(完整word版)高中数学圆锥曲线重要结论讲义

(完整word版)高中数学圆锥曲线重要结论讲义
(完整word版)高中数学圆锥曲线重要结论讲义

圆锥曲线重要结论

椭 圆

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.

2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相离.

4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.

5. 若000(,)P x y 在椭圆22

221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b

+=.

6. 若000(,)P x y 在椭圆22

221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b

+=.

7. 椭圆22221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122

tan 2F PF S b γ?=.

8.

椭圆22

221x y a b

+=(a >b >0)的焦半径公式:

10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).

9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF

⊥NF.

10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.

11. AB 是椭圆22

221x y a b

+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ?=-,

即0

20

2y a x b K AB

-=。

双曲线

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.

2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相交.

4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)

5. 若000(,)P x y 在双曲线22

221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b

-=.

6. 若000(,)P x y 在双曲线22

221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b

-=.

7. 双曲线22

221x y a b

-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为

122t

2

F PF S b co γ

?=.

8. 双曲线22

221x y a b

-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c

当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.

当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--

9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N

两点,则MF ⊥NF.

10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.

11. AB 是双曲线22

221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =?,即0

202y a x b K AB =。

12. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b -=-.

13. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b -=-.

椭圆与双曲线的对偶性质--

椭 圆

1. 椭圆22221x y a b +=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22

221x y a b -=.

2. 过椭圆22221x y a b += (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且20

20BC b x k a y =(常数).

3. 若P 为椭圆22221x y a b +=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=, 21PF F β∠=,则tan t 22

a c co a c αβ

-=+.

4. 设椭圆22

221x y a b

+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=,

12PF F β∠=,12F F P γ∠=,则有

sin sin sin c

e a

αβγ==+.

5. 若椭圆22

221x y a b

+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e 1时,可在椭圆上求一点P ,使得PF 1是P 到对应准

线距离d 与PF 2的比例中项.

6. P 为椭圆22

221x y a b

+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三

点共线时,等号成立.

7. 椭圆220022

()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是22222

00()A a B b Ax By C +≥++. 8. 已知椭圆22221x y a b +=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)222

21111

||||OP OQ a b

+=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ?的最小值是22

22a b a b +.

9. 过椭圆22221x y a b +=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则

||||2

PF e

MN =. 10. 已知椭圆22

221x y a b +=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a ---<<. 11. 设P 点是椭圆22

221x y a b

+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2)

122tan

2

PF F S b γ

?=.

12. 设A 、B 是椭圆22

221x y a b

+=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距

离心率,则有(1)22222|cos |||s ab PA a c co αγ=-.(2) 2

tan tan 1e αβ=-.(3) 222

2

2cot PAB a b S b a

γ?=-.

13.已知椭圆

22

22

1

x y

a b

+=(a>b>0)的右准线l与x轴相交于点E,过椭圆右焦点F的直线与椭圆相交于A、B两点,点C在右准线l上,且BC x

轴,则直线AC经过线段EF 的中点.

14.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.

15.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.

16.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).

(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)

17.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.

18.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.

椭圆与双曲线的对偶性质--

双曲线

1.双曲线

22

22

1

x y

a b

-=(a>0,b>0)的两个顶点为

1

(,0)

A a

-,

2

(,0)

A a,与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是

22

221x y a b

+=. 2. 过双曲线22221x y a b -=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交双曲线于B,C 两点,则直线BC 有定向且20

2

BC b x k a y =-(常数).

3. 若P 为双曲线22221x y a b -=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F 2是焦点, 12PF F α∠=, 21PF F β∠=,则tan t

22

c a co c a αβ

-=+(或

tan t 22

c a co c a βα-=+). 4. 设双曲线22

221x y a b

-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上任意一点,在△PF 1F 2中,记12F PF α∠=,

12PF F β∠=,12F F P γ∠=,则有

sin (sin sin )c

e a

αγβ==±-.

5. 若双曲线22

221x y a b

-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1<e 1时,可在双曲线上求一点P ,使得PF 1是

P 到对应准线距离d 与PF 2的比例中项.

6. P 为双曲线22

221x y a b

-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线内一定点,则21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点

共线且P 和2,A F 在y 轴同侧时,等号成立.

7. 双曲线22221x y a b

-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222

A a

B b

C -≤.

8. 已知双曲线22

221x y a b

-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥.

(1)2222

1111||||OP OQ a b +=-;(2)|OP|2+|OQ|2的最小值为22224a b b a -;(3)OPQ S ?的最小值是2222a b b a -. 9. 过双曲线22221x y a b -=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则

||||2PF e

MN =. 10. 已知双曲线22221x y a b -=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22

0a b x a +≥或

22

0a b x a

+≤-.

11. 设P 点是双曲线22

221x y a b

-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2)

122cot 2

PF F S b γ

?=.

