更好地表示流动的特点。按照马赫数的大小,气体流动可分为低速流动、亚声速流动、跨声速流动、超声速流动和高超声速流动等不同类型。 马赫数就是气流速度与当地温度条件下的音速之比: M=U/a 式中:U为气流速度m/s a为在当地温度下的音速,单位m/s 氧枪的供氧压力的大小是由喷头的出口马赫数确定的,氧气的压力能转化成

氧枪喷头计算

3 喷管尺寸计算及模型建立 在数值模拟中要对氧枪射流流动状况进行计算,首先要生成相关计算区域的网格。这需要先对所研究内容的进行几何建模,即将描述氧枪射流的几何尺寸信息用软件绘制出来,然后将这些几何信息传递到网格生成软件中生成所需要的计算网格。几何建模是根据网格生成软件的需要而进行,即给出的数据格式要符合网格生成软件的需要。 3.1氧枪喷头设计 (2)选取喷孔出口马赫数 Ma 选取2.01。 (3)理论设计氧压 理论氧压应根据查等熵表来确定。查等熵流表,当Ma=2.01, p/o p =0.12583,p=0.101325Mpa ,则,o p = 61012583.0101325.0?=0. 79284?610Pa (4)计算喉口直径 令D C =0.93,o T =273+27=300K ,o p =0. 79284MPa ,由公式 :o o D T A p C 782.1喉实=Q ?1.782?0.93?300108 0.414.362??d 得:d 喉=20mm (5)计算出口直径 依据Ma=2.01,查等熵流表得喉A A /=1.7017 出d =(21A A )喉喉d =21 7017.1?35=26mm (6)收缩段长度: 收L =1.2?喉d =24mm (7)理论的气体膨胀角为4~8度,扩张段的张角理应也设计成4~8度。小扩张角具有控制膨胀作用,因而出口流股会有轻微膨胀,氧流贴近孔壁流动会出现层流,从而加重射流表面与炉氧混合,有利于提高热效率。大扩张角控制膨胀作用小,扩张段短,受孔壁粗糙度影响小,有利于减小氧射流的能量损失,提高作用熔池贯穿力,应取较大的张角,半角定为5度。

转炉氧枪设计方案

山东崇盛冶金氧枪有限公司 SHANDONG CHONGSHENG METALLURGICAL OXYGEN LANCE CO.,LTD. 1 广青金属有限公司 65T转炉φ180氧枪及氧枪喷头设计方案 山东崇盛冶金氧枪有限公司 2012年2月

山东崇盛冶金氧枪有限公司 SHANDONG CHONGSHENG METALLURGICAL OXYGEN LANCE CO.,LTD. 2 65T转炉φ180氧枪及氧枪喷头设计方案 简介 山东崇盛冶金氧枪有限公司,系冶金氧枪及喷头的专业研究生产单位。位于中国潍坊高新技术产业开发区。技术力量雄厚,技术装备先进,检测手段齐全。我公司在转炉用氧枪设计方面有丰富的设计和制造经验,例如:宝钢300吨转炉炼钢φ406氧枪喷头,武钢三炼钢250吨转炉用φ355锥度氧枪及喷头,马钢300吨转炉用φ355锥度氧枪及喷头,济钢210吨转炉用φ355氧枪及喷头,新余三期210T 转炉炼钢φ325氧枪及喷头,上海罗泾150吨转炉炼钢φ299氧枪及喷头,河北承德钢铁、普阳钢铁、宁波钢铁、天铁、安阳钢铁、通化钢铁等150吨转炉炼钢φ299氧枪及喷头,目前均正常使用,效果良好。现国内120吨以上转炉用氧枪80%由我公司设计制造。 公司秉承“以人为本,科技领先”的发展战略,技术力量雄厚,拥有世界先进水平的科研机构、精良的机械加工设备及国内一流的检测设施,最大程度上保证产品最佳的使用性能。

山东崇盛冶金氧枪有限公司 SHANDONG CHONGSHENG METALLURGICAL OXYGEN LANCE CO.,LTD. 3 65T转炉φ180×1孔喷头设计方案 一、设计工况参数: 1、出钢量:~65吨/炉 2、现场操作氧流量:~4200Nm3/hr 3、现场操作供氧压力:0.85~1.0Mpa (阀后压力) 4、纯吹氧吹炼时间:13~15min 5、冷却水压力:≥1.2MPa 6、进出水温差≤27℃(水温差根据现场实际情况要有所差异) 7、氧枪喷头形式:1孔拉瓦尔孔喷头 二、喷头参数设计 2.1马赫数的选择 流体力学中表征流体可压缩程度的一个重要的无量纲参数,记为,定义为流场中某点的速度v同该点的当地声速c之比,即=v/c, 在可压缩流中,气体流速相对变化dv/v同密度相对变化之间的关系是dρ/ρ=-2dv/v,即在流动过程中,马赫数愈大,气体表现出的可压缩性就愈大。另外,马赫数大于或小于1时,扰动在气流中的传播情况也大不相同。因此,从空气动力学的观点来看,马赫数比流速能更好地表示流动的特点。按照马赫数的大小,气体流动可分为低速流动、亚声速流动、跨声速流动、超声速流动和高超声速流动等不同类型。 马赫数就是气流速度与当地温度条件下的音速之比:

