数值分析第2章习题

数值分析第2章习题
数值分析第2章习题

一、选择题(每题5分,共计20分)

1、已知方程0523=--x x 在区间[]32,存在唯一正根,若用二分法计算,至少迭

代( C )次可以保证误差不超过3102

1-?。(二分法二分次数) A 5; B 7; C 10; D 12

2、用一般迭代法求方程()0=x f 的根,将方程表示为同解方程()x x ?=,则()0=x f 的根是(C )(不动点迭代法根的几何意义)

A.x y =与()x y ?=的交点

B.x y =与x 轴交点的横坐标

C.x y =与()x y ?=交点的横坐标

D.()x y ?=与x 轴交点的横坐标

3、分别改写方程042=-+x x 为42+-=x x 和2ln /)4ln(x x -=的形式,

对两者相应迭代公式求所给方程在[1,2]内的实根,下列描述正确的是:(B )(迭代的收敛性)

A. 前者收敛,后者发散

B. 前者发散,后者收敛

C. 两者均收敛发散

D. 两者均发散

分析:()x ,?<1

4、解非线性方程0)(=x f 的牛顿迭代法的收敛阶为( D )。(收敛阶数)

A 线性收敛;

B 局部线性收敛;

C 平方收敛;

D 局部平方收敛。

二、填空题(每小题5分,共计20分)

1、非线性方程0)(=x f 的迭代函数)( x x ?=在有解区间满足 ,则使用该迭代函数的迭代解法一定是局部收敛的。(迭代函数) 答案:1)(<'x ?

2、在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )的二阶导数不变号,则初始点x 0的选取依据为 。(切线法) 答案:0)()(00>'x f x f

3、求方程()x f x =根的牛顿迭代公式是 。(牛顿迭代公式) 答案:()()

n n n n n x f x f x x x ,11---=+ 4、割线法迭代公式是 。(割线法迭代)

答案:

()()()()111--+---

=k k k k k k k x x x f x f x f x x

三、解答题(每题12分,共计60分)

1、用牛顿法求()cos 0f x x x =-=的近似解。(牛顿迭代法)

解:由零点定理,cos 0x x -=在(0,)2

π

内有根。 由牛顿迭代公式1cos 0,1,......1sin n n

n n n x x x x n x +-=-=+ 取04x π=得,12340.73936133;0.7390851780.7390851330.739085133

x x x x ==== 故取*40.739085133x x ≈=

2、用割线法求解方程x-sin x-0.5=0在1.5附近的一个根。(割线法求根) 解:割线法迭代公式为:

)()sin (sin )(5.0sin 1111---+-------=k k k k k k k k k k x x x x x x x x x x 取初始值x0=1.4,x1=1.6迭代计算,得到:

)4.16.1()4.1sin 6.1(sin )4.16.1(5.06.1sin 6.16.12-?------=x

2.0)9854497.09995736.0(2.09995736.01.16.1?----

==1.4919426 3x =1.49702,4x =1.49730

3、设a 为常数,建立计算a 的牛顿迭代公式,并求115的近似值,要求计算结果保留小数点后5位。 (牛顿法)

解:令p (x )=x 2-a ,则p (x )=0的解即为a 。其牛顿迭代公式为:

)(212)()(21n

n n n n n n n n x a x x a x x x f x f x x +=--='-=+ 取a =115,x n +1= ?(x n + 115/x n )

f (x )=2>0 取x 0=11

x 1=?(11+115/11)=10.72727

x 2=?(10.72727+115/10.72727)= 10.72381

x 2=?(10.72381+115/10.72381)= 10.72381

4、已知函数, 试分析以下两种迭代公式是否可取。(迭代收敛性)

(1) (2) 解:由公式(1)有, 2

5)(3-=x x ? 求导得22

3)('x x =

?在[2,3]内1|)('|>x ? 所以迭代公式(1)在区间内不收敛,因而不可取。 由公式(2)有,352)(+=x x ?

求导得()052132)('32

>+=x x ?可知)(x ?在区间内单调递增,)('x ?在区间内单调递减。故有2 <)2(?<)(x ?<)3(?< 3

1392

)2(')('03<=<

由收敛定理可知,公式(2)在区间[2,3]内收敛,因而可取。

5、0*=x 是0221)(22=---=x x e x f x 的几重根?取,5.00=x 用求重根的修正牛顿公式计算此根的近似值,精确至410)(-≤k x f 。(修正牛顿法)

解:22221)(x x e x f x ---=

0)0(,242)('2'=--=f x e x f x

0)0(,44)(''2''=-=f e x f x

08)0(,8)('''2'''≠==f e x f x

故0*=x 是0221)(22=---=x x e x f x 的3重根,即m=3.

