总皂苷的检测方法

总皂苷的检测方法

非甲烷总烃计算

1、天然气组分 2、天然气618万Nm3/a 3、天然气气损率为0.5% 4、非甲烷总烃计算过程 ①非甲烷总体体积百分比 V非总=1.77%+0.3%+0.074%+0.075%+0.02%+0.051%+0.038% =2.328% ②非甲烷总烃的分子量 由天然气组分表可以看出,非甲烷总烃以C2、C3、IC4、NC4为主,它们的分子量分别为30、44、58、58,则非甲烷总烃的分子量可估算为: (1.77%×30+0.3%×44+0.074%×58+0.075%×58)÷2.328% = 32.19 ③全年非甲烷总烃排放量 V非排=618×104Nm3/a×2.328% ×0.5%=719.352Nm3/a=719352NL/a M非排= (719352NL/a÷22.4NL/mol)×32.19g/mol =1033747.3g/a ≈ 1.03t/a 目前,石油炼制和石油化工等行业的环评和环保验收中,非 甲烷总烃(NMHC)都是必讨论、检测项目。但在我国的环境 标准体系中,非甲烷总烃的环境空气质量标准缺失。本文就非

甲烷总烃的环境空气质量标准和排放标准进行分析。 根据风影的博客,原油类储罐项目排放的主要污染物为非甲烷总烃,目前我国仅有排放标准,无组织监控浓度限值(新污染源)为4.0mg/m3,可参考的以色列环境质量标准为5.0mg/m3;另外也说明一点:对于部分省市,比如浙江省,可能在批复的标准中会提到非甲烷总烃的环境质量标准取1或者2mg/m3(小时浓度)。这是权威的说法,这是半官方的说明。 要理解这段话,首先要弄清楚非甲烷总烃是以甲烷计还是以碳计。 《大气污染物综合排放标准》(GB16297-1996)是1996年4月12日批准,从1997年1月1日开始实施,当时我国还没有非甲烷总烃的标准分析方法。根据标准实施的时问看,其监测分析方法应该使用《空气和废气监测分析方法》(第三版)。在该书中,方法一(第147页)使用GC—FID检测,其结果总烃以甲烷(mg/m3)计,推荐的方法二也是以甲烷计。而该书第153页还有非甲烷烃栏目,推荐的方法是吸附富集-气相色谱法,其检测结果是以正戊烷计。 由于GB16297-1996中并没有规定测定出的非甲烷总烃以什么 物质为依据计算,实际上全国环境监测系统的各级环境监测站都以CH4计。然而,在2000年1月1日开始实施了HJ/T38-1999

固定污染源废气甲烷、总烃和非甲烷总烃测定气相色谱法

附件6 中华人民共和国国家环境保护标准 HJ□□□-201□ 代替HJ/T 38-1999 固定污染源废气甲烷、总烃和非甲烷总烃的测定气相色谱法 Stationary source emission—Determination of methane, total hydrocarbons and nonmethane hydrocarbons—Gas chromatography (征求意见稿) 201□-□□-□□发布 201□-□□-□□实施环境保护部发 布

目 次 前 言 (ii) 1 适用范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 方法原理 (1) 5 试剂和材料 (1) 6 仪器和设备 (2) 7 样品 (2) 8 分析步骤 (3) 9 结果计算与表示 (4) 10 精密度和准确度 (5) 11 质量保证和质量控制 (5) 12 注意事项 (6) 附录A (资料性附录)除烃空气的制备方法 (7) 附录B (资料性附录)废气取样系统 (9) i

前言 为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保护环境,保障人体健康,规范固定污染源废气中甲烷、总烃和非甲烷总烃的测定方法,制定本标准。 本标准规定了测定固定污染源有组织排放和无组织排放的废气中甲烷、总烃和非甲烷总烃的气相色谱/氢火焰离子化检测器法。 本标准是对《固定污染源排气中非甲烷总烃的测定气相色谱法》(HJ/T 38-1999)的修订。本次为第一次修订,主要修订内容如下: ——标准名称修改为《固定污染源废气甲烷、总烃和非甲烷总烃的测定气相色谱法》。 ——目标化合物从非甲烷总烃扩展为甲烷、总烃和非甲烷总烃,结果以碳计。 ——标准气体由甲烷、丙烷混合气更改为甲烷标准气。 ——分析用色谱柱增加了毛细管色谱柱。 自本标准实施之日起,原国家环境保护总局发布的《固定污染源排气中非甲烷总烃的测定气相色谱法》(HJ/T 38-1999)废止。 本标准的附录A和附录B为资料性附录。 本标准由环境保护部科技标准司组织制订。 本标准主要起草单位:中国环境监测总站、扬州市环境监测中心站、浙江省环境监测中心。 本标准验证单位:苏州市环境监测中心站、无锡市环境监测中心站、常州市环境监测中心、镇江市环境监测中心站、泰州市环境监测中心站、仪征市环境监测站。 本标准环境保护部201□年□□月□□日批准。 本标准自201□年□□月□□日起实施。 本标准由环境保护部解释。 ii