设计一座公称容量为80吨的转炉和氧枪

辽宁科技学院 课程实践报告 课程实践名称:设计一座公称容量为X吨的转炉和氧枪指导教师: 班级:姓名: 2011年7 月12 日

课程设计(论文)任务书题目:设计一座公称容量为80吨的转炉和氧枪系别:冶金工程系 专业:冶金技术班级: 学生姓名:学号: 指导教师(签字):2011年 6 月 27日 一、课程设计的主要任务与内容 一、氧气转炉设计 1.1氧气顶吹转炉炉型设计 1.2氧气转炉炉衬设计 1.3转炉炉体金属构件设计 二转炉氧枪设计 2.1 氧枪喷头尺寸计算 2. 2氧枪枪身和氧枪水冷系统设计 2.3升降机构与更换装置设计 2.4氧气转炉炼钢车间供氧 二、设计(论文)的基本要求 1、说明书符合规范,要求打印成册。 2、独立按时完成设计任务,遵守纪律。 3、选取参数合理,要有计算过程。 4、制图符合制图规范。

三、推荐参考文献(一般4~6篇,其中外文文献至少1篇) 期刊:[序号] 作者.题名[J].期刊名称.出版年月,卷号(期号):起止页码。 书籍:[序号] 著者.书写[M].编者.版次(第一版应省略).出版地:出版者,出版年月:起止页码 论文集:[序号] 著者.题名[C].编者. 论文集名,出版地:出版者,出版年月:起止页码 学位论文:[序号] 作者.题名[D].保存地:保存单位,年份 专利文献:[序号] 专利所有者.专利题名[P].专利国别:专利号,发布日期 国际、国家标准:[序号] 标准代号,标准名称[S].出版地:出版者,出版年月 电子文献:[序号] 作者.电子文献题名[文献类型/载体类型].电子文献的出版或可获得地址,发表或更新日期/引用日期 报纸:[序号]作者.文名[N].报纸名称,出版日期(版次) 四、进度要求 序号时间要求应完成的内容(任务)提要 1 2011年6月27日-2011年6月29日调研、搜集资料 2 2011年6月30日-2011年7月2日论证、开题 3 2011年7月3日-2011年7月5日中期检查 4 2011年7月6日-2011年7月7日提交初稿 5 2011年7月8日-2011年7月10日修改 6 2011年7月11日-2011年7月12日定稿、打印 7 2011年7月13日-2011年7月15日答辩

转炉氧枪喷头设计方案

xxx氧枪喷头设计方案 一、工况参数: 1、转炉公称容量:120吨 2、氧流量:24610m3/hr 3、供氧压力:0.8 MPa~0.85MPa 二、喷头参数设计 2.1马赫数的选择 过高的马赫数反应激烈,操作难度大;而马赫数过小,则输氧管线的氧压没有被充分利用,也是不经济的。 综合考虑:取M=2.0。 2.2计算工况氧压Po 查等熵流表,当M=2.0时,P出/Po=0.1278,由于炉膛压力近似于大气压力,所以P出=0.102MPa,则Po=0.8Mpa (8.14Kg/cm2)。 建议氧压在0.8Mp a~0.85 Mp a 2.3计算氧流量Q 根据实际情况,设定Q=25278m3/hr 2.4计算喉口直径D喉 由氧流量公式 Q=64.3236×Po×A喉 A喉——喉口截面积得出:D喉=39.3mm 2.5 计算出口直径D出 根据M=2.0,查等熵流表,得A出/A喉=1.688 A出——出口截面积得出:D出=51.1 mm 2.6 计算扩张段长度L 理论的气体膨胀角为4~8度,扩张段的张角理应也设计成4~8度。小扩张

