人教版六年级上册第三单元知识点

人教版六年级上册第三单元知识点
人教版六年级上册第三单元知识点

人教版六年级上册语文《第三单元》知识点整理

易读错的字

勉强(miǎn qiǎng)魁梧(kuí wu)瘦削(xuē)

瞥(piē)见嗫嚅(nia rú)蜷(quán)缩

日积月累(安排的内容是一些中华传统美德的名言警句。)

(1)轻诺必寡信——轻易的向别人承诺的人,一定很少讲信用。

(2)民无信不立——如果老百姓对当局失去信心,那么国家就失去生存之本。不(3)精不诚,不能动人——不真诚就不能打动人。

(4)诚者,天之道也;诚之者,人之道也——真诚,是万事万物共同遵循的准则;真诚待人,是做人的基本准则。

(5)有所期诺,纤毫必偿;有所期约,时刻不易——答应给别人的东西,意思一丝一毫都不能少;与人约好的时间。

《穷人》这是俄国著名作家列夫·托尔斯泰写的一个短篇小说。课文记叙了一个寒风呼啸的夜晚,桑娜与渔夫主动收养已故邻居西蒙的两个孤儿的故事,真实地反映了沙俄专制制度下渔民的悲惨生活,赞美了桑娜和渔夫宁可自己吃苦也要帮助别人的美好品质。

本课思想内容有以下两个重点:

一是表现沙俄时代穷人的穷困和悲惨。

除了题目,全文没有一个“穷”字,但穷人“穷”到什么地步,我们却能从文中感受得十分真切。桑娜的丈夫为了一家七口人的生活,竟然冒着危险出海打鱼,清早出去,深夜未归;桑娜自己也从早到晚地干活,还只能勉强填饱肚子。可见桑娜一家的生活是多么艰难。再看西蒙一家,丈夫已死了,在这个寒冷的夜晚,她也悲惨地病死在稻草铺的床上。屋里又潮湿又阴冷,两个无依无靠的孩子熟睡在死去的母亲旁边。

二是赞颂穷人富于同情、热心助人的美德。

作者把收养孤儿这件事安排在一个孩子多、生活已经十分艰难的穷人桑娜家里。桑娜抱回两个孤儿以后,作者细致地描写了她紧张、担忧的复杂心理活动。造成桑娜内心矛盾的客观原因,就是桑娜一家的生活十分艰难,而收养两个孤儿,无异于在极为沉重的生活压力上,再增加一个包袱。然而最后桑娜夫妇还是做出了收养孤儿的决定。作者在叙述这个故事时,真实地刻画人物的内心世界。桑娜夫妇那颗善良、淳朴的美好心灵,却深深地打动了读者。

课文在写作上特色鲜明,通过对环境和人物心理、对话的描写,刻画了栩栩如生的人物形象。环境描写有力地烘托出主人公勤劳、善良的品质。关于桑娜心理活动的描写真实地展现了桑娜的内心世界,刻画了一个充满爱心、乐于助人的穷苦劳动妇女的形象。渔夫与桑娜的对话,个性鲜明,恰如其分地表达了人物的真情实感。渔夫的话显示出他爽直、乐于助人的品质。而桑娜则小心应对,说话断断

续续,表明了她紧张、不安的内心,反映出她热爱丈夫、同情西蒙的善良品质。

课文段落分明,结构独具匠心。全文以桑娜的内心矛盾为主线,围绕收养西蒙的两个孤儿这件事,前后设置了两个悬念:渔夫是否平安回家?渔夫回家后能否同意收养孩子。两个悬念交替展开,逐步消除,从而推动着故事向前发展。

①她的心跳得很厉害,自己也不知道为什么要这样做,但是觉得非这样做不可。“这样做”是指收养西蒙的两个孤儿,把他们扶养成人。桑娜探望西蒙,意外地发现西蒙已经病故,留下两个年幼的孩子──一个还不会说话,另一个刚会爬。面对西蒙的悲惨遭遇,桑娜本能地把两个孤儿抱回了自己的家。“不知道为什么要这样做”与“但是觉得非这样做不可”看似矛盾,实际上反映了桑娜同情穷人、关心穷人的善良品质。

②她忐忑不安地想:“他会说什么呢?这是闹着玩的吗?自己的五个孩子已经够他受的了……是他来啦?……不,还没来!……为什么把他们抱过来啊?……他会揍我的!那也活该,我自作自受……嗯,揍我一顿也好!”

“忐忑”是指心神不定。“忐忑不安”形容心神不安定。桑娜抱回孤儿后,面对自己的五个孩子,想想生死未卜的丈夫,她紧张、担忧,她不知道丈夫会说什么,觉得自己这样做给丈夫增加了负担,觉得对不起他;她担心丈夫突然回来,不知道怎么告诉丈夫自己把孤儿抱回家的事。但是她宁可让丈夫揍一顿,也要收养孤儿。课文真实地展现了桑娜此时的心理活动。透过桑娜的心理活动,读者能充分感受到生活给桑娜带来的压力,感受到桑娜热爱丈夫,同情孤儿,宁可自己吃苦也要帮助别人的美好的心灵。