(完整版)泛素化蛋白检测方法

泛素化蛋白检测方法 蛋白质泛素化简介蛋白质泛素化修饰过程在人体免疫系统调节过程中起到了关键性的作用。与磷酸化修饰过程一样,泛素化修饰过程也是一种可逆的共价修饰过程,它能够调节被修饰蛋白的稳定性、功能活性状态以及细胞内定位等情况。 泛素蛋白是一个由76 个氨基酸残基组成的非常保守的多肽,它能在E1、E2、E3 酶等一系列酶促反应催化下与细胞内靶蛋白上的一个或多个赖氨酸残基发生共价连接。泛素蛋白本身也含有7 个赖氨酸残基,因此它们之间也可以通过这些位点互相连接,形成多泛素蛋白链(polyubiquitin chain)。目前研究显示,如果多泛素蛋白链与被修饰蛋白上的第48 位赖氨酸残基相连,会介导靶蛋白进入蛋白酶体而被降解;如果与被修饰蛋白上其它位点,比如第63 位赖氨酸残基相连,则靶蛋白可以发挥信号通路功能而不会被降解。 与磷酸化修饰途径一样,泛素化修饰途径也是可逆的,即可以通过去泛素化酶(DUB )将泛素蛋白修饰物去除掉。靶蛋白经泛素化途径修饰之后,连接在靶蛋白上的泛素蛋白单体或多聚体可以被各种泛素蛋白结合结构域(UBD )所 识别和结合。人类蛋白质组中含有两种E1酶、50种E2酶、600种E3酶、90 种DUB 酶和20 种UBD ,这说明泛素修饰途径在细胞调控中起到了多么重要的作用。E3 酶是泛素修饰途径中决定底物特异性的关键酶,它可以分为两大类,即含有HECT 结构域的E3 酶和其它含有RING 结构域或RING 样结构域(比如U-box 或PHD 结构域)的E3 酶。这两种E3 酶都在免疫调控过程中起到了关键性的作用。 蛋白质泛素化的检测方法研究蛋白质的泛素化首先需要明确的三个基本点:哪些蛋白发生了泛素化;发生了泛素化的蛋白质,具体是哪个位点的赖氨酸残基发生了泛素化;进行定量。 明确了上述几点后,进一步需要弄清楚的是,我们感兴趣的泛素化蛋白,是 如何发生泛素化的,影响这一泛素化过程的关键分子是什么?或者说这一过程中的E3 酶是什么? 然后需要研究的是,这一蛋白质发生泛素化之后可以产生那些分子效应?对下游

6种方法测定蛋白质含量

6种方法测定蛋白质含量 [ 文章来源: | 文章作者: | 发布时间:2006-12-25| 字体: [大 中 小] 一、微量凯氏(kjeldahl )定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: nh 2ch 2cooh+3h 2so 4——2co 2+3so 2+4h 2o+nh 3 (1) 2nh 3+h 2so 4——(nh 4)2so 4 (2) (nh 4)2so 4+2naoh ——2h 2o+na 2so 4+2nh 3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得 样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(biuret 法) (一)实验原理 双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg 蛋白质。干扰这一测定的物质主要有:硫酸铵、tris 缓冲液和某些氨基酸等。 此法的优点是较快速 ,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材

土壤中总氰化物检测方法

土壤中總氰化物檢測方法 NIEA S411.60B 一、方法概要 於酸性條件下,土壤中氰化物在迴流蒸餾過程中反應成氫化氰(Hydrogen cyanide)後釋出,以氫氧化鈉溶液吸收後,可用比色法或滴定法測定氰化物濃度。 在比色法中,吸收溶液於pH<8時,氰離子與氯胺-T(Chloramine-T)反應轉換成氯化氰(CNCl),續與異菸鹼酸(4-pyridine carboxylic acid)及1,3-二甲基巴比妥酸 (1,3-dimethylbarbituric acid)反應產生有色錯合物,使用分光光度計在波長606 nm處測其吸光度;在滴定法中,以硝酸銀溶液滴定吸收溶液中之氰離子,形成可溶之Ag(CN)2- 錯離子,使用對銀離子敏感之二甲胺基苯叉羅丹寧(5-(4-dimethylamino benzylidene) rhodanine)指示劑,達滴定終點時,溶液由黃色轉為橙紅色。 二、適用範圍 (一) 本方法適用於未經風乾研磨處理之土壤、底泥等類似基質中總氰化物之檢測。 (二) 比色法適用於田間含水土壤中總氰化物含量0.5~50 mg/kg之樣品檢測;滴定法適用於田 間含水土壤中總氰化物含量大於50 mg/kg之樣品檢測,若吸收液呈現混濁或有顏色時,稀釋後視需要用比色法或滴定法檢測。 (三) 本實驗之樣品及廢液屬氰系急毒性物質,相關安全措施及應注意事項如註1。 三、干擾 二價錫及銅的鹽類可以抑制硫化物的干擾及促進氰化物錯合物的分解。 四、設備及材料 (一) 蒸餾設備(含抽氣裝置):如圖一或具相同功能之設備。 (二) 分光光度計:使用波長606 nm,附1 cm光徑之樣品槽。 (三) 分析天平:精秤至0.1 mg。 (四) 滴定管:最小刻度0.05 mL。 (五) 磁石、電磁攪拌器。

非甲烷总烃计算

1、天然气组分 2、天然气618万Nm3/a 3、天然气气损率为0、5% 4、非甲烷总烃计算过程 ①非甲烷总体体积百分比 V非总=1、77%+0、3%+0、074%+0、075%+0、02%+0、051%+0、038% =2、328% ②非甲烷总烃得分子量 由天然气组分表可以瞧出,非甲烷总烃以C2、C3、IC4、NC4为主,它们得分子量分别为30、44、58、58,则非甲烷总烃得分子量可估算为: (1、77%×30+0、3%×44+0、074%×58+0、075%×58)÷2、328% = 32、19 ③全年非甲烷总烃排放量 V非排=618×104Nm3/a×2、328% ×0、5%=719、352Nm3/a=719352NL/ a M非排= (719352NL/a÷22、4NL/mol)×32.19g/mol=1033747.3g/a ≈1、03t/a 目前,石油炼制与石油化工等行业得环评与环保验收中,非甲烷总烃(NMHC)都就是必讨论、检测项目。但在我国得环境 标准体系中,非甲烷总烃得环境空气质量标准缺失。本文就非甲 烷总烃得环境空气质量标准与排放标准进行分析。? 根据风影得博客,原油类储罐项目排放得主要污染物为非甲烷总 烃,目前我国仅有排放标准,无组织监控浓度限值(新污染源)为