角具有控制膨胀作用,因而出口流股会有轻微膨胀,氧流贴近孔壁流动会出现层流,从而加重射流表面与炉氧混合,有利于提高热效率。大扩张角控制膨胀作用小,扩张段短,受孔壁粗糙度影响小,有利于减小氧射流的能量损失,提高作用熔池贯穿力,考虑喷头的穿透能力,应取较大的张角,定为3.5度。 则L=(51.1-39.3)/2×tg3.5°=96mm 取L=100mm 2.7 确定孔倾角α 喷孔倾角应满足射流不交汇的要求,也要保证射流不能冲刷炉壁,根据全国其它钢厂的使用经验,对于Φ273四孔喷头,这里取孔倾角a=12o。 2.8四孔分布圆直径D孔 为减轻喷孔出口氧射流互相掺混,减小氧射流作用熔池叠加冲击,要求增大端底氧孔分布圆直径与出口直径之比,一般在2~4之间,所以D孔=150mm 2.9 操作枪位H(暂定)操作基本枪位:H=35×D出 基本枪位:1787mm 最高枪位:2042mm 最低枪位:1533mm 此枪位仅做参考,具体应以实践为准。 2.10设计枪位下冲击深度 由佛林公式h=3.4×P0×D喉/H0.5—0.0381 此公式对单孔喷头适用,对于四孔喷头取修正系数0.9 得冲击深度:h=685mm 注:冲击深度为熔池深度的40%~60%为正常。 Xxx

氧枪升降及阀站技术协议--最终版2012626112346688

新疆昆玉钢铁有限公司炼钢项目转炉氧枪升降横移装置设备 技术协议 买受人:新疆昆玉钢铁有限公司 出卖人:鞍山华威冶金工程有限公司 设计院:山东省冶金设计院 2012-4-18

炼钢项目转炉氧枪升降横移装置设备 供货及安装技术协议 买受人:新疆昆玉钢铁有限公司 出卖人:鞍山华威冶金工程有限公司 设计院:山东省冶金设计院 设备的设计、制作及装配应依据充分满足买受人提供的技术参数要求中所描述内容进行,对于某些设备未有相关技术要求的应按照设备通用制作加工、装配规范要求执行。 1、新疆钢厂炼钢工程转炉氧枪升降横移装置设备技术规格书 本技术规格书仅提供有限的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规范的详细条文。出卖人提供的设备应能够满足规格书中的规定,包括功能、结构、性能参数等方面的技术要求,并保证符合有关国家、行业技术规范和标准以及买受人提供的技术资料的要求。 技术规格书所使用的标准如与出卖人所执行的标准发生矛盾时,按较高标准执行。在订合同之后,买受人有权提出一些补充要求,具体项目由双方共同商定。 1.1.设备名称: 氧枪升降横移装置设备 1.1.1基本要求 转炉冶炼工艺参数: 转炉数量: 2座 转炉公称容量: 50t 转炉最大出钢量: 54t/炉 转炉最大装入量: 60t/炉 转炉冶炼周期: 24min 其中吹氧时间: 12 min 供配电设施技术条件: (1)电源:三相交流380V+/-10%; 50HZ+/-5%; (2)系统中性点接地方式: 380V(动力用)中性点直接接地 380V/240V(照明用)中性点直接接地 1.1.2技术数据 (一)技术性能要求 氧枪型式:四孔拉瓦尔喷头。 氧枪外径:Φ219 mm 供氧强度:3.5~4.3N.m3/min.t 供氧时间:12min(正常生产) 氧枪升降速度:高速40m/min、低速3.5m/min 氧枪升降行程:~14500mm(待定) 横移行程:3400mm 横移速度:4 m/min

转炉与氧枪

四.炉型与氧枪的设计计算 4.1炉型的设计计算 4.1.1原始数据 ⑴ 炉子平均出钢量220 t 钢水的收得率91.05% 新炉的金属装入量G =220 t/0.9105=242 T ⑵ 吨钢耗氧量=7.18/91.05×1000×22.4/32=55.20 Nm 3/T 供氧强度3.68m 3/(T·min) 供养时间t =15min ,4.1.2熔池尺寸计算 ⑴熔池的直径 D =K t G / K (1.5~1.75) 取K =1.53 所以D =1.5315/242=6141 mm ⑵熔池深度计算 选用筒球型 熔池深度为 h =V 金属+0.046D 3/0.079D 2=(35.5+0.046×6.1413)/(0.79×6.1412) =1550mm ⑶熔池其他尺寸的确定 炉底球冠的曲率半径R =0.91D =5588 mm 球冠的弓形高度h 1=0.15D =921 mm ⑷ 炉帽尺寸的确定 ① 取炉口直径与炉膛直径之比d/D =0.51 d =0.51×6141=3132 mm ② 取炉帽的倾角为64° ③ 炉帽高度的计算 H 帽=1/2(D-d)tanθ+400=3485 mm H 锥=H 帽-400=3085 mm ④ 炉帽容积计算 V 帽=0.257×3.14×(6.1412+3.1322+6.141×3.132)+0.785×3.1322×0.4 =56.954m 3 ⑸ 出钢口尺寸计算 d 出钢=T 75.163+=22075.163?+=210 mm