修正牛顿迭代公式为:

2

531-=+k k x x 3152+=+k k x x []3,2,052)(f 3∈

=--=x x x x

k

x k k x k k x e x x e x x k k 42222132221------=+ 取5.00=x ,计算得到00032689.02=x 满足要求。

注:本试卷由电控14-3班第六组黑桃2和工商14-1班第三组梅花2整合而成,卷中题目与答案如发现错误之处,请谅解并希望大家指出,我们予以及时更改。

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

数值分析参考答案(第二章)doc资料

数值分析参考答案(第 二章)

第二章 插值法 1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23537623l x l x x x x x x x =-+=---+-+=+- 2.给出()ln f x x =的数值表 用线性插值及二次插值计算ln0.54的近似值。 解:由表格知, 01234012340.4,0.5,0.6,0.7,0.8;()0.916291,()0.693147()0.510826,()0.356675()0.223144 x x x x x f x f x f x f x f x ======-=-=-=-=- 若采用线性插值法计算ln0.54即(0.54)f , 则0.50.540.6<<

2 112 1 221 11122()10(0.6)()10(0.5)()()()()() x x l x x x x x x l x x x x L x f x l x f x l x -==----= =---=+ 6.93147(0.6) 5.10826(0.5)x x =--- 1(0.54)0.62021860.620219L ∴=-≈- 若采用二次插值法计算ln0.54时, 1200102021101201220212001122()() ()50(0.5)(0.6) ()() ()() ()100(0.4)(0.6) ()()()() ()50(0.4)(0.5) ()() ()()()()()()() x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x L x f x l x f x l x f x l x --==------==-------= =----=++ 500.916291(0.5)(0.6)69.3147(0.4)(0.6)0.51082650(0.4)(0.5) x x x x x x =-?--+---?--2(0.54)0.615319840.615320L ∴=-≈- 3.给全cos ,090x x ≤≤的函数表,步长1(1/60),h '==若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界。 解:求解cos x 近似值时,误差可以分为两个部分,一方面,x 是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数cos x 的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综合以上两方面的因素。 当090x ≤≤时, 令()cos f x x = 取0110,( )606018010800 x h ππ ===?=

数值分析第1章习题

(A)1. 3.142和3.141分别作为π的近似数具有()和()为有效数字(有效数字) A. 4和3 B. 3和2 C. 3和4 D. 4和4 解..14159.3==*πx ,1103142.0?=a 时,1=m ,3102 1...00041.0)(-*?≤ =-=a x a E m-n= -3,所以n=4,即有4位有效数字。当1103141.0?=a 时,1=m , 2102 1005.0...00059.0)(-*?=≤=-=a x a E ,m-n= -2,所以n=3,即有3位有效数字。 (A)2. 为了减少误差,在计算表达式19992001-时,应该改为 199920012+计算,是属于()来避免误差。(避免误差危害原则) A.避免两相近数相减; B.化简步骤,减少运算次数; C.避免绝对值很小的数做除数; D.防止大数吃小数 解:由于2001和1999相近,两数相减会使误差大,因此化加法为减法,用的方法是避免误差危害原则。 (B)3.下列算式中哪一个没有违背避免误差危害原则(避免误差危害原则) A.计算123460.60.612345++- B.计算 25612520000450?- C.计算10.99994- D.计算11x x +- 解:A 会有大数吃掉小数的情况C 中两个相近的数相减,D 中两个相近的数相减也会增大误差 (D)4.若误差限为5105.0-?,那么近似数0.003400有()位有效数字。(有效数字) A. 5 B. 4 C. 7 D. 3 解:51021)(-?= a E 即m-n= -5,2103400.0-?=a ,m= -2,所以n=3,即有3位有效数字 (A)5.设*x 的近似数为40.32710a =?,如果a 具有3位有效数字,则a 的相对误差限为 ()(有效数字与相对误差的关系) A . 35103-g B. 33105-g C. 53105-g D. 5103 g -2 解:因为40.32710a =?所以31=a ,因为a 有3位有效数字,所以n=3,由相对误差和有效数字的关系可得a 的相对误差限为 31103510.5--?== n r a δ