4、0mg/m3,可参考得以色列环境质量标准为5、0mg/m3;另外也说明一点:对于部分省市,比如浙江省,可能在批复得标准中会提到非甲烷总烃得环境质量标准取1或者2mg/m3(小时浓度)。这就是权威得说法,这就是半官方得说明。 ?要理解这段话,首先要弄清楚非甲烷总烃就是以甲烷计还就是 以碳计。 ?《大气污染物综合排放标准》(GB16297-1996)就是1996年4月12日批准,从1997年1月1日开始实施,当时我国还没有非甲烷总烃得标准分析方法。根据标准实施得时问瞧,其监测分析方法应该使用《空气与废气监测分析方法》(第三版)。在该书中,方法一(第147页)使用GC—FID检测,其结果总烃以甲烷(mg/m3)计,推荐得方法二也就是以甲烷计。而该书第153页还有非甲烷烃栏目,推荐得方法就是吸附富集-气相色谱法,其检测结果就是以正戊烷计。 由于GB16297-1996中并没有规定测定出得非甲烷总烃以什 么物质为依据计算,实际上全国环境监测系统得各级环境监测站都以CH4计。然而,在2000年1月1日开始实施了HJ/T38-1999《固定污染源排气中非甲烷总烃得测定气相色谱法》,该标准方法适用于固定污染源有组织排放与无组织排放得非甲烷总烃(NMHC)测定。在该标准规定得条件下所测得得NMHC,就是用气相色谱氢火焰离子化检测器有明显响应得除甲烷外得碳氢化合物总量,以碳计。 ?因此,当该标准实施之后即从2000年1月1日起NMHC得测

食品中蛋白质的测定方法

食品中蛋白质的测定方法 蛋白质的测定方法分为两大类:一类是利用蛋白质的共性,即含氮量,肽链和折射率测定蛋白质含量,另一类是利用蛋白质中特定氨基酸残基、酸、碱性基团和芳香基团测定蛋白质含量。但是食品种类很多,食品中蛋白质含量又不同,特别是其他成分,如碳水化合物,脂肪和维生素的干扰成分很多,因此蛋白质的测定通常利用经典的剀氏定氮法是由样品消化成铵盐蒸馏,用标准酸 液吸收,用标准酸或碱液滴定,由样品中含氮量计算出蛋白质的含量。由于食品中蛋白质含量不同又分为凯氏定氮常量法、半微量法和微量法,但它们的基本原理都是一样的。 一凯氏定氮法 我们在检验食品中蛋白质时,往往只限于测定总氮量,然后乘以蛋白质核算系数,得到蛋白质含量,实际上包括核酸、生物碱、含氮类脂、叶啉和含氮色素等非蛋白质氮化合物,故称为粗蛋白质。 (一) 、常量凯氏定氮法 衡量食品的营养成分时,要测定蛋白质含量,但由于蛋白质组成及其性质的复杂性,在食品分析中,通常用食品的总氮量表示,蛋白质是食品含氮物质的主要形式,每一蛋白质都有其恒定的含氮量,用实验方法求得某样品中的含氮量后,通过一定的换算系数。即可计算该样品的蛋白质含量。 一般食品蛋白质含氮量为l6 %,即1份氮素相当于6.25 分蛋白质,以此为换算系数6.25 ,不同类的食物其蛋白质的换算系数不同. 如玉米、高梁、荞麦, 肉与肉制品取6.25 ,大米取 5.95 、小麦粉取 5.7, 乳制品取 6.38 、大豆及其制品取5.17 ,动物胶 5.55 。 测定原理: 食品经加硫酸消化使蛋白质分解,其中氮素以氨的形式与硫酸化合成硫酸铵。然后加碱蒸馏使氨游离,用硼酸液吸收形成硼酸铵,再用盐酸标准溶液或硫酸标准溶液滴定,根据盐酸消耗量计算出总氮量,再乘以一定的数值即为蛋白质含量,其化学反应式如下。 ⑴消化反应:有机物(含C、N、H、0、P、S等元素)+H2S04 -T(NH4)2SO4+CO0 +S02f +S03+H3PO4+C02 (2) 蒸馏反应:(NH4)2SO4+2NAOH—2NH3T +2H2O+NA2SO4 2NH3+4H3B04 (NH4)2B4O7+5H2O (3) 滴定反应:(NH4)2B4O7+2HCH+5H2O T2NH4CH+4H3BC或(NH4)2B407+H2S04+5H20- (NH4)9SO4+4H2BO2 试剂与仪器: 1、硫酸钾; 2、硫酸铜;