取水平倾角为18° 出钢口衬砖外径dST =6×210=1270mm 出钢口长度=7×210=1480mm ⑹炉子内型高度的计算 取炉容比V/T =1.0 新炉炉膛有效容积: V =G ×V/T =1.0×220=220 m 3 V 身=V -(V 金+V 帽)=220-(35.5+56.954)=127.513 m 3 炉身高度: H =141 .66.141×4/513.127?π=4.308 m=4038 mm 炉型内高: H =h +H 身+H 帽=1550+4308+3485=9343 mm ⑺炉衬的选择 工作层选用镁碳砖 炉身永久层选115 mm ,工作层选700 mm ,填充层100mm 炉帽永久层选150 mm ,工作层选600 mm 炉底永久层选425 mm ,工作层选600 mm D 壳内=6.141+0.915×2=7.971m H 壳内=9.343+1.025=10.368m ⑻炉壳钢板 炉身选75mm ,炉底炉帽选用65 mm H 总=10.368+0.065=10.433m D 壳=7.971+0.075×2=8.121m ⑼炉子高宽比 壳总D H =121 .8433.10=1.28 因为顶底复吹转炉的高宽比一般为1.25~1.45,所以炉子尺寸基本是合理地,能保证炉子的操作正常进行。 4.2低吹喷嘴设计 本次设计采用管式喷嘴结构 一般说来,喷嘴多而直径小些好。生产中喷嘴数量常为2~4个,具体视炉子容量和布置形式而定。本炉喷嘴取4个。 合理的布置应使底吹和顶吹产生的熔

氧枪喷头设计(借鉴内容)

氧枪设计 原始条件 铁水成分(%) C Si Mn P S 4.2 0.50 0.30 0.13 0.03 冶炼钢种 以低碳钢为主,多数钢种C≤0.10%。 转炉新炉子参数 内径5.05 m,有效高度8.72m,炉容比0.95m3/t。 供氧制度 根据铁水成分和所炼钢种进行物料平衡计算,取每顿钢铁料耗氧量为50.21 m3;依国内中型转炉目前所达到的供氧强度和冶炼技术水平,吹氧时间取18min。输氧管测压点氧气最高压力为1018MPa,氧气平均温度17℃。 氧枪枪位高度:化渣枪位1.8m,吹炼枪位1.2m。 计算氧气流量 取吨钢耗氧量50.21 m3,吹氧时间18min,则氧流量 qv=(50.21×150)/18=418.38 m3/min 选用喷孔参数 选定喷孔出口马赫数M=2.0,采用五孔喷头,喷头为拉瓦尔型,喷孔夹角为15°。

计算设计工况氧压和喉口直径 查熵流表(见附录),当M=2.0时,P/P 0=0.1278,取P=P 膛 =0.099 Mpa 代 入,则设计工况氧压为:P =0.099/0.1287=0.775 Mpa 每孔氧流量:q=qv/5=418.381/5=83.676 m3/min 取C D =0.92,T =290K, P =0.775MPa=7.9kg/cm2,带入下式,求出喉口直径: q=17.64C D P A T / T 83.676=17.64×0.92×7.9A T /290=17.64×0.96×7.9290×πd2 喉 /4 ∴ d T =36.83 mm 确定喷孔出口直径 根据M=2.0,查等熵流表得:A出/A喉=1.688,即π/d2出=1.688×πd2喉/4 则 d 出= 1.688d 喉 = 1.688×36.83 =47.85 mm 计算扩张段长度 取喷孔喉口的直线段长度为5mm。扩散段的半锥角取4°则扩张段长度L为: L 扩=(d 出 -d 喉 )/(2tg4°)=(47.85-36.83)/0.1385=78.79 mm 收缩段长度 收缩段的直径以能使整个喷头布置得下五个喷孔为原则,尽可能采取收缩孔大一些。为此,取收缩段进口尺寸d收=38mm,取收缩段长度L收=0.8d收=0.8×38=30 mm。 确定喷头五喷口中心分布圆直径 喷头端面中央部分可采用平面,取其直径为105mm,然后取成与氧枪轴线的垂直平面夹角为10°的圆锥面。

