高中数学高考总复习函数的奇偶性习题与详细讲解

高中数学高考总复习函数的奇偶性习题与详细讲解
高中数学高考总复习函数的奇偶性习题与详细讲解

高中数学高考总复习函数的奇偶性习题及详解

一、选择题

1.(文)下列函数,在其定义域既是奇函数又是增函数的是( ) A .y =x +x 3

(x ∈R) B .y =3x

(x ∈R)

C .y =-log 2x (x >0,x ∈R)

D .y =-1

x

(x ∈R ,x ≠0)

[答案] A

[解析] 首先函数为奇函数、定义域应关于原点对称,排除C ,若x =0在定义域,则应有f (0)=0,排除B ;又函数在定义域单调递增,排除D ,故选A.

(理)下列函数中既是奇函数,又在区间[-1,1]上单调递减的是( ) A .f (x )=sin x

B .f (x )=-|x +1|

C .f (x )=12(a x +a -x

)

D .f (x )=ln 2-x

2+x

[答案] D

[解析] y =sin x 与y =ln 2-x 2+x 为奇函数,而y =12(a x +a -x

)为偶函数,y =-|x +1|是

非奇非偶函数.y =sin x 在[-1,1]上为增函数.故选D.

2.(2010·理,4)若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=( )

A .-1

B .1

C .-2

D .2

[答案] A

[解析] f (3)-f (4)=f (-2)-f (-1)=-f (2)+f (1)=-2+1=-1,故选A. 3.(2010·)已知f (x )与g (x )分别是定义在R 上奇函数与偶函数,若f (x )+g (x )=log 2(x 2

+x +2),则f (1)等于( )

A .-1

2

B.1

2 C .1

D.32

[答案] B

[解析] 由条件知,???

??

f

1+g 1=2

f

-1+g -1=1

∵f (x )为奇函数,g (x )为偶函数.

∴?

????

f 1+

g 1=2

g 1-f 1=1

,∴f (1)=1

2

.

4.(文)(2010·北京崇文区)已知f (x )是定义在R 上的偶函数,并满足f (x +2)=-1

f x

,当1≤x ≤2时,f (x )=x -2,则f (6.5)=( )

A .4.5

B .-4.5

C .0.5

D .-0.5

[答案] D

[解析] ∵f (x +2)=-

1

f x

,∴f (x +4)=f [(x +2)+2]=-

1

f

x +2

=f (x ),∴f (x )周期为4,∴f (6.5)=f (6.5-8)=f (-1.5)=f (1.5)=1.5-2=-0.5.

(理)(2010·日照)已知函数f (x )是定义域为R 的偶函数,且f (x +2)=f (x ),若f (x )在[-1,0]上是减函数,则f (x )在[2,3]上是( )

A .增函数

B .减函数

C .先增后减的函数

D .先减后增的函数

[答案] A

[解析] 由f (x +2)=f (x )得出周期T =2, ∵f (x )在[-1,0]上为减函数,

又f (x )为偶函数,∴f (x )在[0,1]上为增函数,从而f (x )在[2,3]上为增函数. 5.(2010·)已知函数f (x )是定义在区间[-a ,a ](a >0)上的奇函数,且存在最大值与最小值.若g (x )=f (x )+2,则g (x )的最大值与最小值之和为( )

A .0

B .2

C .4

D .不能确定

[答案] C

[解析] ∵f (x )是定义在[-a ,a ]上的奇函数,∴f (x )的最大值与最小值之和为0,又

g (x )=f (x )+2是将f (x )的图象向上平移2个单位得到的,故g (x )的最大值与最小值比f (x )

的最大值与最小值都大2,故其和为4.

6.定义两种运算:a ?b =a 2

-b 2

,a ⊕b =|a -b |,则函数f (x )=2?x

x ⊕2-2

( )

A .是偶函数

B .是奇函数

C .既是奇函数又是偶函数

D .既不是奇函数又不是偶函数 [答案] B

[解析] f (x )=4-x

2

|x -2|-2,

∵x 2

≤4,∴-2≤x ≤2,

又∵x ≠0,∴x ∈[-2,0)∪(0,2]. 则f (x )=4-x

2

-x

f (x )+f (-x )=0,故选B.