总氰化物浓度的测定

总氰化物浓度的测定 标准曲线的绘制 (1)用分析天平准确称取0.2503g分析纯氰化钾溶于100mL水中,则此溶液1mL 相当1mg的CN—标准贮备液。(空烧杯:45.5675g,总重:45.8178g)(2)取标准贮备液2.5mL,用250mL容量瓶定容到100mL,此为标准中间液。 (3)取标准中间液2.5mL,用25mL比色管稀释成25mL溶液,此为标准使用液。 (4)分别取标准适用液0、0.3、1、2、3、4、5mL于25mL比色管中。 (5)加少量蒸馏水,加入1~2滴醋酸酸化,加饱和溴水1~2滴呈现黄色不退,摇匀静置10分钟。 (6)加数滴0.5%硫酸肼至黄色褪去再加过量一滴,摇匀,加3mL吡啶联苯胺溶液,定容至10mL,摇匀,静置15分钟。 (7)于520波长下测定吸光度,根据数据绘制标准曲线。 总氰化物浓度的测定 原理:溶液中的CN与饱和溴水反应生成溴化氰,再与吡啶联苯胺反应生成不同色度的紫红色染料,在520纳米处有最大吸光度。 本方法最低检出浓度为0.05毫克每升。测定上限为10毫克每升。 主要试剂及仪器: 冰醋酸:3:7 溴水:先加入小量溴素,再加入水即可 硫酸肼溶液:0.5% 吡啶联苯胺溶液(显色剂)(60ml配置方法):取0.5克联苯胺容于10ml浓度为2%盐酸中并加热,后取50ML浓度为60%的吡啶溶液 氰根标准溶液:取0.2503g分析纯氰化钾溶于100mL水中,则此溶液1mL相当1mg 的CN-标准溶液。 25mL具塞比色管、721比色分光光度计 步骤: (1)取过滤后水样1~5mL于25mL比色管中,加少量蒸馏水,加入1~2滴醋酸酸化,加饱和溴水1~2滴呈现黄色不退,摇匀静置10分钟。 (2)加数滴0.5%硫酸肼至黄色褪去再加过量一滴,摇匀,加3mL吡啶联苯胺溶液,定容至10mL,摇匀,静置15分钟。

非甲烷总烃计算

非甲烷总烃计算 Prepared on 22 November 2020

1、天然气组分 2、天然气618万Nm3/a 3、天然气气损率为% 4、非甲烷总烃计算过程 ①非甲烷总体体积百分比 V非总=%+%+%+%+%+%+% =% ②非甲烷总烃的分子量 由天然气组分表可以看出,非甲烷总烃以C2、C3、IC4、NC4为主,它们的分子量分别为30、44、58、58,则非甲烷总烃的分子量可估算为: %×30+%×44+%×58+%×58)÷% = ③全年非甲烷总烃排放量 V非排=618×104Nm3/a×% ×%=a=719352NL/a M非排 = (719352NL/a÷mol)×32.19g/mol =1033747.3g/a ≈ a 目前,石油炼制和石油化工等行业的环评和环保验收中,非甲烷总烃(NMHC)都是必讨论、检测项目。但在我国的环境标准体系中,非甲烷总烃的环境空气质量标准缺失。本文就非甲烷总烃的环境空气质量标准和排放标准进行分析。 根据风影的博客,原油类储罐项目排放的主要污染物为非甲烷总烃,目前我国仅有排放标准,无组织监控浓度限值(新污染源)为m3,可参考的以色列环境质量标准为m3;另外也说明一点:对于部分省市,比如浙江省,可能在批复的标准中会提到非甲烷总烃的环境质量标准取1或者2mg/m3(小时浓度)。这是权威的说法,

这是半官方的说明。 要理解这段话,首先要弄清楚非甲烷总烃是以甲烷计还是以碳计。 《大气污染物综合排放标准》(GB16297-1996)是1996年4月12日批准,从1997年1月1日开始实施,当时我国还没有非甲烷总烃的标准分析方法。根据标准实施的时问看,其监测分析方法应该使用《空气和废气监测分析方法》(第三版)。在该书中,方法一(第147页)使用GC—FID检测,其结果总烃以甲烷(mg/m3)计,推荐的方法二也是以甲烷计。而该书第153页还有非甲烷烃栏目,推荐的方法是吸附富集-气相色谱法,其检测结果是以正戊烷计。 由于GB16297-1996中并没有规定测定出的非甲烷总烃以什么物质为依据计算,实际上全国环境监测系统的各级环境监测站都以CH4计。然而,在2000年1月1日开始实施了HJ/T38-1999《固定污染源排气中非甲烷总烃的测定气相色谱法》,该标准方法适用于固定污染源有组织排放和无组织排放的非甲烷总烃(NMHC)测定。在该标准规定的条件下所测得的NMHC,是用气相色谱氢火焰离子化检测器有明显响应的除甲烷外的碳氢化合物总量,以碳计。 因此,当该标准实施之后即从2000年1月1日起NMHC的测定结果应该以碳计。 1、

气相色谱法测定大气和废气中非甲烷总烃(精)

分析与检测 气相色谱法测定大气和废气 中非甲烷总烃3 潘金芳赵一先张大年 (华东理工大学环境工程研究所,上海200237 摘要介绍了用双柱双氢焰离子化检测器气相色谱法分析气体样品中非甲烷烃。方法的检出限为0.035m g m3,测定范围为0.12~8.0m g m3。5个实验室的验证实验结果表明,相对标准偏差为3.4%~9.2%,回收率为88.6%~114%。 关键词环境空气监测废气监测非甲烷烃气相色谱法 非甲烷烃(NM HC通常是指除甲烷以外的所有可挥发的碳氢化合物(其中主要是C2~ C8,又称非甲烷总烃。大气中的NM HC超过一定浓度,除直接对人体健康有害外,在一定条件下经日光照射还能产生光化学烟雾,对环境和人类造成危害。 监测环境空气和工业废气中的NM HC有许多方法,但目前多数国家[1,2]采用气相色谱法。由于直接测定NM HC所用仪器价格昂贵,因此我们采用双柱双氢火焰离子化检测器气相色谱法分别测出总烃和甲烷的含量,两者之差为NM HC的含量。 1试验部分 1.1仪器、装置和配样用气体 (1带有双柱双氢火焰离子化检测器的气相色谱仪(H ITA CH I163型。 (2色谱柱。柱1为长1m、内径3mm的不锈钢螺旋空柱(或填充60~80目的硅烷化玻璃微珠,用于测定总烃。柱2为长2m、内径3mm 的不锈钢柱,柱内填充GDX2104(60~80目,用于测定甲烷。