省略号的连续运用,表明桑娜当时的心理活动的时断时续,逼真地写出了桑娜不安的心理。

③……桑娜沉默了。

“沉默”是不做声的意思。桑娜与渔夫对话时先后两次“沉默”。第一次是桑娜与渔夫同时沉默。渔夫回家了,渔网也撕破了,面对刚刚从死亡线上挣扎回来的丈夫,桑娜不知道如何告诉丈夫收养孤儿的事,所以选择了沉默。而渔夫还沉浸在与海浪搏斗的恐怖中,心里尚存余悸,看到桑娜沉默了,所以也不说话了。第二次是桑娜把西蒙死去的消息告诉了丈夫,她在等待丈夫的决定,所以又沉默了。桑娜的两次沉默,都反映了桑娜善良的心地。

④渔夫皱起眉,他的脸变得严肃、忧虑。“嗯,是个问题!”他搔搔后脑勺说,“嗯,你看怎么办?得把他们抱来,同死人呆在一起怎么行!哦,我们,我们总能熬过去的!快去!别等他们醒来。”

“皱起眉”“脸变得严肃、忧虑”说明渔夫感到问题很难办。“搔搔后脑勺”说明他正在认真考虑,形象地说明渔夫觉得问题严重。“嗯,你看怎么办?”这是渔夫在征求妻子的意见。“得把他们抱来,同死人呆在一起怎么行!”这是渔夫做出的初步决定。“哦,我们,我们总能熬过去的!”“熬”,是忍受(疼痛或艰苦的生活)的意思。说明渔夫为了抚养邻居的孩子,准备过更艰苦的日子,准备付出更多的辛劳。“快去!别等他们醒来。”渔夫怕孩子醒来受惊,催促桑娜去抱孩子。这段话细致地描写了渔夫做出决定前后思考的过程,说明他与妻子桑娜一样,有

着一颗甘愿自己受苦也要帮助他人的高尚的心。

⑤桑娜在继续等待丈夫的时候想到了哪些?为什么会想到这些?

通过讨论明确:由于桑娜家庭的贫穷,由于桑娜热爱丈夫、同情孤儿,所以才会有如此复杂的心理活动,同时明确:虽然桑娜的内心活动十分复杂,但是收养孤儿的决心没有动摇。

本文的环境描写既有天气描写,也有桑娜与西蒙两家情景描写。这些环境描写从侧面烘托出桑娜与渔夫的美好品质。

课文多处运用了省略号,主要作用有:

(1)表明心理活动的时断时续。如,“她忐忑不安地想:‘他会说什么呢?这是闹着玩的吗?自己的五个孩子已经够他受的了……是他来啦?……不,还没来!……为什么把他们抱过来啊?……他会揍我的!那也活该,我自作自受……嗯,揍我一顿也好!’”

(2)表示省略递增的次数。如,“古老的钟发哑地敲了十下,十一下……”(3)表示语意的跳跃。如,“谢谢上帝,总算活着回来啦。……我不在,你在家里做些什么呢?”

(4)表示说话结巴,欲言又止。如,“我嘛……缝缝补补……”

《唯一的听众》本文记叙了“我”在一位音乐教授真诚无私的帮助下,由没有信心学会拉小提琴,到能够在各种文艺晚会上为成百上千的观众演奏的事,赞扬了老教授爱护、鼓励年轻人成才的美德,表达了“我”对德高望重的老教授的敬佩、感激之情。

本文有两条线索,一条是“我”的心理、行动的变化,一条是老妇人的语言变化。

①父亲和妹妹的话来说,我在音乐方面简直是一个白痴。

用“白痴”形容“我”拉小提琴的水平,这对已经能拉小夜曲的“我”来说是个沉重的打击,更要命的是父亲和妹妹只是经受了数次“折磨”之后就下了这样定义。为此,“我”失去了在家里练琴的自信。文章开头直接点明父亲和妹妹的做法,为下文“我”走出家门,到林中练琴作了铺垫,同时也与下文老教授的表现形成了鲜明的对比,从侧面赞美了老人对“我”的爱护与帮助。

②林子里静极了。沙沙的足音,听起来像一曲悠悠的小令。

这句话写出了早晨树林的安静,以及“我”为能找到这样安静的练琴环境的兴奋心情。沙沙的足音在“我”听来,竟成了一曲悠悠的小令,形象地说明“我”对拉好琴重新找回了自信。正因为如此,“我”才会庄重地架好小提琴,像举行一个隆重的仪式,拉响了第一支曲子。

③我的脸顿时烧起来,心想,这么难听的声音一定破坏了这林中的和谐,一定破坏了这位老人正独享的幽静。

这句话真实地写出了“我”发现老人后沮丧的心理。“我”希望自己能在这优美的环境中拉出好听的琴声,可偏偏琴技不争气,那声音“觉得自己似乎又把锯子带到了树林里”;不希望有人听见自己在拉琴,却偏偏被老人发现了。文中的两个“一定”,强调了难听的琴声带来的后果,突出了“我”的沮丧。说明“我”又一次失去了自信。

④“我想你一定拉得非常好,可惜我的耳朵聋了。如果不介意我在场,请继续吧。”这是老人对“我”说的一句话。作为一位音乐学院最有声望的教授,老人听出“我”拉得并不好,更从“我”被人发现后“准备溜走”的举动中,发现“我”缺乏自信。出于对年轻人的爱护,老人谎称自己耳聋,为听不到好听的琴声向“我”表示歉意。听惯了亲人对“我”白痴的评价,第一次听到陌生老人的称赞,尽管是个聋子,但“我”还是充满了快乐。老人的话让“我”有了面对老人拉琴的勇气。