7.已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =

f (lo

g 47),b =f (log 12

3),c =f (0.20.6),则a 、b 、c 的大小关系是( )

A .c

B .b

C .b

D .a

[答案] C

[解析] 由题意知f (x )=f (|x |).

∵log 47=log 27>1,|log 123|=log 23>log 27,0<0.20.6

<1,

∴|log 12

3|>|log 47|>|0.20.6

|.

又∵f (x )在(-∞,0]上是增函数,且f (x )为偶函数, ∴f (x )在[0,+∞)上是减函数. ∴b

8.已知函数f (x )满足:f (1)=2,f (x +1)=1+f x

1-f x ,则f (2011)等于( )

A .2

B .-3

C .-1

2

D.1

3

[答案] C

[解析] 由条件知,f (2)=-3,f (3)=-12,f (4)=1

3

,f (5)=f (1)=2,故f (x +4)=

f (x ) (x ∈N *).

∴f (x )的周期为4, 故f (2011)=f (3)=-1

2.

[点评] 严格推证如下:

f (x +2)=

1+f x +11-f x +1=-1

f x

∴f (x +4)=f [(x +2)+2]=f (x ).即f (x )周期为4. 故f (4k +x )=f (x ),(x ∈N *

,k ∈N *

), 9.设f (x )=lg ? ??

?

?21-x +a 是奇函数,则使f (x )<0的x 的取值围是( )

A .(-1,0)

B .(0,1)

C .(-∞,0)

D .(-∞,0)∪(1,+∞)

[答案] A

[解析] ∵f (x )为奇函数,∴f (0)=0,∴a =-1.

∴f (x )=lg x +1

1-x

,由f (x )<0得

0<

x +1

1-x

<1,∴-1

2+x 的图象( )

A .关于原点对称

B .关于直线y =-x 对称

C .关于y 轴对称

D .关于直线y =x 对称 [答案] A [解析] 首先由

2-x 2+x >0得,-2

2+x

,则f (x )+f (-x )=log 22-x 2+x +log 22+x

2-x

=log 21=0.故f (x )为奇函数,其图象关于原点对称,故选A.

(理)函数y =x

sin x

,x ∈(-π,0)∪(0,π)的图象可能是下列图象中的( )

[答案] C

[解析] ∵y =x

sin x 是偶函数,排除A ,

当x =2时,y =

2

sin2

>2,排除D , 当x =π6时,y =π6sin

π6=π

3

>1,排除B ,故选C.

二、填空题

11.(文)已知f (x )=

?

????

sinπx x <0f x -1-1 x >0,则f ? ????-116+f ? ??

??116的值为________.

[答案] -2

[解析] f ? ????116=f ? ????56-1=f ? ??

??-16-2 =sin ? ??

??-π6-2=-52,

f ? ????-116=sin ? ??

??

-11π6=sin π6=1

2,∴原式=-2. (理)设f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线x =1

2

对称,则f (1)+

f (2)+f (3)+f (4)+f (5)=________.

[答案] 0

[解析] ∵f (x )的图象关于直线x =1

2

对称,

∴f ? ????12+x =f ? ??

??12-x ,对任意x ∈R 都成立, ∴f (x )=f (1-x ),又f (x )为奇函数, ∴f (x )=-f (-x )=-f (1+x ) =f (-1-x )=f (2+x ),

∴周期T =2 ∴f (0)=f (2)=f (4)=0 又f (1)与f (0)关于x =1

2对称

∴f (1)=0 ∴f (3)=f (5)=0 填0.

12.(2010·中学)已知函数y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-π,π],且它们在x ∈[0,π]上的图象如图所示,则不等式

f x

g x

<0的解集是________.

[答案] ? ????-π3,0∪? ??

??π3,π [解析] 依据偶函数的图象关于y 轴对称,奇函数的图象关于原点对称,先补全f (x )、

g (x )的图象,

∵f x

g x <0,∴?

????

f x <0

g x >0,或?

??