浅析转炉氧枪喷头更换专用装置设计与应用

浅析转炉氧枪喷头更换专用装置设计与应用 发表时间:2019-04-24T17:08:03.843Z 来源:《基层建设》2019年第4期作者:王兴华张晓东 [导读] 摘要:转炉氧枪喷头工作环境极其恶劣。 中冶宝钢技术服务有限公司上海 200941 摘要:转炉氧枪喷头工作环境极其恶劣。在高温钢渣的冲刷和急冷急热作用下,经过一段时间的使用后,喷头逐渐地熔损变薄,出于经济方面考虑,需将喷头进行更换。氧枪喷头重120公斤左右。氧枪对喷头的安装及焊接精度较高,但是由于喷头头部的特殊圆弧形状及自身的重量给安装精度调整造成了很大的影响。在安装定位过程中,由于需进行反复的敲打和撬动喷头,很容易造成喷头掉落安装位置,从而形成作业安全及施工质量隐患。本文所研发的专用装置就是系统地将千斤顶和横向及纵向移动装置组合在一起,形成一个专用的氧枪喷头安装专用小车,将氧枪喷头直接放到小车上,只要一名操作工便对氧枪喷头进行精确定位并进行对口焊接,从而达到安全高效的特点。通过本装置的研发与应用,使氧枪喷头的作业由以前的三人协同完成缩减至一人独立完成,氧枪喷头各层管口对中时间由120分钟缩短为20分钟,并且使氧枪的安装质量得到明显地提高,同时使操作者的施工安全得到很大程度的保证。经实践证明,该装置应用效果显著且具有较高的推广价值。 关键词:氧枪喷头;更换;专用工具 引言 转炉的氧枪最主要的作用就是把氧气的压力能转换为高速的动能,从而达到吹入金属熔池的目的。一般情况下氧枪由三部分构成:枪头、枪身、枪尾。枪尾的作用是把氧枪固定在传动机构上,同时通入冷却水和氧气,枪身的作用是传递冷却水和氧气到枪头。枪头的作用是给转炉里面的金属供氧,从而完成钢水的冶炼[1-3]。氧枪喷头位于枪头的最前端,其工作环境极其恶劣,在高温钢渣的冲刷和急冷急热作用下,喷头逐渐地熔损变薄,经过一段时间的使用后,需更换旧喷头。 1 氧枪喷头在更换过程中存在如下问题 1.1 倒运困难 氧枪喷头自重在120公斤左右,施工人员将喷头由备件放置点移动至工作位置较麻烦,首先需要多台手拉葫芦配合倒运至焊接位置附近,倒运过程中存在歪拉斜吊等违章操作,有一定的安全隐患。在接近焊接位置后需要三个人配合使用撬棍挪动、调节至最终位置,每次倒运、调节过程大概需要50分钟左右,倒运效率较低。 1.2 对中困难 喷头的对中只能借助撬棍、大锤、斜铁,调节幅度不好把握,往往需要多次调节,即使是熟练工种也需要30分钟才能完成。整个对中过程一方面操作效率较低,另一方面精度不高,据统计,在2015年12月该装置研发之前,现场操作人员一直采用这种方法调节对中(2015年2月承接此项业务),期间,我们共对100个焊口错口率进行测量、统计,错口率一直维持在10%-15%范围内,严重影响了最终焊接质量,进而影响了氧枪喷头的使用寿命。 1.3 焊接困难 由于喷头底部是圆弧状,操作人员在对口及焊接过程中没有安全有效的措施对喷头进行固定,氧枪喷头易发生滚动,一方面影响焊接质量,另一方面给操作人员带来安全隐患。 1.4 业务拓展后工作量巨大 2015年,我公司承接了宝钢炼钢厂氧枪喷头更换的业务,炼钢厂共有氧枪24把,据统计,每年都将有约120以上的氧枪喷头需要更换,约3天1个,更换频率非常高。如有一套氧枪喷头更换专用工装,在保证安全、高效的前提下,又能提高对中精度,则能提高承接该项目的硬实力,为企业的生产经营提供动力。 2 转炉氧枪喷头更换专用装置设计 氧枪喷头共分为3层,在更换时,需将原焊缝割除,在打磨后重新对中焊接,下图为氧枪喷头结构图。 图1 氧枪喷头示意图 我们的设计思路是:从列举的困难点着手,逐项解决氧枪更换过程中可能出现的问题。 2.1 解决备件倒运问题 从设计上需要一个移动小车可以将氧枪喷头从堆放位置位移送到焊接位置。整个运送过程应该平稳、顺畅,效率和安全性能要高于使

炼钢部分各种计算公式汇总

炼钢部分各种计算公式汇总

————————————————————————————————作者: ————————————————————————————————日期:

炼钢部分各种计算公式汇总 1、转炉装入量 装入量=错误!未定义书签。 2、氧气流量 Q= 错误! Q-氧气流量(标态), 错误!或 错误! V-1炉钢的氧气耗量(标态),m3; t-1炉钢吹炼时间,min 或h 3、供氧强度 I= 错误! I-供氧强度(标态),错误!未定义书签。; Q -氧气流量(标态), 错误!; T-出钢量,t 注:氧气理论计算值仅为总耗氧量的75%~85%。 氧枪音速计算 α=(κgR T)1/2m/s α—当地条件下的音速,m/s ;κ—气体的热容比,对于空气和氧气,κ=1.4;g —重力加速度,9.81m/s 2;R —气体常数,26.49m/κ。 马赫数计算 M=ν/α M —马赫数;ν—气体流速,m/s ;α—音速,m/s。 冲击深度计算 h冲=K 错误!未定义书签。 h 冲—冲击深度,m ;P0—氧气的滞止压力(绝对),㎏/㎝2 ;d0—喷管出口直径,m ;H 枪— 枪位,m;ρ金—金属的密度,㎏/m 3 ;d c —候口直径,m ;B —常数,对低粘度液体取作40;K —考虑到转炉实际吹炼特点的系数,等于40。 在淹没吹炼的情况下,H=0,冲击深度达到最大值,即 hma x=P 00.5 ·d0 0.6 ρ金 0.4 有效冲击面积计算 R=2.41×104(错误!未定义书签。)2 R—有效冲击半径,m ;νmax —液面氧射流中心流速,m/s; νm ax =ν出 错误!·错误!未定义书签。 ν出—氧射流在出口处的流速,m/s 。 金属-氧接触面积计算 在淹没吹炼时,射流中的金属液滴重是氧气重量的3倍,吹入1m3氧气的液滴总表面积(金

转炉氧枪系统分析

炼钢转炉氧枪装置的使用现状分析 摘要:介绍氧枪装置工作原理,使用现状及存在问题,并对存在问题提出对策。 关键词:炼钢转炉氧枪氧枪传动 炼钢厂炼钢转炉氧枪装置包括氧枪和氧枪升降装置,是纯氧顶吹转炉的重要设备之一,是通过用高质水冷却的吹氧管将工业纯氧送入吹炼半钢或铁水来完成冶炼钢种的任务。其升降和横移传动装置通过电气连锁与转炉倾动机械有关设备配合共同完成冶炼,更换氧枪等操作任务。 一、转炉对氧枪的升降机构和更换装置的要求 在吹炼过程中氧枪需要多次升降调整枪位,对氧枪的升降机械和更换装置提出如下要求: (1)应具有合适的升降速度,并可以变速。 (2)应保证氧枪升降平稳,控制灵活,操作安全,结构简单,便于维护。 (3)能快速更换氧枪。 (4)为保证安全生产氧枪有相应的连锁装置,如转炉不在垂直位置,氧枪不能下降;氧枪降至炉口以内,转炉不能倾动。氧枪下降至氧气开氧点时,氧气阀自动打开,同时转为慢速运行;氧枪提升至此点时自动转为快速运行;氧枪升至关氧点时,氧气阀自动关闭,同时由慢速转为快速运行。当供氧氧压或冷却水的

水压低于规定值,或冷却水的水温高于规定值时,氧枪自动提升报警。 二、氧枪系统现工作原理和结构 氧枪装置由吹氧管,氧枪传动装置,升降小车,升降小车滑道及换管装置和横移小车,横移小车传动装置,平衡锤,平衡锤滑道等组成。 氧枪由3根同心无缝钢管制成,外径尺寸ф219,枪体总长17355mm,目前采用的喷头为535。吹氧管冷却采用高质水,水压为10--12kg/h,给水量≥120t/h,进水温度≤25℃,回水温度≥45℃,氧枪冷却水采用金属软管,型号:SA25JRL150A-15500,数量为两根。氧气输送软管采用同样的金属软管,氧气软管和冷却水管东西分别布置。 氧枪的升降是由提升平衡锤来实现的,平衡锤系数为1.3倍,由钢绳的两端固定在升降小车和平衡锤的滑轮支座上。传动钢绳有卷筒绕过平衡锤的滑轮固定在小底座的支架上。当开动电动机,经过减速机,由Ф800mm的卷筒提升或下降平衡锤,完成氧枪的升降。 氧枪升降制动采用液压制动器,备有紧急电源,在升降过程中,发生断电时,由另外的电源打开制动器。将氧枪提出转炉炉体,如图1。