⑤我停下来时,她总不忘说上一句:“真不错。我的心已经感受到了。谢谢你,小伙子。”我心里洋溢着一种从未有过的感觉。

这“从未有过的感觉”就是被人肯定的快乐。

⑥有一次,她说我的琴声能给她带来快乐和幸福。我也常常忘记她是聋子,只看见老人微笑着靠在木椅上,手指悄悄打着节奏。她慈祥的眼神平静地望着我,像深深的潭水……

“平静地望着我”这在文中是第三次出现。从相识的第一天起,老人就一直平静地望着“我”拉琴。从她的眼神里“我”读出了老人对“我”的关切、鼓励,读出了老人为“我”琴技的点滴进步的高兴,读出了老人对“我”提出的更高的要求。因此“我”觉得她的眼睛像深深的潭水。

⑦“聋子?”妹妹惊叫起来,“聋子!多么荒唐!她是音乐学院最有声望的教授,曾是乐团的首席小提琴手!你竟说她是聋子!”

妹妹的话道出了老妇人的真实身份,表现出她对老人的敬仰。妹妹的话,也引起“我”心灵的震动,激起“我”对老人的无限敬意与感激。

⑧那时,我总是不由得想起那位“耳聋”的老人,那清晨里我唯一的听众……

句子用“唯一”来修饰限制“听众”,有“独一无二”的意思。面对成百上千的观众演奏小提琴曲,“我”唯独想起的是这位自称“耳聋”的老人,表明老人在“我”心目中有着崇高的地位。句子写出了“我”对老人的感激,同时点明了课题。

课外书屋:曹文轩《根鸟》日本黑柳彻子《窗边的小豆豆》

瑞士斯比丽《小海蒂》

六年级上册知识点总结

六年级上册知识点汇总 一、各单元知识总结 特殊疑问句(以特殊疑问词提问的句子) U1(具体位置、路线) 1.就具体位置提问用:Where is the+地点.(关键词:near、next to、in front of、behind) 2.就路线或乘坐几号车提问用How can I get to the+地点(关键词:turn right、turn left、go straight或者take the NO.数字bus) U2(交通方式) 1.就交通方式提问用How do you go to+地点(关键词:by+工具、on foot) 2.主语是三单(常见有He、She、My/His/Her father等单数词以及各种人名),就交通方式提问用How does 三单go to+地点(关键词:by+工具、on foot) U3(一般将来时:be going to结构) 1.就做什么提问:What be动词(is、am、are)+主语going to do+地点或时间(关键词:see a film、take a trip等一系列动词短语) 2.就地点提问:Where be动词(is、am、are)+主语going(关键词:Beijing、cinema 等各种地点词) 3.就方式提问:How be动词(is、am、are)+主语going to 地点(by+方式、on foot) 4.就时间提问用:When be动词(is、am、are)+主语going to+动词短语或地点(关键词:tomorrow等关于时间词汇) 5.就人物提问:Who be动词(is、am、are)主语going to+做什么或者地点with(关键词:parents等人物词汇) U4(爱好、居住地) 1.就爱好提问用what are your/his/her/A’s hobbies?(关键词:like+V-ing、hobby)

新人教版六年级上册数学重要章节知识点归纳总结

新人教版六年级上册数学各单元知识点总结 第一单元:分数乘法 一、分数乘法 (一)分数乘法的意义: 1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。 例如: 98×5表示求5个9 8的和是多少? 2、分数乘分数是求一个数的几分之几是多少。 例如: 98×4 3表示求9 8的4 3是多少? (二)、分数乘法的计算法则: 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分) 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。 3、为了计算简便,能约分的要先约分,再计算。 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 (三)、规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。 一个数(0除外)乘小于1的数(0除外),积小于这个数。 一个数(0除外)乘1,积等于这个数。 (四)、分数混合运算的运算顺序和整数的运算顺序相同。

(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。 乘法交换律: a × b = b × a 乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律:( a + b )×c = a c + b c a c + b c = ( a + b )×c 二、分数乘法的解决问题 (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、画线段图: (1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。 2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”“相当于”的后面 3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几 。 几 4、写数量关系式技巧: (1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量 第二单元:位置与方向 1、位置是相对的,要指出一个物体的位置,必须以另一个物体为参照物。以谁为参照物,就以谁为观测点。 2、东偏北30。也可说成北偏东60。,但在生活中一般先说与物体所在方向

部编版六年级数学上册知识点

部编版六年级数学上册知识点 第一单元分数乘法 (一)分数乘法意义: 1.分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。 “分数乘整数”指的是第二个因数必须是整数,不能是分数。 2.一个数乘分数的意义就是求一个数的几分之几是多少。 “一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以) (二)分数乘法计算法则: 1.分数乘整数的运算法则是:分子与整数相乘,分母不变。 (1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。 2.分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母) (1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。 (2)分数化简的方法是:分子、分母同时除以它们的最大公因数。 (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。 (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。 (三)积与因数的关系: 一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a。 一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b <1时,c