12. 设A 、B 是双曲线22

221x y a b

-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是双

曲线的半焦距离心率,则有(1)2222

2|cos |

|||s |

ab PA a c co αγ=-. (2) 2

tan tan 1e αβ=-.(3) 22222cot PAB

a b S b a

γ?=+. 13. 已知双曲线22

221x y a b

-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F 的直线与双曲线相交于A 、B 两点,点C 在右准线l

轴,则直线AC经过线段EF 的中点.

上,且BC x

14.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.

15.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.

16.双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).

(注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点).

17.双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e.

18.双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.

圆锥曲线问题解题方法

圆锥曲线中的知识综合性较强,因而解题时就需要运用多种基础知识、采用多种数学手段来处理问题。熟记各种定义、基本公式、法则固然重要,但要做到迅速、准确解题,还须掌握一些方法和技巧。 一. 紧扣定义,灵活解题

灵活运用定义,方法往往直接又明了。

例1. 已知点A (3,2),F (2,0),双曲线x y 2

2

3

1-=,P 为双曲线上一点。 求||||PA PF +1

2

的最小值。

解析:如图所示,

Θ双曲线离心率为2,F 为右焦点,由第二定律知1

2

||PF 即点P 到准线距离。 ∴+

=+≥=||||||||PA PF PA PE AM 1252

二. 引入参数,简捷明快

参数的引入,尤如化学中的催化剂,能简化和加快问题的解决。 例2. 求共焦点F 、共准线l 的椭圆短轴端点的轨迹方程。

解:取如图所示的坐标系,设点F 到准线l 的距离为p (定值),椭圆中心坐标为M (t ,0)(t 为参数)

Θ

p b

c =

2

,而c t = ∴==b pc pt 2

再设椭圆短轴端点坐标为P (x ,y ),则

x c t

y b pt

====?????

消去t ,得轨迹方程y px 2

=

三. 数形结合,直观显示

将“数”与“形”两者结合起来,充分发挥“数”的严密性和“形”的直观性,以数促形,用形助数,结合使用,能使复杂问题简单化,抽象问题形象化。熟练的使用它,常能巧妙地解决许多貌似困难和麻烦的问题。 例3. 已知x y R ,∈,且满足方程x y y 2230+=≥(),又m y x =

++3

3

,求m 范围。 解析:Θ

m y x =

++33

的几何意义为,曲线x y y 22

30+=≥()上的点与点(-3,-3)连线的斜率,如图所示

k m k PA PB ≤≤

-≤≤+33235

2

m

四. 应用平几,一目了然

用代数研究几何问题是解析几何的本质特征,因此,很多“解几”题中的一些图形性质就和“平几”知识相关联,要抓住关键,适时引用,问题就会迎刃而解。

例4. 已知圆()x

y -+=3422和直线y mx =的交点为P 、Q ,则||||OP OQ ?的值为________。

解:Θ??OMP OQN ~ ||||||||OP OQ OM ON ?=?=5

五. 应用平面向量,简化解题

向量的坐标形式与解析几何有机融为一体,因此,平面向量成为解决解析几何知识的有力工具。

例5. 已知椭圆:

x y 2224161+=,直线l :x y

128

1+=,P 是l 上一点,射线OP 交椭圆于一点R ,点Q 在OP 上且满足||||||OQ OP OR ?=2,当点P 在l 上移动时,求点Q 的轨迹方程。

分析:考生见到此题基本上用的都是解析几何法,给解题带来了很大的难度,而如果用向量共线的条件便可简便地解出。

解:如图,OQ OR OP →→→,,共线,设OR OQ →=→λ,OP OQ →=→μ,OQ x y →=(),,则OR x y →=()λλ,,OP x y →

=()μμ,

Θ||||||OQ OP OR →?→=→2

∴→=→μλ||||OQ OQ 22

2

∴=μλ2

Θ点R 在椭圆上,P 点在直线l 上

∴+=λλ222224161x y ,μμx y

1281+= 即

x y x y 222416128

+=+ 化简整理得点Q 的轨迹方程为:

()()x y -+-=152153

122(直线y x =-2

3上方部分)

六. 应用曲线系,事半功倍

利用曲线系解题,往往简捷明快,收到事半功倍之效。所以灵活运用曲线系是解析几何中重要的解题方法和技巧之一。 例6. 求经过两圆x y x 2

2640++-=和x y y 226280++-=的交点,且圆心在直线x y --=40上的圆的方程。

解:设所求圆的方程为:

x y x x y y 2222646280++-+++-=λ()

()()()1166284022+++++-+=λλλλx y x y

则圆心为(

)-+-+3131λλ

λ

,,在直线x y --=40上 ∴解得λ=-7

故所求的方程为x y x y 22

7320+-+-=

七. 巧用点差,简捷易行

在圆锥曲线中求线段中点轨迹方程,往往采用点差法,此法比其它方法更简捷一些。

例7. 过点A (2,1)的直线与双曲线x y 2

2

2

1-=相交于两点P 1、P 2,求线段P 1P 2中点的轨迹方程。 解:设P x y 111(),,P

x y 222(),,则

x y x y 1212

2222

211212-=<>

-=<>

?????