数值分析复习题要答案

第一章 1、ln2=0.69314718…,精确到 10-3 的近似值是多少? 解 精确到 10-3=0.001,即绝对误差限是 e =0.05%,故至少要保留小数点后三位才可以。 ln2≈0.693。 2、设115.80,1025.621≈≈x x 均具有5位有效数字,试估计由这些数据计算21x x , 21x x +的绝对误差限 解:记126.1025, 80.115x x == 则有11232411 10, | 102|||2 x x x x --≤?-≤?- 所以 121212121212211122||||||||||||x x x x x x x x x x x x x x x x x x -=-+-+≤-- 3411 80.11610 6.10102522 0.007057-==??+≤?? 1212112243|()|||11 |10100.0005522 |x x x x x x x x --≤≤?+?=+-+-+- 3、一个园柱体的工件,直径d 为10.250.25mm,高h 为40.00 1.00mm,则它的体 积V 的近似值、误差和相对误差为多少。 解: ()() 22222222 4 314210254000000330064 221025400002510251002436444 3300624362436 0073873833006 , .....; ()()()......, ..().()..% .r d h V d h V mm d h V dh d d h V mm V V V πππππεεεεε= ≈=??===+=???+?==±====第二章: 1、分别利用下面四个点的Lagrange 插值多项式和Newton 插值多项式N 3(x ), 计算L 3(0.5)及N 3(-0.5) x -2 -1 0 1 f (x ) -1 1 2

华南理工大学数值分析试题-14年下-C

华南理工大学研究生课程考试 《数值分析》试卷C (2015年1月9日) 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 本试卷共八大题,满分100分,考试时间为150分钟。 一、(12分)解答下列问题: 1)设近似值0x >,x 的相对误差为δ,试证明ln x 的绝对误差近似为δ。 2)利用秦九韶算法求多项式 542()681p x x x x x =-+-+ 在3x =时的值(须写出计算形式),并统计乘法次数。 (12分)解答下列问题: 1)设()235f x x =+,求[]0,1,2f 和[]0,1,2,3f 。 2)利用插值方法推导出恒等式: 33220,0[]j j i i x j i x i j =≠=-=-∑∏ 。

(1)设{}∞ =0)(k k x q 是区间[]1,0上带权1=ρ而最高次项系数为1的正交多项式族,其中1)(0=x q ,求1()q x 和2()q x 。 (2)求形如2y a bx =+的经验公式,使它与下列数据拟合: 四、(14分)对积分()10I f x dx = ?,试 (1)构造一个以012113,,424 x x x ===为节点的插值型求积公式; (2)指出所构造公式的代数精度; (3)用所得数值求积公式计算积分1 203x dx ?的精确值; (4)指出所得公式与一般的Newton-Cotes 型公式在形式上的重要区别。

(1)设?? ????=4321A ,计算1A 、()Cond A ∞和()A ρ。 (2)用列主元Gauss 消去法解方程组: 12312315410030.112x x x ????????????=????????????-?????? 六、(13分)对2阶线性方程组 11112212112222 a x a x b a x a x b +=??+=? (11220a a ≠ ) (1)证明求解此方程组的Jacobi 迭代与Gauss-Seidel 迭代同时收敛或同时发散; (2)当同时收敛时,试比较它们的收敛速度。

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

数值分析习题集及答案

(适合课程《数值方法A 》和《数值方法B 》) 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位 有效数字: ***** 123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: * * * * * * * * 12412324(),(),()/,i x x x ii x x x iii x x ++其中* * * * 1234,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 11783 100 n n Y Y -=- ( n=1,2,…) 计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982). 8. 当N 充分大时,怎样求 2 11N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设2 12S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加, 而相对误差却减小. 11. 序列{}n y 满足递推关系1101 n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6 (21)f =-,取 2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 6 3 11,(322), ,9970 2. (21) (322) --++ 13. 2 ()ln(1)f x x x =- -,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等 价公式 2 2 ln(1)ln(1)x x x x - -=-+ + 计算,求对数时误差有多大? 14. 试用消元法解方程组{ 10 10 12121010; 2. x x x x +=+=假定只用三位数计算,问结果是否可靠? 15. 已知三角形面积 1sin , 2 s ab c = 其中c 为弧度, 02c π << ,且测量a ,b ,c 的误差分别为,,.a b c ???证 明面积的误差s ?满足 . s a b c s a b c ????≤ ++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令

数值分析习题集及答案[1].(优选)

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出 它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=( n=1,2,…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若