(3空气除烃净化装置见图1。 (4配样用气体:丙烷2氮气混合标准气体,C3H8 N2(摩尔比为(20×1026∶1;甲烷2氮气混合标准气体,CH4 N2(摩尔比为(21×1026∶1;氮气和除烃净化空气(配气样时用做稀释气 。 图1空气除烃净化装置 1.空气钢瓶; 2.净化器(硅胶与5A分子筛; 3.净化器(活性炭; 4.高温管式炉(内装四氧化三钴

蛋白质定量检测方法

Bradford法蛋白定量(Bradford Protein Assay ) Bradford Assay is a rapid and accurate method commonly used to determine the total protein concentration of a sample. The assay is based on the observation that the absorbance maximum for an acidic solution of Coomassie Brilliant Blue G-250 shifts from 465 nm to 595 nm when binding to protein occurs. Both hydrophobic and ionic interactions stabilize the anionic form of the dye, causing a visible color change. Within the linear range of the assay (~5-25 mcg/mL), the more protein present, the more Coomassie binds. Reference Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. (1976) 72, 248-254. 考马斯亮蓝染色法(Bradford法)测定蛋白质含量 原理 1976年Bradford建立了用考马斯亮蓝G250与蛋白质结合的原理,迅速、敏感的定量测定蛋白质的方法。染料与蛋白质结合后引起染料最大吸收的改变,从465nm变为595nm,光吸收增加。蛋白质-染料复合物具有高的消光系数,因此大大提高了蛋白质测定的灵敏度,最低检出量为1μg蛋白。染料与蛋白质的结合是很迅速的过程,大约需2min,结合物的颜色在1h内是稳定的。一些阳离子,如K+,Na+,Mg2+,(NH4)2SO4,乙醇等物质不干扰测定,而大量的去污剂如TritonX100,SDS等严重干扰测定,少量的去污剂可通过用适当的对照而消除。由于染色法简单迅速,干扰物质少,灵敏度高,现已广泛应用于蛋白质含量的测定。 操作 一、标准方法 取含10~100μg蛋白质溶液于小试管中,用双蒸水或缓冲液调体积到0.1mL,然后加入5mL蛋白试剂,充分振荡混合,2min后于595nm测定光吸收值。以0.1mL 双蒸水或缓冲液及5mL蛋白试剂作为空白对照。 二、微量蛋白分析法 取含1~10μg蛋白质溶液,用双蒸水调体积到0.8mL,加0.2mL蛋白试剂,充分振荡混合,2min后于595nm测定光吸收值,以0.8mL双蒸水及0.2mL蛋白试剂作为空白对照。用不同浓度的蛋白质溶液作标准曲线,以蛋白质浓度为横坐

蛋白质含量测定方法及其比较资料2

蛋白质含量测定法(一) 蛋白质含量测定法,是生物化学研究中最常用、最基本的分析方法之一。目前常用的有四种古老的经典方法,即定氮法,双缩脲法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。另外还有一种近十年才普遍使用起来的新的测定法,即考马斯亮蓝法(Bradford法)。其中Bradford法和Lowry法灵敏度最高,比紫外吸收法灵敏10~20倍,比Biuret法灵敏100倍以上。定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。 五种蛋白质测定方法比较

值得注意的是,这后四种方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这四种方法测定,有可能得出四种不同的结果。每种测定法都不是完美无缺的,都有其优缺点。在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。 考马斯亮蓝法(Bradford法),由于其突出的优点,正得到越来越广泛的应用。 一、微量凯氏(Kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: NH2CH2COOH+3H2SO4——2CO2+3SO2+4H2O+NH3 (1) 2NH3+H2SO4——(NH4)2SO4 (2) (NH4)2SO4+2NaOH——2H2O+Na2SO4+2NH3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(Biuret法) (一)实验原理 双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材

水质总氰化物测定操作规程

水质总氰化物测定操作规程 1 适用范围 本规程适用于饮用水、地面水、生活污水和工业废水采用异烟酸-吡唑啉酮比色法测定水质中的总氰化物。最低检出浓度为/L;测定上限为/L。 总氰化物是指在磷酸和EDTA存在下,于pH<2介质中,加热蒸馏,能形成氰化氢的氰化物,包括全部简单氰化物和绝大部分络合氰化物,不包括钴氰络合物。 2引用标准 GB7486-87 水质氰化物的测定 3原理 在中性条件下,样品中的氰化物与氯胺T反应生成氯化氰,再与异烟酸作用,经水解后生成戊烯二醛,最后与吡唑啉酮缩合生成蓝色染料,其颜色与氰化物含量成正比,在638nm波长进行光度测定。 4仪器 分光光度计; 25ml具塞比色管;

500ml全玻璃蒸馏器; 100ml量筒或容量瓶; 600W或800W可调电炉; 5药品及试剂 测定过程中,只使用公认的分析纯试剂和不含氰化物和活性氯的蒸馏水或具有同等纯度的水。 磷酸(H3PO4):1.69g/ml 氢氧化钠(NaOH):%、1%、2%、4%溶液(m/V) EDTA二钠:10%溶液(m/V) 乙酸铅试纸 称取5g乙酸铅[Pb(C2H3O2)2·3H2O]溶于水中,并稀释至100ml。将滤纸条浸入上述溶液中,1h后,取出晾干,盛于广口瓶中,密塞保存。 碘化钾-淀粉试纸 称取1.5g可溶性淀粉,用少量水搅成糊状,加入200ml沸水,混匀,放冷,加0.5g碘化钾和0.5g碳酸钠,用水稀释至250ml,将滤纸条浸渍后,取出晾干,盛于棕色瓶中,密塞保存。