??

<2>-<1>得

()()()()

x x x x y y y y 211221122

-+=

-+

即y y x x x x y y 21211212

2--=++()

设P 1P 2的中点为M x y ()00,,则

k y y x x x y P P 12

21210

02=--=

又k y x AM =--001

2

,而P 1、A 、M 、P 2共线

∴=k k P P AM 12,即y x x y 000

122--=

∴P P 12中点M 的轨迹方程是2402

2x y x y --+=

解析几何题怎么解

高考解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题), 共计30分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和

填空题考查直线, 圆, 圆锥曲线, 参数方程和极坐标系中的基础知识. 解答题重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 求解有时还要用到平几的基本知识,这点值得考生在复课时强化.

例1 已知点T 是半圆O 的直径AB 上一点,AB=2、OT=t (0

(1)写出直线B A ''的方程; (2)计算出点P 、Q 的坐标; (3)证明:由点P 发出的光线,经AB 反射后,反射光线通过点Q. 讲解: 通过读图, 看出'',B A 点的坐标.

(1 ) 显然()t A

-1,1'

, (),,‘

t B +-11 于是 直线B A ''

的方程为1+-=tx y ;

(2)由方程组???+-==+,

1,122tx y y x 解出),(10P 、),(2

2

21112t t t t Q +-+; (3)t

t k PT 1

001-=--=

, t t t t t t

t t t k QT

11112011222

22

=--=-+-+-=)(. 由直线PT 的斜率和直线QT 的斜率互为相反数知,由点P 发出的光线经点T 反射,反射光线通过点Q.

需要注意的是, Q 点的坐标本质上是三角中的万能公式, 有趣吗?

例2 已知直线l 与椭圆)0(122

22>>=+b a b

y a x 有且仅有一个交点Q ,且与x 轴、y 轴分别交于R 、S ,求以线段SR 为对角线的矩形ORPS 的一个顶点P 的轨迹方程.

讲解:从直线l 所处的位置, 设出直线l 的方程,

由已知,直线l 不过椭圆的四个顶点,所以设直线l 的方程为).0(≠+=k m kx y 代入椭圆方程,222222b a y a x b =+ 得 .)2(22222222b a m kmx x k a x b =+++ 化简后,得关于x 的一元二次方程 .02)(222222222=-+++b a m a mx ka x b k a 于是其判别式).(4))((4)2(222222222222222m b k a b a b a m a b k a m ka -+=-+-=? 由已知,得△=0.即.2222m b k a =+ ① 在直线方程

m kx y +=中,分别令y=0,x=0,求得).,0(),0,(m S k

m R -

令顶点P 的坐标为(x ,y ), 由已知,得???

????

=-=??????

?=-=.,.,y m x y k m y k m x 解得 代入①式并整理,得 12

2

22

=+y

b x a , 即为所求顶点P 的轨迹方程.

方程12

2

22=+y

b x a 形似椭圆的标准方程, 你能画出它的图形吗?

例3已知双曲线122

22=-b

y a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是

.23 (1)求双曲线的方程; (2)已知直线

)0(5≠+=k kx y 交双曲线于不同的点C ,D 且C ,D 都在以B 为圆心的圆上,求k 的值.

讲解:∵(1),332=a c 原点到直线AB :1=-b

y a x 的距离.

3,1.2322==∴==+=a b c ab

b a ab d .

故所求双曲线方程为 .13

22

=-y x

(2)把33522=-+=y x kx y 代入中消去y ,整理得 07830)31(22=---kx x k .

设CD y x D y x C ),,(),,(2211的中点是),(00y x E ,则 0120

0022

011551

5,.2

1313BE y x x k x y kx k k k x k

++==?=+===--- ,000=++∴k ky x 即

7,0,031531152

2

2=∴≠=+-+-k k k k k k k 又

故所求k=±

7.

为了求出k 的值, 需要通过消元, 想法设法建构k 的方程.

例4 已知椭圆C 的中心在原点,焦点F 1、F 2在x 轴上,点P 为椭圆上的一个动点,且∠F 1PF 2的最大值为90°,直线l 过左焦点F 1与椭圆交于A 、B 两点,△ABF 2的面积最大值为12.