??

f

x >0g x <0

,观察两函数的图象,其中一个在x 轴

上方,一个在x 轴下方的,即满足要求,∴-π3

3

13.(文)若f (x )是定义在R 上的偶函数,其图象关于直线x =2对称,且当x ∈(-2,2)时,f (x )=-x 2

+1.则f (-5)=________.

[答案] 0

[解析] 由题意知f (-5)=f (5)=f (2+3)=f (2-3)=f (-1)=-(-1)2

+1=0. (理)已知函数f (x )是定义域为R 的奇函数,当-1≤x ≤1时,f (x )=a ,当x ≥1时,f (x )=(x +b )2

,则f (-3)+f (5)=________.

[答案] 12

[解析] ∵f (x )是R 上的奇函数,∴f (0)=0, ∵-1≤x ≤1时,f (x )=a ,∴a =0. ∴f (1)=(1+b )2

=0,∴b =-1.

∴当x ≤-1时,-x ≥1,f (-x )=(-x -1)2

=(x +1)2

, ∵f (x )为奇函数,∴f (x )=-(x +1)2

, ∴f (x )=????

?

-x +12

x ≤-10 -1≤x ≤1

x -12 x ≥1

∴f (-3)+f (5)=-(-3+1)2

+(5-1)2

=12.

[点评] 求得b =-1后,可直接由奇函数的性质得f (-3)+f (5)=-f (3)+f (5)=-(3-1)2

+(5-1)2

=12.

14.(文)(2010·枣庄模拟)若f (x )=lg ? ??

?

?2x 1+x +a (a ∈R)是奇函数,则a =________.

[答案] -1

[解析] ∵f (x )=lg ?

??

?

?2x 1+x +a 是奇函数,

∴f (-x )+f (x )=0恒成立, 即lg ?

????2x 1+x +a +lg ? ??

?

?-2x 1-x +a

=lg ? ????2x 1+x +a ? ??

?

?2x x -1+a =0. ∴?

????2x 1+x +a ? ??

?

?2x x -1+a =1,

∴(a 2

+4a +3)x 2

-(a 2

-1)=0, ∵上式对定义的任意x 都成立,

∴?????

a 2

+4a +3=0a 2

-1=0

,∴a =-1.

[点评] ①可以先将真数通分,再利用f (-x )=-f (x )恒成立求解,运算过程稍简单些.

②如果利用奇函数定义域的特点考虑,则问题变得比较简单.f (x )=lg

a +2x +a

1+x

奇函数,显然x =-1不在f (x )的定义域,故x =1也不在f (x )的定义域,令x =-a a +2

=1,

得a =-1.故平时解题中要多思少算,培养观察、分析、捕捉信息的能力.

(理)(2010·质检)已知函数f (x )=lg ? ?

???

-1+a 2+x 为奇函数,则使不等式f (x )<-1成

立的x 的取值围是________.

[答案]

18

11

???

-1+a 2-x +

lg ? ?

?

??

-1+a 2+x

=lg ? ?

???-1+a 2-x ? ????

-1+a 2+x =0, ∴? ?

???-1+a 2-x ? ????

-1+a 2+x =1, ∵a ≠0,∴

4-a

x 2-4

=0,∴a =4, ∴f (x )=lg ?

????-1+42+x =lg 2-x x +2,

由f (x )<-1得,lg 2-x

2+x <-1,

∴0<2-x 2+x <110,由2-x 2+x >0得,-2

2-x 2+x <110得,x <-2或x >1811,∴18

11

15.(2010·外国语学校)已知f (x )=x 2

+bx +c 为偶函数,曲线y =f (x )过点(2,5),g (x )=(x +a )f (x ).

(1)若曲线y =g (x )有斜率为0的切线,求实数a 的取值围;

(2)若当x =-1时函数y =g (x )取得极值,且方程g (x )+b =0有三个不同的实数解,求实数b 的取值围.

[解析] (1)由f (x )为偶函数知b =0, 又f (2)=5,得c =1,∴f (x )=x 2

+1. ∴g (x )=(x +a )(x 2

+1)=x 3

+ax 2+x +a , 因为曲线y =g (x )有斜率为0的切线, 所以g ′(x )=3x 2+2ax +1=0有实数解. ∴Δ=4a 2

-12≥0,解得a ≥3或a ≤- 3. (2)由题意得g ′(-1)=0,得a =2. ∴g (x )=x 3

+2x 2

+x +2,

g ′(x )=3x 2+4x +1=(3x +1)(x +1).