六年级数学上册各单元知识点归纳

新课标人教版六年级数学上册各单元知识点归纳 第一单元分数乘法 一、分数乘法 (一)分数乘法的意义: 1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。例如:65×5表示求5个65的和是多少? 1/3×5表示求5个1/3的和是多少? 2、一个数乘分数的意义是求一个数的几分之几是多少。 例如:1/3×4/7表示求1/3的4/7是多少。 4×3/8表示求4的3/8是多少. (二)、分数乘法的计算法则: 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分) 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 3、为了计算简便,能约分的要先约分,再计算。(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361) 4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。 (三)、乘法中比较大小的规律 一个数(0除外)乘大于1的数,积大于这个数。 一个数(0除外)乘小于1的数(0除外),积小于这个数。 一个数(0除外)乘1,积等于这个数。 (四)、分数混合运算的运算顺序和整数的运算顺序相同。整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。 乘法交换律: a × b = b ×a 乘法结合律:( a × b )×c = a ×( b ×c ) 乘法分配律:( a + b )×c = a c + b c 二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)

六年级知识点归纳总结汇总

六年级知识点归纳总结 第一单元分数乘法 1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 (为了计算简便,能约分的要先约分,然后再乘。) 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。 4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。 5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。 乘法交换律: a × b = b × a 乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律:( a + b )×c = a c + b c a c + b c = ( a + b )×c 6.乘积是1的两个数互为倒数。 7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。 1的倒数是1。0没有倒数。 真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。 8.一个数(0除外)乘以一个真分数,所得的积小于它本身。 9.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。 10.一个数(0除外)乘以一个带分数,所得的积大于它本身。 11.分数应用题一般解题步骤。 (1)找出含有分率的关键句。

(2)找出单位“1”的量(以后称为“标准量”)找单位“1”:在分率句中分率的前面;或“是”、“占”、“比”、“相当于”的后面 (3)画出线段图,标准量与比较量是整体与部分的关系画一条线段即可,标准量与比较量不是整体与部分的关系画两条线段即可。(4)根据线段图写出等量关系式:标准量×对应分率=比较量。求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数×几 几 。 写数量关系式技巧: (1)“的”相当于“×”“占”、“是”、“比”相当于“ = ” (2)分率前是“的”:单位“1”的量×分率=分率对应量 (3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量(5)根据已知条件和问题列式解答。 12.乘法应用题有关注意概念。 (1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?单位“1”×对应分率=对应量 (2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“是、比、相当于、占、等于”后的规则。 (3)甲比乙多几分之几?计算方法是:(甲-乙)÷乙= 甲÷乙-1甲比乙少几分之几?计算方法是:(甲-乙)÷甲 = 1-乙÷甲 (4)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。 (5)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。(6)乘法应用题中,单位“1”是已知的。 (7)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是

人教版六年级数学上册知识点总结

人教版六年级数学上册知 识点总结 Revised final draft November 26, 2020

六年级数学第一单元知识点总结:分数乘法 一、分数乘法 (一)分数乘法的意义: 1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。 例如:43×5表示求5个4 3的和是多少( 注意:5×43表示5的43是多少) 2、分数乘分数是求一个数的几分之几是多少。 例如:43×52表示求43的52是多少? (二)、分数乘法的计算法则: 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分) 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。 3、为了计算简便,能约分的要先约分,再计算。 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 (三)、规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。 一个数(0除外)乘小于1的数(0除外),积小于这个数。 一个数(0除外)乘1,积等于这个数。 (四)、分数混合运算的运算顺序和整数的运算顺序相同。 (五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。 乘法交换律:a ×b=b ×a 乘法结合律:(a ×b)×c=a ×(b ×c)

乘法分配律:(a+b)×c=ac+bc 二、分数乘法的解决问题 (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、画线段图: (1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。 2、如何找单位“1”:在分率句中分率的前面的量(如:43千克的52是多少?男生人数的52相当于女生人数);“占”、“是”、“比”的后面的量(如:) 3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几分之几。 4、写数量关系式技巧: (1)“的”相当于“×”;“占”、“是”、“比”相当于“=” (2)分率前是“的”:单位“1”的量×分率=分率对应量 (3)分率前是“多或少”的意思:单位“1”的量×(1+\-分率)=分率对应量

六年级数学上册重点知识归纳

六年级数学上册重点知识归纳 第一单元:位置 1、确定第几列、第几行的一般规则:竖排叫做列,横排叫做行;确定第几列一般是从左往右数,确定第几行一般是从前往后数。 2、用数对表示位置时,一般先表示第几列,再表示第几行。如数对(3,2)中的“3”表示第三列,“2”表示第二行。 3、物体平移前后顶点的位置变化: (1)图形向左或向右平移,改变了顶点所在的列,没有改变顶点所在的行,数对中的第一个数变了,第二个数没有变; (2)图形向上或下平移,改变了顶点所在的行,没有改变顶点所在的列,数对中的第一个数没有变,第二个数变了。 第二单元:分数乘法 1、分数乘整数的计算方法:分母不变,分子与整数相乘的积作分子。 2、分数乘分数,应该分子乘分子,分母乘分母。注意:能约分的可以先约分再乘。 注意:一个大于0的数乘大于1的数,积大于这个数。一个大于0的数乘小于1的数,积小于这个数。 3、分数混合运算的顺序和整数的混合运算顺序相同。 (1)在没有括号的算式里,同级运算从左往右进行计算; (2)在没有括号的算式里,既有乘除又有加减,要先算乘除后算加减; (3)有括号的要先算小括号里面的,后算中括号里面的,最后算括号外面的数。 4、整数乘法的交换律、结合律和分配律,对于分数乘法也适用。 (1)乘法交换律:a×b=b ×a (2)乘法结合律:(a ×b)×c=a ×(b ×c) (3)乘法分配律:(a+b)×c=a ×c+b ×c 5、解决求一个数的几分之几是多少的问题,用乘法计算。 6、乘积是1的两个数互为倒数。求分数的倒数是交换分子、分母的位置;求整数的倒数是把整数看作分子是1的分数,再交换分子和分母和位置。注意:1的倒数是1,0没有倒数。 7、真分数的倒数一定都大于1;假分数的倒数一定都小于或等于1。 第三单元:分数除法 1、分数除法的意义与整数除法的意义相同,是已知两个数的积与其中一个因数,求另一个因数的运算。 2、分数除法的计算方法: ①分数除以整数(0除外),等于分数乘这个整数的倒数。 ②一个数除以分数,等于这个数乘分数的倒数。 ③甲数除以乙数(0除外),等于甲数乘乙数的倒数。 3、一个数除以小于1(不等于0)的数,商大于被除数; 一个数除以1,商等于被除数; 一个数除以大于1的数,商小于被除数。