(1)求椭圆C 的离心率; (2)求椭圆C 的方程. 讲解:(1)设112

212||,||,||2PF r PF r F F c ===, 对,21F PF ? 由余弦定理, 得

1)2

(2441244242)(24cos 2

212

22

12221221221212221121-+-≥--=--+=-+=∠r r c a r r c a r r c r r r r r r c r r PF F 0212=-=e ,

解出 .2

2=

e (2)考虑直线l 的斜率的存在性,可分两种情况: i) 当k 存在时,设l 的方程为)(c x k y +=………………①

椭圆方程为

),(),,(,122112222y x B y x A b y a x =+ 由.2

2=e 得 2

222,2c b c a ==. 于是椭圆方程可转化为 222220x y c +-=………………②

将①代入②,消去

y 得

02)(22222=-++c c x k x ,

整理为x 的一元二次方程,得 0)1(24)21(22222=-+++k c x ck x k .

则x 1、x 2是上述方程的两根.且22

1221122||k k c x x ++=-,2

21

22

21)1(22||1||k k c x x k AB ++=-+=,

AB 边上的高,1||2sin ||2

2

121k

k c F BF F F h +?=∠= c k k k k c S 21||)211(2221222+++= 2.=== ii) 当k 不存在时,把直线c x -=代入椭圆方程得2,||,2y AB S =±

== 由①②知S 的最大值为

22c 由题意得22c =12 所以2226b c == 2122=a

也可这样求解: ||||2

12121y y F F S -?=

||||21x x k c -??=

故当△ABF 2面积最大时椭圆的方程为:

.12

62

1222=+

y x

下面给出本题的另一解法,请读者比较二者的优劣: 设过左焦点的直线方程为:c my x

-=…………①

(这样设直线方程的好处是什么?还请读者进一步反思反思.)

椭圆的方程为:),(),,(,122112

2

22y x B y x A b

y a x =+

由.2

2=

e 得:,,22222c b c a ==于是椭圆方程可化为:0222

22=-+c y x ……② 把①代入②并整理得:02)2(222=---c mcy y m 于是21,y y 是上述方程的两根.

21|||AB y y ==-2)

2(441222222

++++=

m m c c m m

2

)1(2222++=

m m c , AB 边上的高2

12m c h +=

,

从而2222

22

)2(122122)1(2221||21++=+?++?==m m c m c m m c h AB S .

221

1

11

2222

22

c m m c ≤+++

+=

当且仅当m=0取等号,即.22max

c S =

由题意知1222=c , 于是 212,26222===a c b . 故当△ABF 2面积最大时椭圆的方程为:

.12

62

1222=+y x

例5 已知直线1+-=x y 与椭圆)0(122

22>>=+b a b

y a x 相交于A 、B 两点,且线段AB 的中点在直线02:=-y x l 上.(1)求此椭圆的离心率;

(2 )若椭圆的右焦点关于直线l 的对称点的在圆422

=+y x

上,求此椭圆的方程.

讲解:(1)设A 、B 两点的坐标分别为???

??=++-=1

1).,(),,(22

222211b y a

x x y y x B y x A ,则由 得 02)(2222222=-+-+b a a x a x b a ,

根据韦达定理,得

,22)(,22

22

212122221b

a b x x y y b a a x x +=++-=++=+ ∴线段AB 的中点坐标为(2

22

22

2,b a b b a a ++).

由已知得2

222222

222222)(22,02c a c a b a b a b b a a =∴-==∴=+-+,故椭圆的离心率为

22=e .

(2)由(1)知,c b

=从而椭圆的右焦点坐标为),0,(b F 设)0,(b F 关于直线02:=-y x l 的对称点为,02

221210),,(000000=?-+-=?--y

b x b x y y x 且则

解得

b y b x 5

4

5300==且

由已知得

4,4)5

4()53(,42

2220

2

=∴=+∴=+b b b y x ,故所求的椭圆方程为14822=+y x .

例6 已知⊙M :x Q y x

是,1)2(22

=-+轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点,

(1)如果3

24||=

AB ,求直线MQ 的方程;(2)求动弦AB 的中点P 的轨迹方程.

讲解:(1)由3

24||=

AB ,可得

,3

1

)322(1)2||(

||||2222=-=-=AB MA MP 由射影定理,得

,3|||,|||||2=?=MQ MQ MP MB 得 在

Rt △MOQ 中,

523||||||2222=-=-=MO MQ OQ ,故55-==a a 或,

所以直线AB 方程是;0525205252=+-=-+y x y x 或

(2)连接MB ,MQ ,设),0,(),,(a Q y x P 由点M ,P ,Q 在一直线上,得

(*),2

2x

y a -=- 由射影定理得|,|||||

2MQ MP MB ?=即(**),14)2(222=+?-+a y x

把(*)及(**)消去a ,并注意到2

1

)47(22≠=-+y y x

适时应用平面几何知识,这是快速解答本题的要害所在,还请读者反思其中的奥妙.

例7 如图,在Rt △ABC 中,∠CBA=90°,AB=2,AC=2

2

。DO ⊥AB 于O 点,OA=OB ,DO=2,曲线E 过C 点,动点P 在E 上运动,且保持| PA |+| PB |的值不变.