令g ′(x )=0,得x 1=-1,x 2=-13

.

∵当x ∈(-∞,-1)时,g ′(x )>0,当x ∈(-1,-13)时,g ′(x )<0,当x ∈(-1

3,+

∞)时,g ′(x )>0,

∴g (x )在x =-1处取得极大值,在x =-1

3

处取得极小值.

又∵g (-1)=2,g (-13)=50

27,且方程g (x )+b =0即g (x )=-b 有三个不同的实数解,

∴50

27

<-b <2, 解得-2

27

.

16.(2010·揭阳模拟)设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2

.

(1)求证:f(x)是周期函数;

(2)当x∈[2,4]时,求f(x)的解析式;

(3)计算f(0)+f(1)+f(2)+…+f(2011).

[分析] 由f(x+2)=-f(x)可得f(x+4)与f(x)关系,由f(x)为奇函数及在(0,2]上解析式可求f(x)在[-2,0]上的解析式,进而可得f(x)在[2,4]上的解析式.[解析] (1)∵f(x+2)=-f(x),

∴f(x+4)=-f(x+2)=f(x).

∴f(x)是周期为4的周期函数.

(2)当x∈[-2,0]时,-x∈[0,2],由已知得

f(-x)=2(-x)-(-x)2=-2x-x2,

又f(x)是奇函数,∴f(-x)=-f(x)=-2x-x2,

∴f(x)=x2+2x.

又当x∈[2,4]时,x-4∈[-2,0],

∴f(x-4)=(x-4)2+2(x-4)=x2-6x+8.

又f(x)是周期为4的周期函数,

∴f(x)=f(x-4)

=x2-6x+8.

从而求得x∈[2,4]时,

f(x)=x2-6x+8.

(3)f(0)=0,f(2)=0,f(1)=1,f(3)=-1.

又f(x)是周期为4的周期函数,

∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2008)+f(2009)+f(2010)+f(2011)=0.

∴f(0)+f(1)+f(2)+…+f(2011)=0.

17.(文)已知函数f(x)=1-

4

2a x+a

(a>0且a≠1)是定义在(-∞,+∞)上的奇函数.

(1)求a的值;

(2)求函数f(x)的值域;

(3)当x∈(0,1]时,tf(x)≥2x-2恒成立,求实数t的取值围.

[解析] (1)∵f(x)是定义在(-∞,+∞)上的奇函数,即f(-x)=-f(x)恒成立,∴f(0)=0.

即1-

4

2×a0+a

=0,

解得a=2.

(2)∵y =2x

-12x +1,∴2x

=1+y 1-y ,

由2x

>0知1+y 1-y

>0,

∴-1

-2即为

t ·2x -t

2x

+1

≥2x

-2.

即:(2x )2

-(t +1)·2x +t -2≤0.设2x

=u , ∵x ∈(0,1],∴u ∈(1,2].

∵u ∈(1,2]时u 2

-(t +1)·u +t -2≤0恒成立.

∴?

????

12

-t +1×1+t -2≤022

-t +1×2+t -2≤0

,解得t ≥0.

(理)设函数f (x )=ax

2

+bx +c (a 、b 、c 为实数,且a ≠0),F (x )=?

??

??

f x

x >0

-f x x <0

.

(1)若f (-1)=0,曲线y =f (x )通过点(0,2a +3),且在点(-1,f (-1))处的切线垂直于y 轴,求F (x )的表达式;

(2)在(1)的条件下,当x ∈[-1,1]时,g (x )=kx -f (x )是单调函数,求实数k 的取值围;

(3)设mn <0,m +n >0,a >0,且f (x )为偶函数,证明F (m )+F (n )>0. [解析] (1)因为f (x )=ax 2

+bx +c ,所以f ′(x )=2ax +b .