硫酸溶液:1+5 亚硫酸钠(Na2SO3):%溶液(m/V) 氨基磺酸(NH2SO3H) 磷酸盐缓冲溶液(pH=7) 称取34.0g无水磷酸二氢钾(KH2PO4)和35.5g无水磷酸氢二钠(Na2HPO4)于烧杯内,加水溶解后,稀释至1000ml,摇匀,放入试剂瓶,存于冰箱。 氯胺T:1%(m/V)溶液 临用前,称取1.0 g氯胺T(C7H7ClNNaO2S· 3H2O)溶于水,并稀释至100 ml,摇匀,储存于棕色瓶中。 异烟酸-吡唑啉酮溶液 5.11.1 异烟酸溶液 称取1.5g异烟酸(C6H6NO2)溶于24ml 2%氢氧化钠溶液中,加水稀释至100ml。 5.11.2 吡唑啉酮溶液 称取0.25g吡唑啉酮(3-甲基-1-苯基-5-吡唑啉酮,C10H10N2)溶于20mlN,N-二甲基甲酰胺[HCON(CH3)2]。

(环境空气)总烃、甲烷和非甲烷总烃的测定 气相色谱法5.7

方法验证报告

目录

开展新检测项目申请表 修改记录:第0次

HJ 604-2017 气相色谱法 环境空气总烃、甲烷和非甲烷总烃的测定方法验证报告 1.方法依据 依据《环境空气总烃、甲烷和非甲烷总烃的测定气相色谱法》HJ 604-2017。 2.方法原理 将气体样品直接注入具氢火焰离子化检测器的气相色谱仪,分别在总烃柱和甲烷柱上测定总烃和甲烷的含量,两者之差即为非甲烷总烃的含量。同时以除烃空气代替样品,测定氧在总烃柱上的响应值,以扣除样品中的氧对总烃测定的干扰。3.适用范围 本标准规定了测定环境空气中总烃、甲烷和非甲烷总烃的直接进样-气相色谱法。本标准适用于环境空气中总烃、甲烷和非甲烷总烃的测定,也适用于污染源无组织排放监控点空气中总烃、甲烷和非甲烷总烃的测定。当进样体积为 1.0 mL 时,本标准测定总烃、甲烷的检出限均为0.06 mg/m3(以甲烷计),测定下限均为0.24 mg/m3(以甲烷计);非甲烷总烃的检出限为0.07 mg/m3(以碳计),测定下限为0.28 mg/m3(以碳计)。 4.主要仪器 4.1、气相色谱仪。 5.主要试剂 5.1、除烃空气:总烃含量(含氧峰)≤0.40mg/m3(以甲烷计);或在甲烷柱上测定,除氧峰外无其他峰。 5.2、甲烷标准气:1 6.0μmol/mol、800μmol/mol,平衡气为氮气。也可根据实际工作需要向具资质生产商定制合适浓度标准气体。 5.3、氮气:纯度≥99.999%。 5.4、氢气:纯度≥99.99%。 5.5、空气:用净化管净化。

5.6、标准气体稀释气:高纯氮气或除烃氮气,纯度≥99.999%,按样品测定步骤测试,总烃测定结果应低于本标准方法检出限。 6.本方法样品的采集、处置和保存 6.1、样品采集 环境空气按照HJ 194 和HJ 664 的相关规定布点和采样;污染源无组织排放监控点空气按照HJ/T 55 或者其他相关标准布点和采样。采样容器经现场空气清洗至少 3 次后采样。以玻璃注射器满刻度采集空气样品,用惰性密封头密封;以气袋采集样品的,用真空气体采样箱将空气样品引入气袋,至最大体积的80%左右,立刻密封。 6.2、样品保存 采集样品的玻璃注射器应小心轻放,防止破损,保持针头端向下状态放入样品箱内保存和运送。样品常温避光保存,采样后尽快完成分析。玻璃注射器保存的样品,放置时间不超过8h;气袋保存的样品,放置时间不超过48h,如仅测定甲烷,应在7d内完成。 7.校准曲线 制备:以100 ml注射器(预先放入一片硬质聚四氟乙烯小薄片)或1L气袋为容器,按1:1的体积比,用标准气体稀释气将甲烷标准气体逐级稀释,配制5个浓度梯度的校准系列,该校准系列的浓度分别是0.625、1.25、2.50、5.00、10.0 μmol/mol 分析步骤。 绘制:由低浓度到高浓度依次抽取 1.0 ml 校准系列,注入气相色谱仪,分别测定总烃、甲烷。以总烃和甲烷的浓度(μmol/mol)为横坐标,以其对应的峰面积为纵坐标,分别绘制总烃、甲烷的校准曲线。见图一、图二。

蛋白质含量测定方法汇总

实验七蛋白质含量测定 测定蛋白质的定量方法有很多,目前常用的有染料法,双缩脲(Biuret)法,酚试剂法(Lowry)法及紫外吸收法。 [目的要求] 1.掌握测定蛋白质的含量基本方法。 2.了解染料法、双缩脲法、Lowry法和紫外吸收法测定原理。 一、染料法 [实验原理] 在酸性溶液中染料考马斯亮蓝G-250与蛋白质结合,此时考马斯亮蓝G-250颜色从红色变为蓝色,吸收高峰从460nm移至595nm。利用这个原理可以测定蛋白质含量。 该法近年在某些方面有取代经典的Lowry法趋势,因为它操作简单,反应时间短,染料-蛋白质颜色稳定,抗干扰性强。本法的缺点是:对于那些与标准蛋白氨基酸组成有较大差异的蛋白质,有一定误差,因为不同的蛋白质与染料的结合是不同的,故该法适合测定与标准蛋白质氨基酸组成相近的蛋白质。 [器材] 吸量管;试管;721型分光光度计 [试剂] 1.标准牛血清白蛋白溶液:配成0.1mg/ml的溶液。 2.待测蛋白质溶液。 3.染料溶液:称取考马斯亮蓝G-250 0.1g溶于95%的酒精50ml,再加入85%的浓磷酸100ml,用水稀释至1000ml,混匀备用。