人教版六年级数学下册知识点归纳总结

人教版六年级数学下册知识点归纳总结1、负数的由来: 为了表示相反意义的两个量(如盈利亏损、收入支出……).光有学过的0 1 3.4 2/5……是远远不够的。所以出现了负数.以盈利为正、亏损为负;以收入为正、支出为负 2、负数:小于0的数叫负数(不包括0).数轴上0左边的数叫做负数。 若一个数小于0.则称它是一个负数。 负数有无数个.其中有(负整数.负分数和负小数) 负数的写法:数字前面加负号“-”号.不可以省略例如:-2.-5.33.-45.-2/5 正数:大于0的数叫正数(不包括0).数轴上0右边的数叫做正数 若一个数大于0.则称它是一个正数。正数有无数个.其中有(正整数.正分数和正小数) 正数的写法:数字前面可以加正号“+”号.也可以省略不写。 例如:+2.5.33.+45.2/5 4、0 既不是正数.也不是负数.它是正、负数的分界限 负数都小于0.正数都大于0.负数都比正数小.正数都比负数大 5、数轴: 6、比较两数的大小: ①利用数轴: 负数<0<正数或左边<右边 ②利用正负数含义:正数之间比较大小.数字大的就大.数字小的就小。负数之间比较大小.数字大的反而小.数字小的反而大 1/3>1/6 -1/3<-1/6 第二单元百分数二 (一)、折扣和成数 1、折扣:用于商品.现价是原价的百分之几.叫做折扣。通称“打折”。

几折就是十分之几.也就是百分之几十。例如:八折=8/10=80﹪. 六折五=6.5/10=65/100=65﹪ 解决打折的问题.关键是先将打的折数转化为百分数或分数.然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。 商品现在打八折:现在的售价是原价的80﹪ 商品现在打六折五:现在的售价是原价的65﹪ 2、成数:几成就是十分之几.也就是百分之几十。例如:一成=1/10=10﹪八成五=8.5/10=85/100=80﹪ 解决成数的问题.关键是先将成数转化为百分数或分数.然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪ 今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪ (二)、税率和利率 1、税率(1)纳税:纳税是根据国家税法的有关规定.按照一定的比率把集体或个人收入的一部分缴纳给国家。 (2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。(3)应纳税额:缴纳的税款叫做应纳税额。(4)税率:应纳税额与各种收入的比率叫做税率。 (5)应纳税额的计算方法:应纳税额=总收入×税率收入额=应纳税额÷税率 2、利率(1)存款分为活期、整存整取和零存整取等方法。 (2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社.储蓄起来.这样不仅可以支援国家建设.也使得个人用钱更加安全和有计划.还可以增加一些收入。(3)本金:存入银行的钱叫做本金。(4)利息:取款时银行多支付的钱叫做利息。(5)利率:利息与本金的比值叫做利率。(6)利息的计算公式: 利息=本金×利率×时间利率=利息÷时间÷本金×100% (7)注意:如要上利息税(国债和教育储藏的利息不纳税).则: 税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率) 税后利息=本金×利率×时间×(1-利息税率) 购物策略: 估计费用:根据实际的问题.选择合理的估算策略.进行估算。 购物策略:根据实际需要.对常见的几种优惠策略加以分析和比较.并能够最终选择最为优惠的方案 学后反思:做事情运用策略的好处 第三单元圆柱和圆锥

【新版】人教版六年级上册数学知识点汇总(新版)

第二单元分数乘法 1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。 2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 (为了计算简便,能约分的要先约分,然后再乘。) 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。 4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。 (为了计算简便,可以先约分再乘。) 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。 乘法交换律: a × b = b × a 乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律:( a + b )×c = a c + b c a c + b c = ( a + b )×c 6.乘积是1的两个数互为倒数。 7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。 1的倒数是1。0没有倒数。 真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。 8.一个数(0除外)乘以一个真分数,所得的积小于它本身。 9.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。 10.一个数(0除外)乘以一个带分数,所得的积大于它本身。