又曲线y =f (x )在点(-1,f (-1))处的切线垂直于y 轴,故f ′(-1)=0, 即-2a +b =0,因此b =2a .① 因为f (-1)=0,所以b =a +c .② 又因为曲线y =f (x )通过点(0,2a +3), 所以c =2a +3.③

解由①,②,③组成的方程组得,a =-3,b =-6,c =-3. 从而f (x )=-3x 2

-6x -3.

所以F (x )=????

?

-3x +12

x >03x +12

x <0

.

(2)由(1)知f (x )=-3x 2

-6x -3, 所以g (x )=kx -f (x )=3x 2

+(k +6)x +3. 由g (x )在[-1,1]上是单调函数知: -

k +6

6

≤-1或-

k +6

6

≥1,得k ≤-12或k ≥0.

(3)因为f (x )是偶函数,可知b =0.

因此f(x)=ax2+c.

又因为mn<0,m+n>0,

可知m,n异号.

若m>0,则n<0.

则F(m)+F(n)=f(m)-f(n)=am2+c-an2-c =a(m+n)(m-n)>0.

若m<0,则n>0.

同理可得F(m)+F(n)>0.

综上可知F(m)+F(n)>0.

(完整版)函数的单调性与奇偶性练习题基础

1 函数单调性(一) (一)选择题 1.函数x x f 3 )(= 在下列区间上不是..减函数的是( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)∪(0,+∞) D .(1,+∞) 2.下列函数中,在区间(1,+∞)上为增函数的是( ) A .y =-3x +1 B .x y 2 = C .y =x 2-4x +5 D .y =|x -1|+2 3.设函数y =(2a -1)x 在R 上是减函数,则有 A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a 4.若函数f (x )在区间[1,3)上是增函数,在区间[3,5]上也是增函数,则函数f (x )在区间[1,5]上( ) A .必是增函数 B .不一定是增函数 C .必是减函数 D .是增函数或减函数 (二)填空题 5.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______. 6.若函数x a x f = )(在(1,+∞)上为增函数,则实数a 的取值范围是______. 7.函数f (x )=1-|2-x |的单调递减区间是______,单调递增区间是______. 8.函数f (x )在(0,+∞)上为减函数,那么f (a 2-a +1)与)4 3(f 的大小关系是______。 *9.若函数f (x )=|x -a |+2在x ∈[0,+∞)上为增函数,则实数a 的取值范围是______. (三)解答题 10.函数f (x ),x ∈(a ,b )∪(b ,c )的图象如图所示,有三个同学对此函数的单调性作出如下的判断: 甲说f (x )在定义域上是增函数; 乙说f (x )在定义域上不是增函数,但有增区间, 丙说f (x )的增区间有两个,分别为(a ,b )和(b ,c ) 请你判断他们的说法是否正确,并说明理由。 11.已知函数.21 )(-= x x f (1)求f (x )的定义域; (2)证明函数f (x )在(0,+∞)上为减函数. 12.已知函数| |1)(x x f = . (1)用分段函数的形式写出f (x )的解析式;

高中数学解题方法谈:函数奇偶性的判定方法

函数奇偶性的判定方法 函数奇偶性的判定方法较多,下面把常见的判定方法分类加以研究分析. 1.定义域判定法 例1 判定()(1)2f x x x =-- 的奇偶性. 解:要使函数有意义,须20x -≥,解得2x ≥, 定义域不关于原点对称, ∴原函数是非奇非偶函数. 评注:用定义域虽不能判定一个函数是奇函数还是偶函数,但可以通过定义域不关于原点对称,来否定一个函数的奇偶性. 2.定义判定法 例2 判断()f x x a x a =++-和奇偶性. 解: 函数()f x x a x a =++-的定义域为R ,且 ()()()()f a x a x a x a x a x a x a f x -=-++--=--+-+=-++=, ∴函数()f x 是偶函数. 评注:在定义域关于原点对称的前提下,可根据定义判定函数的奇偶性. 3.等价形式判定法 例3 判定2211 ()11x x f x x x ++-=+++的奇偶性. 解:()f x 的定义域为R ,关于原点对称,当0x =时,()0f x =, ∴图象过原点. 又0x ≠ 时,22 22 ()(1)(1)1()(1)(1)f x x x f x x x -+-+==-+--, (1)()f f x ∴-=-. 又(0)0f =,∴()f x 为奇函数. 评注:常用等价变形形式有:若()()0f x f x +-=或()1() f x f x -=-,则()f x 为奇函数;若()()0f x f x --=或 ()1() f x f x -=,则()f x 为偶函数(其中()0f x ≠). 4.性质判定法 例4 若0a >,()([])f x x a a ∈-,是奇函数,()() g x x ∈R 是偶函数,试判定()()()x f x g x ?= 的奇偶性.