[操作步骤] 1.标准曲线的绘制: 按上表分别向各支试管内加入各种试剂,充分混匀,5min后在595nm波长处以0号管调零,测定各管吸光度值(A)。以吸光度值为纵坐标,蛋白质浓度为横坐标绘制标准曲线。 2.样品测定: 取1ml样品溶液(约含25~250微克蛋白质),加入染料溶液5ml混匀,5min后测定其595nm吸光度值,对照标准曲线求得蛋白质浓度。 二、双缩脲(Biuret)法测定蛋白质含量 [实验原理] 在碱性溶液中,双缩脲(H2N-CO-NH-CO-NH2)与二价铜离子作用形成紫红色的络合物,这一反应称双缩脲反应。凡分子中含二个或二个以上酰胺基(—CO-NH2),或与此相似的基团[如—CH2-NH2,—CS-NH2,—C(NH)NH2]的任何化合物,无论这类基团直接相连还是通过一个碳或氮原子间接相连,均可发生上述反应。蛋白质分子含有众多肽键(—CO-NH—),可发生双缩脲反应,且呈色强度在一定浓度范围内与肽键数量即与蛋白质含量

气相色谱法对环境空气中非甲烷总烃的测定

龙源期刊网 https://www.360docs.net/doc/743629779.html, 气相色谱法对环境空气中非甲烷总烃的测定作者:郭洪强 来源:《商情》2017年第37期 【摘要】本文主要通过进行研究造成挥发性有机物污染的各个因素以及挥发性有机物的污染源的检测,研究了用气相色谱法测定环境空气中非甲烷总烃的测定方法。 【关键词】气相色谱法非甲烷总烃 1.引言 非甲烷总烃简称NMHC,通常是指除甲烷以外所有的气态碳氢化合物(其中主要是C2~C8),又称非甲烷总烃。排放源主要有汽油燃烧、焚烧、溶剂蒸发、石油蒸发和运输损耗及 废物提炼,这五类占碳氢化合物人为排放量的96%。大气中的NMHC超过一定浓度,除直接对人体健康有害外,在一定条件下经日光照射还能产生光化学烟雾,对环境和人类造成危害。 通常用气相色谱法、荧光分光光度法、高效液相色谱法、膜导人质谱法、气象色谱一质谱法等等,最常用的方法是气相色谱法,气相色谱法可以用于分析大气含量挥发性有机物,也可以进行分析易于发挥的液体或固体,气相色谱分析法具有很高的灵敏度,是分析挥发性有机物最主要的方法。 2.气相色谱法对环境空气中非甲烷总烃的测定 2.1非甲烷总烃在气相色谱法中的原理及使用范围 原理:用氢火焰检测器分别测得样品中总烃的含量与甲烷的含量,总烃含量与甲烷含量之差即为非甲烷总烃含量。 使用范围:当样品进样体积为1.0ml时,检出限为0.04mg/m3,测定下限为0.1 6mg/m3。 2.2仪器与条件 仪器:气相色谱仪一氢火焰离子检测器(东西GC一4000A) 进样器:带1ml定量管的六通阀 色谱柱:材料为不锈钢填充柱,长1-2米,内径5mm,内填充硅烷化玻璃微珠(甲烷柱内填充GDX-502)。 标准气体:甲烷标准气(以氮气为底气)含量为7.14mg/m3。

蛋白质检测方法

蛋白质的检测(参考GB/T6432-94) 一、原理 凯氏定氮法测定试样中的含氮量,即在催化剂作用下,用浓硫酸破坏有机物,使含氮物转化为硫酸铵。加入强碱进行蒸馏使氮溢出,再用酸滴定,测出氮含量,将结果乘以换算系数 6.25,计算出粗蛋白含量。 二、试剂 (1)硫酸化学纯,含量为98%,无氮; (2)混合催化剂 0.4g硫酸铜,含5个结晶水,6g硫酸钾或硫酸钠,均为化学纯,磨碎混匀; (3)氢氧化钠化学纯,40%水溶液(m/V); (4)硼酸化学纯,2%水溶液(m/V); (5)混合指示剂甲基红0.1%乙醇溶液,溴甲酚绿0.5%乙醇溶液,两溶液等体积混合,在阴凉处保存期为3个月; (6)盐酸标准溶液基准无水碳酸钠法标定; a)0.1mol/l盐酸标准溶液:8.3mL盐酸注入1000mL蒸馏水中。 b)0.02mol/l盐酸标准溶液:1.67mL盐酸注入1000mL蒸馏水中。(7)蔗糖分析纯; (8)硫酸铵分析纯,干燥; (9)硼酸吸收液 1%硼酸水溶液1000mL,加入0.1%溴甲酚绿乙醇溶液10mL,0.1%甲基红乙醇溶液7mL,4%氢氧化钠水溶液,混合,置阴凉处保存期为1个月(全自动程序用)。