数值分析1-4习题及答案

1、 0.1%,要取几位有效数字? ( c ) (a) 2 (b) 3 (c) 4 (d) 5 2、若* 12.30x =是经过四舍五入得到的近似数,则它有几位有效数字? ( c ) (a) 2 (b) 3 (c) 4 (d) 5 3、已知n +1个互异节点(x 0,y 0), (x 1,y 1),…, (x n ,y n )和过这些点的拉格朗日插值基函数l k (x )(k =0,1,2,…,n ),且ω(x )=(x -x 0) (x -x 1)… (x -x n ).则n 阶差商f (x 0,x 1,…, x n )= ( ) (a) ∑=n k k k y x l 0 )( (b) ∑='n k k k k x l y 0)( (c) ∑=n k k k x y 0)(ω (d) ∑='n k k k x y 0)(ω 4、已知由数据(0,0),(0.5,y ),(1,3),(2,2)构造出的三次插值多项式 33()6 P x x y 的 的系数是,则 等于 ( ) (a) -1.5 (b) 1 (c) 5.5 (d) 4.25 5、设(0,1,2,3,4)i x i =为互异结点,()i l x 为拉格朗日插值基函数,则 4 2 () ()i i i x x l x =-∑等于 ( a ) (a) 0 (b) 1 (c) 2 (d) 4 4()[,],()()(),()(),( )(), ' () ' (),22 ()()_________________________f x C a b H x a b a b H a f a H b f b H f H a f a f x H x ∈++====-=设是满足下列插值条件的三次多项式:则插值余项 1、 是以0,1,2为节点的三次样条函数,则b=-2,c=3 2、 已知(1)0,(1)3,(2)4,f f f =-=-=写出()f x 的牛顿插值多项式 2()P x =___2537 623x x +-__,其余项表达式 R(x)=__() (1)(1)(4) [1,4]6 f x x x ξξ'''-+-∈-_______________________ 3、 确定求积公式1 0121 ()(1)(0)'(1)f x dx A f A f A f -≈-++? 中的待定参数,使其代数精度 尽量高,则A 0=_ 29__________, A 1=__169________, A 2=_29 _______,代数精度=__2_________。

郑州大学数值分析重点考察内容及各章习题

《数值分析》 重点考察内容及各章作业答案 学院: 学号: 姓名:

重点考察内容 基本概念(收敛阶,收敛条件,收敛区域等), 简单欧拉法。 第一章基础 掌握:误差的种类,截断误差,舍入误差的来源,有效数字的判断。 了解:误差限,算法及要注意的问题。 第二章插值 掌握:Hermite插值,牛顿插值,差商计算,插值误差估计。 了解:Lagrange插值 第三章数据拟合 掌握:给出几个点求线性拟合曲线。 了解:最小二乘原理 第四章数值积分微分 掌握:梯形公式,Simpson公式,代数精度,Gauss积分,带权Gauss积分公式推导,复化梯形公式推导及算法。 了解:数值微分,积分余项 第五章直接法 掌握:LU分解求线性方程组,运算量 了解:Gauss消去法,LDL,追赶法 第六章迭代法 掌握:Jacobi,Gauss-Seidel迭代格式构造,敛散性分析,向量、矩阵的范数、谱半径 了解:SOR迭代 第七章Nolinear迭代法 掌握:牛顿迭代格式构造,简单迭代法构造、敛散性分析,收敛阶。 了解:二分法,弦截法 第八章ODE解法 掌握:Euler公式构造、收敛阶。 了解:梯形Euler公式、收敛阶,改进Euler公式 题目类型:填空,计算,证明综合题

第一章 误差 1. 科学计算中的误差来源有4个,分别是________,________,________,________。 2. 用Taylor 展开近似计算函数000()()'()()f x f x f x x x ≈+-,这里产生是什么误差? 3. 0.7499作 3 4 的近似值,是______位有效数字,65.380是舍入得到的近似值,有____几位有效数字,相对误差限为_______. 0.0032581是四舍五入得到的近似值,有_______位有效数字. 4. 改变下列表达式,使计算结果比较精确: (1)11,||1121x x x x --++ (2 ||1x (3) 1cos ,0,|| 1.x x x x -≠ (4)sin sin ,αβαβ-≈ 5. 采用下列各式计算61)时,哪个计算效果最好?并说明理由。 (1) (2 )99-3 )6 (3-(4 6. 已知近似数*x 有4位有效数字,求其相对误差限。 上机实验题: 1、利用Taylor 展开公式计算0! k x k x e k ∞ ==∑,编一段小程序,上机用单精度计算x e 的函数 值. 分别取x =1,5,10,20,-1,-5,-10,-15,-20,观察所得结果是否合理,如不合理请分析原因并给出解决方法. 2、已知定积分1 ,0,1,2,,206 n n x I dx n x ==+? ,有如下的递推关系 111 110 0(6)61666 n n n n n x x x x I dx dx I x x n ---+-===++-? ? 可建立两种等价的计算公式 (1) 1016,0.154n n I I I n -= -=取; (2) 12011),0.6n n I nI I n -=-=(取

数值分析习题集及答案Word版

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字. 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误 差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =- 计算,求对数时误差有多大?