《2.4函数的奇偶性与周期性》 学案

学习过程 一、复习预习 1、复习单调性的概念 2、复习初中的轴对称和中心对称 3、预习奇偶性的概念 4、预习奇偶性的应用

二、知识讲解 考点1 函数的奇偶性 [探究] 1.奇函数、偶函数的定义域具有什么特点?它是函数具有奇偶性的什么条件? 提示:定义域关于原点对称,必要不充分条件. 2.若f(x)是奇函数且在x=0处有定义,是否有f(0)=0?如果是偶函数呢? 提示:如果f(x)是奇函数时,f(0)=-f(0),则f(0)=0;如果f(x)是偶函数时,f(0)不一定为0,如f(x)=x2+1. 3.是否存在既是奇函数又是偶函数的函数?若有,有多少个? 提示:存在,如f(x)=0,定义域是关于原点对称的任意一个数集,这样的函数有无穷多个.

考点2 周期性 (1)周期函数: 对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y =f(x)为周期函数,称T为这个函数的周期. (2)最小正周期: 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.

三、例题精析 【例题1】 【题干】判断下列函数的奇偶性 (1)f(x)=lg 1-x 1+x ;(2)f(x)= ? ? ?x2+x(x>0), x2-x(x<0); (3)f(x)= lg(1-x2) |x2-2|-2 .

【解析】(1)由1-x 1+x >0?-10时,f (x )=x 2+x ,则当x <0时, -x >0,故f (-x )=x 2-x =f (x ); 当x <0时,f (x )=x 2-x ,则当x >0时,-x <0,故f (-x )=x 2+x =f (x ),故原函数是偶函数. (3)由??? 1-x 2 >0,|x 2-2|-2≠0, 得定义域为(-1,0)∪(0,1),关于原点对称,∴f (x )=lg (1-x 2)-(x 2-2)-2=-lg (1-x 2)x 2. ∵f (-x )=-lg[1-(-x )2](-x )2 =-lg (1-x 2) x 2=f (x ),∴f (x )为偶函数.

基本初等函数专项训练经典题

一、简答题 1、设. (1)判断函数的奇偶性; (2)求函数的定义域和值域. 2、设函数 (Ⅰ)讨论的单调性; (Ⅱ)求在区间的最大值和最小值. 3、已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数. (1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围; (2)解关于x的方程f(x)=|f′(x)|; (3)设函数g(x)=,求g(x)在x∈[2,4]时的最小值. 4、经市场调查,某旅游城市在过去的一个月内(以30天计),旅游人数f(t)(万人)与时间t(天)的函数关系近似满足f(t)=4+,人均消费g(t)(元)与时间t(天)的函数关系近似满足g(t)=115-|t-15|. (1)求该城市的旅游日收益w(t)(万元)与时间t(1≤t≤30,t∈N*)的函数关系式; (2)求该城市旅游日收益的最小值(万元). 5、某商场对A品牌的商品进行了市场调查,预计2012年从1月起前x个月顾客对A品牌的商品的需求总量P(x)件与月份x的近似关系是: P(x)=x(x+1)(41-2x)(x≤12且x∈N*)

(1)写出第x月的需求量f(x)的表达式; (2)若第x月的销售量g(x)= (单位:件),每件利润q(x)元与月份x的近似关系为:q(x)=,问:该商场销售A品牌商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e6≈403) 6、已知函数f(x)=x2-(1+2a)x+a ln x(a为常数). (1)当a=-1时,求曲线y=f(x)在x=1处切线的方程; (2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间. 7、某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%. (1)若建立函数y=f(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的基本要求,并分析函数y=+2是否符合公司要求的奖励函数模型,并说明原因; (2)若该公司采用模型函数y=作为奖励函数模型,试确定最小的正整数a的值. 8、已知函数图象上一点P(2,f(2))处的切线方程为. (Ⅰ)求的值; (Ⅱ)若方程在内有两个不等实根,求的取值范围(其中为自然对数的底,); (Ⅲ)令,如果图象与轴交于,AB中点为,求 证:. 9、已知命题p:函数y=log a(1-2x)在定义域上单调递增;命题q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x 恒成立.若p∨q是真命题,求实数a的取值范围.