转炉氧枪课程设计

转炉氧枪课程设计 --300吨转炉炼钢用氧枪设计 专业班级:冶金102班 学生:吴** 指导老师:***

一、课程设计题目 金属装入量中铁水占90%,废钢占10%,吹炼钢种是Q235B,渣量是金属装入量的7.78%;吹炼过程中,金属料中93%的碳氧化生成CO,7%的碳氧化生成CO2。 二、吨钢氧消耗量的计算 12g的C生成CO消耗16g氧气,生成CO2消耗32g氧气,设100kg金属料ω[C]=1%生成CO消耗氧气量为x t、生成CO2消耗氧气量为y t。 [C] + 1/2{O2} = {CO} 12g 16g 1%×100×93% kg x 得到:x=1.240kg [C] + {O2} = {CO2} 12g 32g 1%×100× 7% kg y 得到:y=0.187kg 因此,100kg的金属料ω[C]=1%氧化消耗的氧气量为1.427kg 同理可以计算出100kg金属料中ω[Si]=1%耗氧量为 3.429t、ω[Mn]=1%耗氧量为0.785t、ω[P]=1%耗氧量为3.484t、ω[S]=1%耗氧量为2.700t、ω[Fe]=1%的氧耗量为1.543t。 所以铁水的总耗氧量4.400+3.429+0.785+3.484+2.700+1.543=16.705t

渣中ω(FeO)=9%、ω(Fe2O3)=3%,吹炼过程中被氧化进入炉渣的Fe元素数量,FeO中ω[Fe]= ,Fe2O3中ω[Fe]= 100kg金属料各元素氧化量和氧耗量如下表所示。 100kg金属料各元素氧化量和氧耗量 项目 元素成分ω/% C Si Mn P S Fe 铁水 4.30 0.50 0.30 0.04 0.04 废钢0.10 0.25 0.40 0.02 0.02 平均 3.88 0.475 0.31 0.038 0.038 终点0.15 痕迹0.124 0.004 0.025 FeO Fe 2O 3 烧损量/kg 3.73 0.475 0.186 0.034 0.013 0.544 0.163 每1%元素消 耗氧气量/kg 这样每100kg金属料需氧量为: ×△ω[C]+ ×△ω[Si]+ ×△ω[Mn]+ ×△ω[P]+ ×△ω[S]+ ×△ω[Fe]-(FeO)+ ×△ω[Fe]-(Fe2O3) 其中,△ω[C]、△ω[Si]、△ω[Mn]、△ω[P]、△ω[S]、△ω[Fe]分别为钢中C、Si、Mn、P、S、Fe的氧化量。 铁水ω[C]=4.3%,占装入量的90%;废钢ω[C]=0.1%,占装入量的10%;平均碳含量为4.3%×90%+0.1%×10%=3.88%。 同样可以算出Si、Mn、P、S的平均成分。 每100kg金属氧耗量为: ×△ω[C]+ ×△ω[Si]+ ×△ω[Mn]+ ×△ω[P]+ ×△ω[S]+ ×△ω[Fe]-(FeO)+ ×△ω[Fe]-(Fe2O3) =