数值分析习题

习题1 1. 填空题 (1) 为便于算法在计算机上实现,必须将一个数学问题分解为 的 运算; (2) 在数值计算中为避免损失有效数字,尽量避免两个 数作减法运算;为避免 误差的扩大,也尽量避免分母的绝对值 分子的绝对值; (3) 误差有四大来源,数值分析主要处理其中的 和 ; (4) 有效数字越多,相对误差越 ; 2. 用例1.4的算法计算10,迭代3次,计算结果保留4位有效数字. 3. 推导开平方运算的误差限公式,并说明什么情况下结果误差不大于自变量误差. 4. 以下各数都是对准确值进行四舍五入得到的近似数,指出它们的有效数位、误差限和相对误差限. 95123450304051104000003346087510., ., , ., .x x x x x -==?===? 5. 证明1.2.3之定理1.1. 6. 若钢珠的的直径d 的相对误差为1.0%,则它的体积V 的相对误差将为多少。(假定钢珠为标准的球形) 7. 若跑道长的测量有0.1%的误差,对400m 成绩为60s 的运动员的成绩将会带来多大的误差和相对误差. 8. 为使20的近似数相对误差小于0.05%,试问该保留几位有效数字. 9. 一个园柱体的工件,直径d 为10.25±0.25mm,高h 为40.00±1.00mm,则它的体积V 的近似值、误差和相对误差为多少. 10 证明对一元函数运算有 r r xf x f x k x k f x εε'≈= () (())(),() 其中 并求出157f x x x ==()tan ,.时的k 值,从而说明f x x =()tan 在2 x π ≈时是病态问题. 11. 定义多元函数运算 1 1 1,,(),n n i i i i i i S c x c x εε====≤∑∑其中 求出S ε()的表达式,并说明i c 全为正数时,计算是稳定的,i c 有正有负时,误差难以控制. 12. 下列各式应如何改进,使计算更准确:

数值分析习题

习题一 1.1 求下列各数的具有四位有效数字的近似值, 并指出其绝对误差限和相对误差限 )1.0ln(,121,101 1,1014321== = = x x x x 1.2 下列各数都是对准确值进行四舍五入得到的近似值, 指出它们的绝对误差限、相对误差限和有效数字的位 数。 3 * 5* 4* 3* 2* 1100.5,5000,50.31,3015.0,0315.0?=====x x x x x 1.3 为了使 3 1的近似值的相对误差不超过0.1%, 问应取几位有效数字? 1.4 怎样计算下列各题才能使得结果比较精确? (1) x x sin )sin(-+ε,其中ε充分小 (2) ? ++1 2 1N N x dx ,其中N 是充分大的正数 (3) x x sin cos 1-,其中x 充分小 (4) o 1cos 1- (5) 1001.0-e (6) )11010ln(84-- 1.5 求方程01562=+-x x 的两个根, 使至少具有四位有效数字。 习题二 2.1 证明方程043 =-+x x 在区间[1,2]内有且仅有一个根。如果用二分法求它具有五位有效数字的根,试问需对 分多少次?(不必求根) 2.2 用二分法求方程0134 =+-x x 在[0.3, 0.4]内的一个根, 精度要求2 10 2 1-?= ε。 2.3 找出下列方程的有根区间,选择适当的初始点用二分法求方程的根,精度要求2 10 -=ε。 (1) 02 =--x x ; (2) 06cos 2 =-++-x e x x ; (3) 01tan =--x x ; (4) 0sin 2=--x e x 。 2.4 考虑方程032 =-x e x ,将其改写为3 x e x ± =,取00=x ,用两种迭代公式迭代,分别收敛到1.0和-0.5附 近的两个根(取精度要求3 10-=ε)。

数值分析第四版习题和答案解析

第四版 数值分析习题 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝ 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大这个计算过程 稳定吗 12.计算,取,利用下列等式计算,哪一个得到的结果最好 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大若改用另一等价公式 计算,求对数时误差有多大 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 . 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3.