(1)建立适当的坐标系,求曲线E 的方程;

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

(新)高中数学圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程 1. 椭圆方程的第一定义:平面内与两个定点F 1,F 2的距离的和等于定长(定长通常等于2a ,且2a >F 1F 2) 的点的轨迹叫椭圆。 为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ (1)①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 22 2 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . 注:A.以上方程中,a b 的大小0a b >>,其中2 2 2 b a c =-; B.在22221x y a b +=和22221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2 x 和 2y 的分母的大小。 ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:12 22 2=+ b y a x 的参数方程为???==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵椭圆的性质 ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e = .【∵0a c >>,∴01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆。当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为2 2 2 x y a +=。】 ⑦焦(点)半径: i. 设),(00y x P 为椭圆)0(12222 b a b y a x =+上的一点,21,F F 为左、右焦点,则 ii.设),(00y x P 为椭圆 )0(12 22 2 b a a y b x =+上的一点,21,F F 为上、下焦点,则 ?-=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

高中数学 推理与证明 板块三 数学归纳法完整讲义(学生版).doc

学而思高中完整讲义:统计.板块一.随机抽样.学生版 题型一:数学归纳法基础 【例1】已知n 为正偶数,用数学归纳法证明1111111 12()234 124 2n n n n -+-+ +=+++ -++时,若已假设2(≥=k k n 为偶数)时命题为真,则还需要用归纳假设再证 ( ) A .1+=k n 时等式成立 B .2+=k n 时等式成立 C .22+=k n 时等式成立 D .)2(2+=k n 时等式成立 【例2】已知n 是正偶数,用数学归纳法证明时,若已假设n=k (2≥k 且为偶数)时命题 为真,,则还需证明( ) A.n=k+1时命题成立 B. n=k+2时命题成立 C. n=2k+2时命题成立 D. n=2(k+2)时命题成立 【例3】某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当 1+=k n 时命题也成立. 现已知当7=n 时该命题不成立,那么可推得 ( ) A .当n=6时该命题不成立 B .当n=6时该命题成立 C .当n=8时该命题不成立 D .当n=8时该命题成立 【例4】利用数学归纳法证明 “* ),12(312)()2)(1(N n n n n n n n ∈-???????=+???++ ”时,从“k n =”变到“1+=k n ”时,左边应增乘的因式是 ( ) A 12+k B 112++k k C 1)22)(12(+++k k k D 1 3 2++k k 【例5】用数学归纳法证明),1(1112 2 *+∈≠--= ++++N n a a a a a a n n ,在验证n=1时,左边计算所得的式子是( ) A. 1 B.a +1 C.2 1a a ++ D. 4 2 1a a a +++ 【例6】用数学归纳法证明n n n n n 2)()2)(1(=+++ ))(12(31*∈+????N n n ,从“k 到k+1”左端需乘的代数式是( ) 典例分析