三、仪器设备 (1)实验室用样品粉碎机或研钵; (2)分样筛孔径0.45mm(40目); (3)分析天平感重0.0001g; (4)消煮炉或电炉; (5)滴定管酸式,10、25mL; (6)凯氏烧瓶 250mL; (7)凯氏蒸馏装置常量直接蒸馏式或半微量水蒸气蒸馏式; (8)锥形瓶 150、250mL; (9)容量瓶 100mL; (10)消煮管 250mL; (11)定氮仪以凯氏原理制造的各类型半自动、全自动蛋白质测定仪。 四、分析步骤 (一)仲裁法 1.试样的消煮称取试样0.5-1g(含氮量5-80mg)(精确至0.0002g), 放入凯式烧瓶中,加入6.4g混合催化剂,与试样混合均匀,再加入12mL硫酸和2粒玻璃珠,将凯式烧瓶置于电炉上加热,开始小火,待样品焦化、泡沫消失后,再加强活力(360-410℃)直至呈透明的蓝绿色,然后再继续加热,消化全过程至少2h。 2.氨的蒸馏 (1)常量蒸馏法将试样消煮液冷却,加入60-100mL蒸馏水,摇匀,

蛋白质测定方法之双缩脲法(Biuret法)

一)实验原理 双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1~10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris 缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材 1.试剂: (1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(BSA)或标准酪蛋白,配制成10mg/ml 的标准蛋白溶液,可用BSA浓度1mg/ml的A280为0.66来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05N NaOH配制。 (2)双缩脲试剂:称以1.50克硫酸铜(CuSO4?5H2O)和6.0克酒石酸钾钠(KNaC4H4O6?4H2O),用500毫升水溶解,在搅拌下加入300毫升10% NaOH溶液,用水稀释到1升,贮存于塑料瓶中(或内壁涂以石蜡的瓶中)。此试剂可长期保存。若贮存瓶中有黑色沉淀出现,则需要重新配制。 2.器材: 可见光分光光度计、大试管15支、旋涡混合器等。 (三)操作方法 1.标准曲线的测定:取12支试管分两组,分别加入0,0.2,0.4,0.6,0.8,1.0毫升的标准蛋白质溶液,用水补足到1毫升,然后加入4毫升双缩脲试剂。充分摇匀后,在室温(20~25℃)下放置30分钟,于540nm处进行比色测定。用未加蛋白质溶液的第一支试管作为空白对照液。取两组测定的平均值,以蛋白质的含量为横座标,光吸收值为纵座标绘制标准曲线。 2、样品的测定:取2~3个试管,用上述同样的方法,测定未知样品的蛋白质浓度。注意样品浓度不要超过10mg/ml。 三、Folin—酚试剂法(Lowry法) (一)实验原理

非甲烷总烃与VOCs的定义

非甲烷总烃的定义 非甲烷总烃(NmHc),又称非甲烷烃。《大气污染物综合排放标准详解》中定义为:指除甲烷以外所有碳氢化合物的总称,主要包括烷烃、烯烃、芳香烃和含氧烃等组分。烃类物质在通常条件下,除甲烷外多以液态或固态存在,并依据其分子量大小和结构形式的差别具有不同的蒸气压,因而作为大气污染物的非甲烷总烃,实际上是指具有C2~C12的烃类物质。烃类物质具有易燃易爆的特性,其具体的物理化学性质视单体组成及浓度而定。而《固定污染源排气中非甲烷总烃的测定气相色谱法》(HJ/T38-1999)中的定义为:指除甲烷以外的碳氢化合物(其中主要是C2~C8)的总称。在规定的条件下所测得的非甲烷总烃,是对于气相色谱氢火焰离子化检测器有明显响应的除甲烷外碳氢化合物总量,以碳计。 1)TVOCs的定义和范畴 总挥发性有机化合物(TVOCs,Total Volatile Organic Compounds),又称挥发性有机化合物(VOCs)。我国《室内空气质量标准》(GB/T18883-2002)和《室内环境空气质量监测技术规范》(HJ/T167-2004)将其定义为:利用Tenax GC或Tenax TA采样,非极性色谱柱(极性指数小于10)进行分析,保留时间在正己烷和正十六烷之间的挥发性有机化合物。我国《室内装饰装修材料内墙涂料中有害物质限量》中VOC含量的定义是:涂料中总挥发物含量扣减水分含量,即为涂料中挥发性有机化合物含量。《R炼油与石油化学工

业大气污染物排放标准》(DB11/447-2007)定义为:在20℃条件下蒸气压大于或等于0.01kPa,或者特定适用条件下具有相应挥发性的全部有机化合物的统称。0美国ASTM D 3960-98标准将其定义为:任何能参加大气光化学反应的有机化合物。美国联邦环保署(EPA)的定义为:挥发性有机化合物是除CO、CO2、H2CO3、金属碳化物、金属碳酸盐和碳酸铵外任何参加大气光化学反应的碳化合物。世界卫生组织(WHO,1989)对总挥发性有机化合物的定义为:熔点低于室温而沸点在50~260℃之间的挥发性有机化合物的总称。 总之,总挥发性有机化合物(TVOCs)和非甲烷总烃(NmHc)是两个不同的概念,但大多数情况下又是一致的,总挥发性有机化合物所涵盖的范畴大于非甲烷总烃。通常认为,沸点高于260℃的化合物的挥发排放速率可以忽略不计,因此不考虑在20℃条件下蒸气压的下限(0.01kpa)是可以的,对总挥发性有机化合物的各种定义差别不大,也就可简明统一为:熔点低于室温而常压下沸点在260℃以下的具有挥发性的全部有机化合物的统称。 3)因此,苯系物既属于非甲烷总烃类,又属于TVOCs类,但在环评中必须注意: 一是在现阶段的环境影响评价中,针对排气筒排放废气中的VOCs 以及厂界环境空气中的VOCs,以“非甲烷总烃”和几种特定的单项物质(如苯、甲苯、二甲苯等)作为控制指标;针对包括逸散性排放在内的VOCs总量排放控制,以单位产品向环境中排放的有机溶剂质量作为控制指标。

相关文档
最新文档