4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误 差做比较. 2.求证: (a)当时,. (b)当时,. 3.在次数不超过6的多项式中,求在的最佳一致逼近多项式.

数值分析课程第五版课后习题答案(李庆扬等)

第一章 绪论(12) 1、设0>x ,x 的相对误差为δ,求x ln 的误差。 [解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=* ****1)()(ln )(ln x x x x x , 相对误差为* * ** ln ln ) (ln )(ln x x x x r δ εε= = 。 2、设x 的相对误差为2%,求n x 的相对误差。 [解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为n n x x n x n x x n x x x ** 1 *** %2%2) ()()()(ln * ?=='=-=εε, 相对误差为%2) () (ln )(ln *** n x x x n r == εε。 3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字: 1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5 ?=x 。 [解]1021.1*1 =x 有5位有效数字;0031.0* 2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56* 4 =x 有5位有效数字;0.17*5?=x 有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中* 4*3*2*1,,,x x x x 均为第3题所给 的数。 (1)* 4*2*1x x x ++; [解]3 334* 4*2*11** *4*2*1*1005.1102 1 10211021)()()()()(----=?=?+?+?=++=? ??? ????=++∑x x x x x f x x x e n k k k εεεε; (2)* 3*2 *1x x x ;

数值分析最佳习题(含答案)

第一章 绪论 姓名 学号 班级 习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。 1 若误差限为5105.0-?,那么近似数有几位有效数字(有效数字的计算) 解:2*103400.0-?=x ,325*102 1102 1---?=?≤-x x 故具有3位有效数字。 2 14159.3=π具有4位有效数字的近似值是多少(有效数字的计算) 解:10314159.0?= π,欲使其近似值*π具有4位有效数字,必需 41*102 1 -?≤-ππ,3*3102 1102 1--?+≤≤?-πππ,即14209.314109.3*≤≤π 3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +, b a ?有几位有效数字(有效数字的计算) 解:3*1021 -?≤-a a ,2*102 1-?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102 1 10211021)()(---?≤?+?≤ -+-≤+-+b b a a b a b a 故b a +至少具有2位有效数字。 2123*****102 1 0065.01022031.1102978.0)()(---?≤=?+?≤ -+-≤-b b a a a b b a ab

故b a ?至少具有2位有效数字。 4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差(误差的计算) 解:已知δ=-* *x x x ,则误差为 δ=-= -* **ln ln x x x x x 则相对误差为 * * ** * * ln ln 1ln ln ln x x x x x x x x δ = -= - 5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=, 已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v 2π=的绝对误差 限与相对误差限。(误差限的计算) 解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ 绝对误差限为 πππ252.051.02052)5,20(),(2=??+????≤-v r h v 相对误差限为 %420 1 20525) 5,20() 5,20(),(2 ==??≤ -ππv v r h v 6 设x 的相对误差为%a ,求n x y =的相对误差。(函数误差的计算) 解:%* *a x x x =-, )%(* **** *na x x x n x x x y y y n n n =-≤-= - 7计算球的体积,为了使体积的相对误差限为%1,问度量半径r 时允许的相对误差限为多大(函数误差的计算)

数值分析试题1

数值分析试卷1 一、填空题(每空2分,共30分) 1. 近似数231.0=*x 关于真值229.0=x 有____________位有效数字; 2. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是_______________________________________________; 3. 对1)(3++=x x x f ,差商=]3,2,1,0[f _________________; =]4,3,2,1,0[f ________; 4. 已知??? ? ??-='-=1223,)3,2(A x ,则=∞||||Ax ________________,=)(1A Cond ______________________ ; 5. 求解线性方程组?????=+=+045 11532121x x x x 的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径=)(G ρ_______________; 二、(12分)(1)设LU A =,其中L 为下三角阵,U 为单位上三角阵。已知 ?????? ? ??------=2100121001210012A ,求L ,U 。 (2)设A 为66?矩阵,将A 进行三角分解:LU A =,L 为单位下三角阵,U 为上三角阵,试写出L 中的元素65l 和U 中的元素56u 的计算公式。 三、给定数据表如下 x 0.20.40.60.81 1.2f(x)212523202124 (1) 用三次插值多项式计算f ( 0.7 ) 的近似值; (2) 用二次插值多项式计算f ( 0.95 ) 的近似值: (3) 用分段二次插值计算 f ( x ) )2.12.0(≤≤x 的近似值能保证有几位有

相关文档
最新文档