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

高中数学圆锥曲线解题技巧方法总结

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数 2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝 对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|, 则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方 程8=表示的曲线是_____(答:双曲线的左支) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时1 22 22=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1 (0a b >>)。方程22 Ax By C +=表示椭圆的充要条 件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 若R y x ∈,,且62322=+y x ,则y x +的最大值是____,2 2 y x +的最小值是___ ) (2)双曲线:焦点在x 轴上: 2 2 22b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 如设中心在坐标原点O ,焦点1F 、2F 在坐标轴 上,离心率2= e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=) (3)抛物线:开口向右时2 2(0)y px p =>,开 口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在 分母大的坐标轴上。 如已知方程1212 2=-+-m y m x 表示焦点在y 轴 上的椭圆,则m 的取值范围是__(答:)2 3 ,1()1,( --∞) (2)双曲线:由x 2,y 2 项系数的正负决定,焦 点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例): ①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长 为2a ,短轴长为2b ;④准线:两条准线2 a x c =± ; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆 越圆;e 越大,椭圆越扁。 如(1)若椭圆152 2 =+m y x 的离心率510 = e ,则m 的值是__(答:3或 3 25); (2)以椭圆上一点和椭圆两焦点为顶点的三角 形的面积最大值为1时,则椭圆长轴的最小值为__(答: 22) (2)双曲线(以22 22 1x y a b -=(0,0a b >>)为 例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等 时,称为等轴双曲线,其方程可设为 2 2 ,0x y k k -=≠;④准线:两条准线2 a x c =±; ⑤ 离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大; ⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围: 0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几 何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线: 一条准线2 p x =-; ⑤离心率:c e a =,抛物线 ?1e =。 如设R a a ∈≠,0,则抛物线2 4ax y =的焦点坐标为 ________(答:)161 , 0(a ); 5、点00(,)P x y 和椭圆122 22=+b y a x (0a b >>)的 关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>;(2) 点00(,)P x y 在椭圆上?220 220b y a x +=1;(3)点 00(,)P x y 在椭圆内?2200 221x y a b +< 6.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交; 0?>?直线与双曲线相交,但直线与双曲线相交不一定有0?>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0?>是直线与双曲线相交的充分条件,但不是必要条件;0?>?直线与抛物线相交,但直线与抛物线相交不一定有0?>,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0?>也仅是直线与抛物线相交的充分条件,但不是必要条件。 (2)相切:0?=?直线与椭圆相切;0?=?直线与双曲线相切;0?=?直线与抛物线相切; (3)相离:0?中, 以00(,)P x y 为中点的弦所在直线的斜率k=0 p y 。 提醒:因为0?>是直线与圆锥曲线相交于两点的必要 条件,故在求解有关弦长、对称问题时,务必别忘了检验0?>! 11.了解下列结论 (1)双曲线1 2 222 =-b y a x 的渐近线方程为0=±b y a x ; (2)以x a b y ±=为渐近线(即与双曲线 12222=-b y a x 共渐近线)的双曲线方程为λ λ(22 22=-b y a x 为参数,λ≠0)。 (3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为2 2 1mx ny +=; (4)椭圆、双曲线的通径(过焦点且垂直于对称 轴的弦)为2 2b a ,焦准距(焦点到相应准线的距离) 为2b c ,抛物线的通径为2p ,焦准距为p ; (5)通径是所有焦点弦(过焦点的弦)中最短的弦; (6)若抛物线2 2(0)y px p =>的焦点弦为AB , 1122(,),(,)A x y B x y ,则①12||AB x x p =++; ②2 21212,4 p x x y y p ==- (7)若OA 、OB 是过抛物线2 2(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p 12.圆锥曲线中线段的最值问题: 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)

高一数学讲义完整版

高一数学复习讲义09年版 函数部分(1) 重点:1把握函数基本知识(定义域、值域) x(a>0、<0) 主要是指数函数y=a x(a>0、<0),对数函数y=log a 2二次函数(重点)基本概念(思维方式)对称轴、 开口方向、判别式 考点1:单调函数的考查 2:函数的最值 3:函数恒成立问题一般函数恒成立问题(重点讲) 4:个数问题(结合函数图象) 3反函数(原函数与对应反函数的关系)特殊值的取舍 4单调函数的证明(注意一般解法) 简易逻辑(较容易) 1. 2. 3. 4.

启示:对此部分重点把握第3题、第4题的解法(与集合的关系) 问题1:恒成立问题解法及题型总结(必考) 一般有5类:1、一次函数型:形如:给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m, n]内恒有f(x)>0(<0) 练习:对于满足0-4x+p-3恒成立的x的取值范围 2、二次函数型:若二次函数y=ax2+bx+c=0(a≠0)大于0恒成立,则有a>0Δ<0若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解 练习:1设f(x)=x2-2ax+2,当x∈[-1, +∞)时,都有f(x)>a恒成立, a的取值范围 2关于x的方程9x+(4+a)3x+4=0恒有解,求a的范围。 3、变量分离型 若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解 练习:若1-ax>1/(1+x),当对于x∈[0, 1]恒成立,求实数a的取值范围。 4利用图象 练习:当x∈(1, 2)时,不等式(x-1)2

(完整word版)高中数学圆锥曲线结论(最完美版本)

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦 点在直线PT 上的射影H 点的轨迹是以 长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0 P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过 Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点 分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为1 2 2tan 2 F PF S b γ ?=. 8. 椭圆 22 22 1x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、 Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于 两点P 、Q, A 1、A 2为椭圆长轴上的顶 点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴 的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22 221x y a b -=(a >