氧气顶吹转炉氧枪系统的优化改造

Internal Combustion Engine & Parts? 145? 氧气顶吹转炉氧枪系统的优化改造 郭亮 (中冶南方武汉威仕工程咨询管理有限公司,武汉430077) 摘要:随着近几年对转炉炼钢厂高效性、连续性和安全性要求不断提高,要求转炉关健设备之一的氧枪系统设备必须高效率、低 故障率运行。本文通过对氧枪系统存在的问题进行分析,提出在不改造氧枪传动装置的情况下,增加一套制动轮,提高氧枪制动的可 靠性;改造氧枪横移传动装置,增强氧枪横移的稳定性等措施,满足炼钢生产的要求。 关键词:转炉;氧枪升降系统;氧枪横移系统;改造 0引言 某转炉炼钢厂共有四座50吨氧气顶吹转炉,肩负着十分繁重的生产任务,生产节奏非常紧凑,为保证连续生产,因此要求设备高效率、低故障率运行。在生产实际过程中,氧枪系统作为该厂氧气顶吹转炉的关键设备之一,运行是否正常稳定,严重制约着炼钢生产状况。本文所介绍的内容是针对氧枪系统存在的不足,通过技术改造的措施,解决生产中易发生坠枪、氧枪打滑、换枪时间过长等问题,有效地保证氧枪系统高效、安全运行。 1氧枪升降、横移系统结构、功能概述 氧枪系统是氧气顶吹转炉的关键设备之一,它主要由氧枪本体、氧枪升降系统和氧枪横移系统三部分组成。为适应炼钢的需要,氧枪升降系统和横移系统必须满足以下要求: 1.1应具有合适的升降速度,并且可以变速 氧枪升降系统主要由电机、制动器、圆柱齿轮减速机、钢丝绳卷筒、钢丝绳、升降小车、固定导轨及绳轮组成。升降小车V快=32.5米分,V慢越5.0米分,速度调节靠电气控 制来实施,以尽可能缩短氧枪升降的时间。同时,氧枪升降系统还应具备升降平稳、控制灵活、操作安全、结构简单、便于维护的特点。 1.2应能实现氧枪的快速更换 为保证转炉连续性生产,具有换枪时间短的特点,氧枪小车采用一用一备配置,即一套氧枪升降系统在线使用,另一套氧枪升降系统备用。氧枪横移小车主要由电机通过摆线针轮减速机带动主动车轮组运动,从而使横移小车沿轨道左右移动。横移小车的主要功能是:为升降小车提供安装载体;用来实现换枪操作。当需要换枪时,启动横移电机使横移小车向左(或向右)移动,在线氧枪跟着一起从线上位置移到备用位置,同时线下备用枪正好从备用位置移到线上位置,横移小车横移快捷方便,准确到位。 1.3应具有安全连锁装置 氧枪升降、转炉旋转、氧气切断阀的开和关、氧压和氧枪冷却水压力、流量等存在一定的互锁关系,从技术措施上不允许发生坠枪事故。 2氧枪升降机构、横移机构改造前存在的主要问题 2.1氧枪升降机构存在的主要问题 升降小车连同氧枪一起总重有3748kg,而快速下降速度高达32.5米7分,由此造成的冲击力相当大,达到2030kg*m/s。按原设计,升降小车制动力来源于两台减速机上各安装的一个0400制动轮。在闸瓦未磨损、间隙调整合适、制动器完好的情况下,基本上能满足生产的需要,但当上述条件有一项不满足的时候,制动力矩不够,氧枪升降小车就会发生打滑现象,甚至发生氧枪坠落的事故。 2.2氧枪横移机构存在的主要问题 由于氧枪横移机构长期在高温、烟尘的环境下工作,甚 至是超期服役,将导致车架体存在一定程度的变形,使得主动车轮组踏面与路轨接触不良。因此,横移机构在横移时就存在车轮打滑的状况,致使远程自动更换氧枪不能顺利进行,从而影响生产。此时,为了保证生产连续性,维修人员就得赶紧到高层框架氧枪横移平台,用电动葫芦斜拉横移小车使其横移到位,存在着极大的人身、设备安全隐患。 3改造措施及实际效果 3.1升降系统增设一套制动轮 在原减速机的承载能力和速比保持不变的情况下,将 升降减速机由单输入改为双输入型式,在增加的高速输入轴侧增加了一套制动系统,即增加一台制动器和一个制动轮。同时,为保证制动轮的互换性,制动轮、制动器采取与原输入端相同的备件。通过该措施,升降系统的制动力矩增加了一倍,安全系数也大大提高。 3.2横移机构由电机驱动装置改为电液推杆驱动 将氧枪横移小车主传动车轮组作为横移小车的传动方式进行改造,拆除主传动车轮组原有的驱动电机、行星减速机、链轮和链条后,在平台上制作一固定支架,将行程已调节好的电液推杆一端固定在该支架上,另一端固定在氧枪横移小车的中心线上,使其均匀受力。通过电液推杆的伸缩,实现工作位与备用位的切换。彻底消除因车架体变形以及车轮组磨损造成的车轮组打滑而小车不能移动到位的故障。 同时,电液推杆是一个封闭的液压系统,只要保证密封完好的情况下,可不受外界灰尘、高温烟气等不利因素的影响,工作稳定可靠、传动平稳,故障率低等优点。 4结束语 通过此次改造,杜绝了氧枪升降系统因机械原因造成的坠枪事故;避免了氧枪横移系统因设备维护不到位造成的氧枪更换不及时的生成性事故。实现了转炉生产的高效性、连续性和安全性。此次改造取得的成功,对相同类型转炉氧枪系统的设备维护和改造具有一定的借鉴意义。 参考文献: 「11张昌富,叶伯英编.冶炼机械「Ml.冶金工业出版社,1997. 「2]王雅贞,张岩,张红文编著.氧气顶吹转炉炼钢工艺与设备 「Ml.二版.冶金工业出版,2001. 「3]冯捷,贾艳,主编.转炉炼钢实训「Ml.冶金工业出版社,2004.

相关文档
最新文档