11.分数应用题一般解题步骤。 (1)找出含有分率的关键句。 (2)找出单位“1”的量(以后称为“标准量”)找单位“1”:在分率句中分率的前面;或“是”、“占”、“比”、“相当于”的后面 (3)画出线段图,标准量与比较量是整体与部分的关系画一条线段即可,标准量与比较量不是整体与部分的关系画两条线段即可。 (4)根据线段图写出等量关系式:标准量×对应分率=比较量。求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几 。 几 写数量关系式技巧: (1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”(2)分率前是“的”:单位“1”的量×分率=分率对应量 (3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量(5)根据已知条件和问题列式解答。 12.乘法应用题有关注意概念。 (1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少? 单位“1”×对应分率=对应量 (2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“是、比、相当于、占、等于”后的规则。 (3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,乙比甲少几分之几表示乙比甲少的数占甲的几分之几。 (甲-乙)÷乙 = 甲÷乙-1(甲-乙)÷甲 = 1-乙÷甲

六年级上册数学知识点归纳整理

六年级上册数学知识点归纳 整理(总7页) 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

六年级数学上册知识梳理 第一单元分数乘法 一、分数乘法意义和计算 (一)分数乘法的意义: 1、分数乘整数与整数乘法的意义相同。 都是求几个相同加数的和的简便运算。 2、分数乘分数是求一个数的几分之几是多少。 (二)、分数乘法的计算法则: 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。 注意 (1)分数的化简:分子、分母同时除以它们的最大公因数。 (2)关于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,提倡在计算过程中约分,这样简便。 (3)当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 (三)、规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。 一个数(0除外)乘小于1的数(0除外),积小于这个数。 一个数(0除外)乘1,积等于这个数。 (四)、分数混合运算的运算顺序和整数的运算顺序相同。 (五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。 乘法交换律: a×b=b×d 乘法结合律: a×b×c=a×(b×c) 乘法分配律:a×(b+c)=ab+ac 或a×(b-c)=ab-ac 二、分数乘法的解决问题 (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)

1、找单位“1”:“占”、“是”、“比”的后面,“的”前面 2、求一个数的几倍是多少;求一个数的几分之几是多少。用乘法 对应量=单位“1”的量×对应分率 第二单元位置与方向 要比较准确的确定一个物体的位置,方向和距离这两个条件缺一不可,一般通过定方向、测角度、量距离、定位置这几个基本步骤完成。 第三单元分数除法 一、倒数 1、倒数的意义:乘积是1的两个数互为倒数。 (互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。) 2、求倒数的方法: (1)、求分数的倒数:交换分子分母的位置。 (2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。 (3)、求带分数的倒数:把带分数化为假分数,再求倒数。 (4)、求小数的倒数:把小数化为分数,再求倒数。 3、1的倒数是1; 0没有倒数。 4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 二、分数除法 1、分数除法的意义: 分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。 2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。 3、规律(分数除法比较大小时): (1)当除数大于1,商小于被除数; (2)当除数小于1(不等于0),商大于被除数; (3)当除数等于1,商等于被除数。

小学六年级数学知识点归纳总结

小学六年级数学知识点归纳总结 六年级上册 知识点概念总结 1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。 2.分数乘法的计算法则: 分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。 3.分数乘法意义 分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。 4.分数乘整数:数形结合、转化化归 5.倒数:乘积是1的两个数叫做互为倒数。 6.分数的倒数 找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。 7.整数的倒数 找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。 8.小数的倒数: 普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1 9.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。 11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。 12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。 13.分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。 14.比和比例: 比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。 所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个. 15.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。 比的性质用于化简比。 比表示两个数相除;只有两个项:比的前项和后项。 比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。 16.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。

六年级数学上册全部知识点汇总

六年级数学上册全册知识汇总 第一单元 长方体和正方体 1.两个面相交的线叫做棱,三条棱相交的点叫做顶点。 2. 长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高。 长方体的12条棱有3组,每组的四条棱长度相等。 长方体的棱长总和=长×4+宽×4+高×4=(长+宽+高)×4 长方体放桌面上,最多只能看到3个面。 3.正方体的展开(不能出现田字格) 1).“141型”,中间一行4个图:作侧面, 上下两个各作为上下底面,?共有6种基本图形。 2).“231型”,中间3个作侧面,共3种基本图形。见上图 3).“222”型,两行只能有1个正方形相连。 4).“33”型,两行只能有1个正方形相连。 4.长方体的表面积就是长方体六个面的总面积。由于相对的面完全相同,所

以可以先求出前面、后面和下面三个面的面积,再乘以2,就可以求出表面积了。 长方体的表面积= 长×宽×2+长×高×2+宽×高×2 =(长×宽+长×高+宽×高)×2 正方体的六个面完全相同,所以计算时只要算出其中的一个面,再乘6就可以了。 正方体的表面积= 棱长×棱长×6 5.在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那个(些)面。 一个抽屉有5个面,分别是前面、后面、左面、右面、底面。所以做这样一个抽屉所需要的木板,只要算出这5个面的面积就可以了。http: //www. https://www.360docs.net/doc/7418941321.html, 通风管顾名思义是通风用的,没有底面。所以只要算四个侧面就可以了。(注意:一般是最小的口通风) (1)具有六个面的长方体、正方体物品:油箱、罐头盒、纸箱子等; (2)具有五个面的长方体、正方体物品:水池、鱼缸等; (3)具有四个面的长方体、正方体物品:水管、烟囱等。 6 (1)体积:物体所占空间的大小 (2)容积:容器所能容纳物体的体积 像这个长方体木箱的体积除了里面能容纳物体的体积外,还有做成木箱的木板的体积。一个物体的体积要比一个物体的容积大,因为体积还包括自身材料的体积。 7.体积(容积)单位。