高中数学圆锥曲线解题技巧方法总结7558

圆锥曲线 1、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。 在椭圆122 22=+b y a x 中,以00(,)P x y 为中点的弦所在直线的斜率k=-0 202y a x b ; 在双曲线22 221x y a b -=中,以00(,)P x y 为中点的弦所在直线的斜率k=0 202y a x b ;在抛物线 22(0)y px p =>中,以00(,)P x y 为中点的弦所在直线的斜率k=0 p y 。 提醒:因为0?>是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0?>! 2.了解下列结论 (1)双曲线1222 2=-b y a x 的渐近线方程为02222 =-b y a x ; (2)以x a b y ±=为渐近线(即与双曲线12222=-b y a x 共渐近线)的双曲线方程为λλ(2222 =-b y a x 为参数,λ≠0)。 (3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为22 1mx ny +=; (4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为2 2b a ,焦准距(焦点到相应准线 的距离)为2 b c ,抛物线的通径为2p ,焦准距为p ; (5)通径是所有焦点弦(过焦点的弦)中最短的弦; (6)若抛物线2 2(0)y px p =>的焦点弦为AB ,1122(,),(,)A x y B x y ,则①12||AB x x p =++; ②2 21212,4 p x x y y p ==- (7)若OA 、OB 是过抛物线2 2(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p 3、解析几何与向量综合时可能出现的向量内容: (1)在ABC ?中,给出() 12 AD AB AC =+u u u r u u u r u u u r ,等于已知AD 是ABC ?中BC 边的中线; (2)在ABC ?中,给出2 22OC OB OA ==,等于已知O 是ABC ?的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点); (3)在ABC ?中,给出=++,等于已知O 是ABC ?的重心(三角形的重心是三角形三条中线的交点); (4)在ABC ?中,给出?=?=?,等于已知O 是ABC ?的垂心(三角形的垂心是三角形三条高的交点); (5) 给出以下情形之一:①AC AB //;②存在实数,AB AC λλ=r r 使;③若存在实数 ,,1,OC OA OB αβαβαβ+==+u u u r u u u r u u u r 且使,等于已知C B A ,,三点共线. (6) 给出0=?,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=?m ,等于已 知AMB ∠是钝角, 给出0>=?m ,等于已知AMB ∠是锐角,

高中数学完整讲义——复数

题型一:复数的概念 【例1】若复数()()2321a a a i -++-是纯虚数,则实数a 的值为( ) A.1?? B .2???C.1或2?? D .1- 【例2】若复数为纯虚数,则实数的值为( ) A . B. C. D .或 【例3】已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是( ) A.()15,? B .()13,??C.() 15, D.() 13, 【例4】若复数(2)i bi ?+是纯虚数,则实数b = . 【例5】设1z 是复数,211z z iz =-(其中1z 表示1z 的共轭复数),已知2z 的实部是1-,则2z 的虚部 为 . 【例6】复数3 2 1i +=( ) A.12i + ? ?B.12i - ???C .1- ? D.3 【例7】计算:0!1!2!100!i +i +i + +i = (i 表示虚数单位) 2 (1)(1)z x x i =-+-x 1-011-1典例分析 复数

【例8】设22(253)(22)i z t t t t =+-+-+,t ∈R ,则下列命题中一定正确的是( ) A .z 的对应点Z 在第一象限 B.z 的对应点Z 在第四象限 C.z 不是纯虚数 D .z 是虚数 【例9】在下列命题中,正确命题的个数为( ) ①两个复数不能比较大小; ①若22(1)(32)i x x x -+++是纯虚数,则实数1x =±; ①z 是虚数的一个充要条件是z z +∈R ; ①若a b ,是两个相等的实数,则()()i a b a b -++是纯虚数; ①z ∈R 的一个充要条件是z z =. ①1z =的充要条件是1 z z =. A .1 B.2? C .3? D.4 题型二:复数的几何意义 【例10】复数i i z -+=1)2(2 (i 是虚数单位)在复平面上对应的点位于( ) A .第一象限? B.第二象限 ?C.第三象限 D.第四象限 【例11】复数13i z =+,21i z =-,则复数 1 2 z z 在复平面内对应的点位于( ) A .第一象限? B .第二象限 C.第三象限?? D .第四象限 【例12】在复平面内,复数2009 2 1i (1i)+-对应的点位于( ) A .第一象限 ? B .第二象限 C .第三象限 D .第四象限 【例13】在复平面内,复数sin2cos2z i =+对应的点位于( ) A .第一象限?? B.第二象限?? C.第三象限? ?D .第四象限

高中数学完整讲义——复数

高中数学讲义 题型一:复数的概念 【例1】若复数()()2321a a a i -++-是纯虚数,则实数a 的值为( ) A .1 B .2 C .1或2 D .1- 【例2】若复数为纯虚数,则实数的值为( ) A . B . C . D .或 【例3】已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是( ) A .()15, B .()13, C .(1 D .(1 【例4】若复数(2)i bi ?+是纯虚数,则实数b = . 【例5】设1z 是复数,211z z iz =-(其中1z 表示1z 的共轭复数),已知2z 的实部是1-,则2z 的虚部 为 . 【例6】复数3 2 1i +=( ) A .12i + B .12i - C .1- D .3 【例7】计算:0!1!2! 100!i +i +i + +i = (i 表示虚数单位) 2(1)(1)z x x i =-+-x 1-011-1典例分析 复数

高中数学讲义 【例8】设22(253)(22)i z t t t t =+-+-+,t ∈R ,则下列命题中一定正确的是( ) A .z 的对应点Z 在第一象限 B .z 的对应点Z 在第四象限 C .z 不是纯虚数 D .z 是虚数 【例9】在下列命题中,正确命题的个数为( ) ①两个复数不能比较大小; ②若22(1)(32)i x x x -+++是纯虚数,则实数1x =±; ③z 是虚数的一个充要条件是z z +∈R ; ④若a b , 是两个相等的实数,则()()i a b a b -++是纯虚数; ⑤z ∈R 的一个充要条件是z z =. ⑥1z =的充要条件是1 z z =. A .1 B .2 C .3 D .4 题型二:复数的几何意义 【例10】复数i i z -+=1)2(2 (i 是虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【例11】复数13i z =+,21i z =-,则复数 1 2 z z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【例12】在复平面内,复数2009 2 1i (1i)+-对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【例13】在复平面内,复数sin 2cos 2z i =+对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限

高考数学圆锥曲线综合题型归纳解析

圆锥曲线综合题型归纳解析 【知识点精讲】 一、定值问题 解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量——函数——定值”,具体操作程序如下: (1)变量——选择适当的量为变量; (2)函数——把要证明为定值的量表示成变量的函数; (3)定值——化简得到函数的解析式,消去变量得到定值。 求定值问题常见的方法有两种: (1)从特殊情况入手,求出定值,在证明定值与变量无关; (2)直接推理、计算,并在计算过程中消去变量,从而得到定值。 二、求最值问题常用的两种方法 (1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形的性质来解决。 (2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,在求该函数的最值。求函数的最值常见的方法有基本不等式法、单调性法、导数法、和三角换元等,这是代数法。 三、求定值、最值等圆锥曲线综合问题的“三重视” (1)重视定义在解题中的应用(优先考虑); (2)重视曲线的几何特征特别是平面几何的性质与方程的代数特征在解题中的作用; (3)重视根与系数的关系(韦达定理)在解题中的应用(涉及弦长、中点要用)。 四、求参数的取值范围 根据已知条件及题目要求建立等量或不等量关系,再求参数的范围。 题型一、平面向量在解析几何中的应用 【思路提示】解决平面向量在解析几何中的应用问题要把几何特征转化为向量关系,并把向量用坐标表示。常见的应用有如下两个: (1)用向量的数量积解决有关角的问题: ①直角12120a b x x y y ?=+=r r g ; ②钝角10||||a b a b ?-<= == r r r r g r r g 。

(完整版)上海高中数学-复数讲义

复数 一、知识点梳理: 1、 i 的周期性: 4 4n+1 4n+2 4n+3 4n i =1 ,所以, i =i, i =-1, i =-i, i =1 n Z 4n 4n 1 4n 2 4n 3 i i i i C a bi |a,b R 叫做复数集。 N Z Q R C. 3、复数相等: a bi c di a c 且b=d ; a bi 0 a 0且b=0 实数 (b=0) 4、复数的分类: 复数 Z a bi 一般虚数 (b 0,a 0) 虚数 (b 0) 纯虚数 (b 0,a 0) 虚数不能比较大小,只有等与不等。即使是 3 i,6 2i 也没有大小。 uur uur 5、复数的模:若向量 OZ 表示复数 z ,则称 OZ 的模 r 为复数 z 的模, z |a bi| a 2 b 2 ; 8、复数代数形式的加减运算 复数 z 1与 z 2的和: z 1+z 2=( a +bi )+( c +di )=( a +c )+( b +d )i . a, b, c, d R 复数 z 1与 z 2的差: z 1- z 2=( a +bi )-( c +di )=( a - c )+( b -d )i . a, b, c, d R 复数的加法运算满足交换律和结合律 数加法的几何意义: 复数 z 1=a +bi ,z 2=c +di a, b,c, d R ;OZ = OZ 1 +OZ 2 =( a ,b )+( c , d )=( a +c ,b +d ) =( a +c )+( b +d )i uurur uuuur uuuur 复数减法的几何意义:复数 z 1- z 2的差( a - c )+( b -d )i 对应 由于 Z 2Z 1 OZ 1 OZ 2 ,两个 复数的差 z -z 1 与连接这两个向量终点并指向被减数的向量对应 . 9. 特别地, z u A u B ur z B - z A. , z u A u B ur AB z B z A 为两点间的距离。 |z z 1 | |z z 2 |z 对应的点的轨迹是线段 Z 1Z 2的垂直平分线; |z z 0| r , z 对应 的点的 2 、复数的代数形式: a bi a,b R , a 叫实部, b 叫虚部,实部和虚部都是实数。 积或商的模可利用模的性质( 1) z 1 L z n z 1 z 2 L z n ,(2) z 1 z 1 z 2 z 2 z 2 6、复数的几何意义: 复数 z a bi a,b R 一一对应 复平面内的点 Z(a,b) 一一对应 uur 复数 Z a bi a,b R 平面向量 OZ , 7、复平面: 这个建立了直角坐标系来表示复数的坐标平面叫其中 x 轴叫做实轴, y 轴叫做虚轴 ,实轴上的点都表示实数; 除了原点外, 虚轴上的点都表示纯虚数

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

相关文档
最新文档