六年级下册知识点归纳总结

第一单元主题是“人生感悟”。五篇课文从不同的角度阐明了人生的哲理。 《文言文两则》表达了学习应该专心致志和看待事物应该有不同角度的道理; 《匆匆》表达了作者对时光飞逝的惋惜和无奈,渗透着珍惜时间的意识; 《桃花心木》借物喻人,说明人的成长应该经受考验,学会独立自主。 《顶碗少年》蕴含着“失败乃成功之母”的哲理。 《手指》阐明“团结就是力量”的道理。 第一课《文言文两则》 1.背诵课文,默写。 2.知识点: 《学弈》选自《孟子.告子》,《学弈》这个故事,说明了学习应专心致志,不可三心二意的道理; 《两小儿辩日》选自《列子.汤问》,这个故事体现了两小儿善于观察,说话有理有据以及孔子实事求是的态度,同时告诉我们看待事物可以有不同的角度和学无止境的道理。 3.注释 (1)字、词: 弈:下棋。通国:全国。诲:教导。惟弈秋之为听:只听弈秋(的教导)。鸿鹄:天鹅。援:引,拉。俱:一起。弗:不。矣:了。为:因为。其:他的,指后一个人。 重点文中几个“之”的意思 辩斗:辩论,争论。以:认为。去:离。日中:正午。及:到。沧沧凉凉:形容清凉的感觉。沧沧:寒冷的意思。探汤:把手伸向热水里。意思是天气很热。汤:热水。决:判断。孰:谁。汝:你。 (2)句子: 为是其智弗若与?曰:非然也。 (译)难道是因为他的智力不如别人好吗?我说:不是这样的。 我以日始出时去人近,而日中时远也。 (译)我认为太阳刚出来的时候离人近一些,中午的时候离人远一些。 孰为汝多知乎? (译)谁说你的知识渊博呢? (3)译文: 《学弈》

弈秋是全国的下棋高手。他教导两个学生下棋,其中一个学生非常专心,只听弈秋的教导;另一个学生虽然也在听弈秋讲课,心里却一直想着天上有天鹅要飞过来,想要拉弓引箭把它射下来。虽然他俩在一块儿学习,但是后一个学生不如前一个学得好。难道是因为他的智力不如别人好吗?我说:不是这样的。 《两小儿辩日》 有一天,孔子到东方游学,看到两个小孩为什么事情争辩不已,便问是什么原因。 一个小孩说:“我认为太阳刚出来的时候离人近一些,中午的时候离人远一些。” 另一个小孩却认为太阳刚出来的时候离人远些,而中午时要近些。 一个小孩说:“太阳刚出来的时候像车盖一样大,到了中午却像个盘子,这不是远的时候看起来小而近的时候看起来大的道理吗?” 另一个小孩说:“太阳刚出来的时候有清凉的感觉,到了中午却像把手伸进热水里一样,这不是近的时候感觉热而远的时候感觉凉的道理吗?” 孔子也不能判断是怎么回事。 两个小孩笑着说:“谁说你的知识渊博呢?” 第二课《匆匆》(散文) (写作特色:作者运用设问、比喻、排比、拟人等句式将不易察觉的时光匆匆,一去不复返写得形象生动,富有感染力) 1.背诵课文。 2.知识点: 《匆匆》的作者是著名散文大师朱自清(本文是他24岁时所写),他的散文名篇有《匆匆》、《背影》、《荷塘月色》等。本文紧扣“匆匆”二字,细腻地刻画了时间流逝的踪迹,表达了作者对时光流逝的无奈和惋惜。 3.理解句子: (1)燕子去了,有再来的时候;杨柳枯了,有再青的时候;桃花谢了,有再开的时候。但是,聪明的,你告诉我,我们的日子为什么一去不复返呢? 用排比的句式,表明大自然的枯荣是时间飞逝的痕迹。“我们的日子为什么一去不复返呢?”看似在问,实际上表达了作者对时光逝去而无法挽留的无奈和对已逝日子的深深留恋。 仿写:太阳落了,有再升起的时候;月亮缺了,又再圆的时候;潮水退了,有再涨的时候。 (2)像针尖上一滴水滴在大海里,我的日子滴在时间的流里,没有声音,也没有影子。

人教版六年级上册数学知识点汇总

第一单元位置 1.找位置要先列后行,写位置先定第几列,再写第几行,格式为:(列,行)。 第二单元分数乘法 1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。 2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 (为了计算简便,能约分的要先约分,然后再乘。) 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。 4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。 (为了计算简便,可以先约分再乘。) 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。 乘法交换律: a × b = b × a 乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律:( a + b )×c = a c + b c a c + b c = ( a + b )×c 6.乘积是1的两个数互为倒数。 7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。 1的倒数是1。0没有倒数。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。 8.一个数(0除外)乘以一个真分数,所得的积小于它本身。 9.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。 10.一个数(0除外)乘以一个带分数,所得的积大于它本身。 11.分数应用题一般解题步骤。 (1)找出含有分率的关键句。 (2)找出单位“1”的量(以后称为“标准量”)找单位“1”:在分率句中分率的前面;或“是”、“占”、“比”、“相当于”的后面 (3)画出线段图,标准量与比较量是整体与部分的关系画一条线段即可,标准量与比较量不是整体与部分的关系画两条线段即可。 (4)根据线段图写出等量关系式:标准量×对应分率=比较量。求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数×几 几 。 写数量关系式技巧:

人教版六年级数学下册知识点归纳总结

第一单元负数 1、负数的由来: 为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.4 2/5……是远远不够的。所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负 2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。 若一个数小于0,则称它是一个负数。 负数有无数个,其中有(负整数,负分数和负小数) 负数的写法:数字前面加负号“-”号,不可以省略例如:-2,-5.33,-45,-2/5 正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数 若一个数大于0,则称它是一个正数。正数有无数个,其中有(正整数,正分数和正小数) 正数的写法:数字前面可以加正号“+”号,也可以省略不写。 例如:+2,5.33,+45,2/5 4、0 既不是正数,也不是负数,它是正、负数的分界限 负数都小于0,正数都大于0,负数都比正数小,正数都比负数大 5、数轴: 6、比较两数的大小: ①利用数轴:

负数<0<正数或左边<右边 ②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。负数之间比较大小,数字大的反而小,数字小的反而大 1/3>1/6 -1/3<-1/6 第二单元百分数二 (一)、折扣和成数 1、折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。 几折就是十分之几,也就是百分之几十。例如:八折=8/10=80﹪, 六折五=6.5/10=65/100=65﹪ 解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。 商品现在打八折:现在的售价是原价的80﹪ 商品现在打六折五:现在的售价是原价的65﹪ 2、成数:几成就是十分之几,也就是百分之几十。例如:一成=1/10=10﹪八成五=8.5/10=85/100=80﹪ 解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪ 今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪ (二)、税率和利率

人教版六年级上册数学知识点整理(个人整理资料)

第一单元 位置 1、 用数对确定点的位置,如(3,5)表示:(第三列,第五行) 竖排叫列 横排叫行 (从左往右看) (从前往后看) 2、 平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。 3、 图形左、右平移: 行不变 图形上、下平移: 列不变 第二单元 分数乘法 一、分数乘法 (一)分数乘法的意义: 1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。 例如: 98×5表示求5个9 8 的和是多少? 2、分数乘分数是求一个数的几分之几是多少。 例如: 98×4 3表示求 98的4 3是多少? (二)、分数乘法的计算法则: 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分) 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。 3、为了计算简便,能约分的要先约分,再计算。 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 (三)、规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。 一个数(0除外)乘小于1的数(0除外),积小于这个数。 一个数(0除外)乘1,积等于这个数。 (四)、分数混合运算的运算顺序和整数的运算顺序相同。 (五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。 乘法交换律: a × b = b × a 乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律: ( a + b )×c = a c + b c 二、分数乘法的解决问题 (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、画线段图: (1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。 2、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面 3、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数×几 几 。 4、写数量关系式技巧: (1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ” (2)分率前是“的”: 单位“1”的量×分率=分率对应量 (3)分率前是“多或少”的意思: 单位“1”的量×(1±分率)=分率对应量 三、倒数 1、倒数的意义: 乘积是1的两个数互为.. 倒数。 强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 (要说清谁是谁的倒数)。 2、求倒数的方法: (1)、求分数的倒数:交换分子分母的位置。 (2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。 (3)、求带分数的倒数:把带分数化为假分数,再求倒数。 (4)、求小数的倒数: 把小数化为分数,再求倒数。 3、1的倒数是1; 0没有倒数。 因为1×1=1;0乘任何数都得0, 1 (分母不能为0) 4、 对于任意数(0)a a ≠,它的倒数为 1a ;非零整数 a 的倒数为 1a ;分数 b a 的倒数是 a b ; 5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 第三单元 分数除法 一、 分数除法 1、分数除法的意义: 乘法: 因数 × 因数 = 积 除法: 积 ÷ 一个因数 = 另一个因数 分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。 2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。 3、 规律(分数除法比较大小时): (1)、当除数大于1,商小于被除数; (2)、当除数小于1(不等于0),商大于被除数; (3)、当除数等于1,商等于被除数。 4、 “ []”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。 二、分数除法解决问题 (未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”的量。 ) 1、数量关系式和分数乘法解决问题中的关系式相同: (1)分率前是“的”: 单位“1”的量×分率=分率对应量 (2)分率前是“多或少”的意思: 单位“1”的量×(1 ±分率)=分率对应量 2、解法:(建议:最好用方程解答) (1)方程: 根据数量关系式设未知量为X ,用方程解答。 (2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量 3、求一个数是另一个数的几分之几:就 一个数÷另一个数 4、求一个数比另一个数多(少)几分之几: 两个数的相差量÷单位“1”的量 或:

六年级数学上册知识点整理归纳

六年级上册数学知识点 第一单元 分数乘法 (一)分数乘法意义: 1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。 注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。 例如:5 3×7表示: 求7个5 3的和是多少? 或表示:5 3的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。 注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以) 例如:5 3×6 1表示: 求5 3的6 1是多少? 9 × 61表示: 求9的61 是多少? A × 61表示: 求a 的6 1 是多少? (二)分数乘法计算法则: 1、分数乘整数的运算法则是:分子与整数相乘,分母不变。 注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分) (2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘, 计算结果必须是最简分数) 2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母) 注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。 (2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别 在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数) (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分 数的大小不变。 (三)积与因数的关系: 一个数(0除外)乘大于1的数,积大于这个数。a ×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。a ×b=c,当b <1时,c

相关文档
最新文档