函数的奇偶性练习题

函数的奇偶性 一、选择题 1.若)(x f 是奇函数,则其图象关于( ) A .x 轴对称 B .y 轴对称 C .原点对称 D .直线x y =对称 2.若函数y f x x R =∈()()是奇函数,则下列坐标表示的点一定在函数y f x =()图象 上的是( ) A . (())a f a ,- B . (())--a f a , C . (())---a f a , D .(())a f a ,- 3.下列函数中为偶函数的是( ) A .x y = B .x y = C .2x y = D .13+=x y 4. 如果奇函数)(x f 在[]7,3上是增函数,且最小值是5,那么)(x f 在[]3,7--上是( ) A .增函数,最小值是-5 B .增函数,最大值是-5 C .减函数,最小值是-5 D .减函数,最大值是-5 5. 已知函数)(1 22 2)(R x a a x f x x ∈+-+?= 是奇函数,则a 的值为( ) A .1- B .2- C .1 D .2 6.已知偶函数)(x f 在],0[π上单调递增,则下列关系式成立的是( ) A .)2()2 ()(f f f >- >-π π B .)()2 ()2(ππ ->->f f f C .)2 ()2()(π π- >>-f f f D .)()2()2 (ππ ->>- f f f 二、填空题 7.若函数)(x f y =是奇函数,3)1(=f ,则)1(-f 的值为____________ . 8.若函数)(x f y =)(R x ∈是偶函数,且)3()1(f f <,则)3(-f 与)1(-f 的大小关系为__________________________. 9.已知)(x f 是定义在[)2,0-?(]0,2上的奇函数,当0>x 时,)(x f 的图象如右图所示,那么f (x ) 的值域是 .

第招 如何判断函数的奇偶性

第11招 如何判断函数的奇偶性? 判断函数的奇偶性(有的还牵涉三角函数)是高考中常考的知识点,一般以选择题形式出现. 解法指导与经典范例 (一) 判断函数奇偶性的方法 1. 定义法 这是最常用的方法.其解法步骤如下:(1)确定函数的定义域是否是关于原点的对称区间.若不是,可判断该函数是非奇非偶函数.若是,再按下列步骤继续进行.(2)在定义域内任取x ,以-x 代换f(x)中的x 得f(-x).(3)依据定义得出结论. 注意:(1)既是奇函数又是偶函数的函数只能是f(x)=0. (2)若奇函数f(x)在x=0处有定义,则f(0)=0.(如例6证一) 【例1】函数 ()()是x x x x f +-? +=11( ). A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D0非奇非偶函数 解 (]()() 的奇偶性】判断函数【例原点对称的区间由于这定义域不是关于想)的定义域为函数得?????>+-<+=-≤<-≥+-00)(2. .1,19,1101122x x x x x x x f f x x x 解 当x<0时,-x>0,()()() ().)(22x f x x x x x f -=+-=-+--=-∴ 而当x>0时,-x<0,()()()()x f x x x x x f -=-=-+-=-∴22 ()()()()().,,00,为奇函数故都有对任意x f x f x f x =-+∞∞-∈∴ 【例3】2002.北京文三(22)已知f(x)是定义在R 上的不恒为零的函数,且对于任意的a 、b R ∈都满足:()()().a bf b af b a f +=? (1) 求f(0)、f(1)的值;(2)判断f(x)的奇偶性,并证明你的结论. 解(1)()()()()()()=?==?+?=?=111.00000000f f f f f f ()()1111f f ?+? ()f f ∴=,12(1)=0. (2)f(x)是奇函数.证明如下: ()()()[]()()()()().01.01,1211111=-∴=--=----=-?-=f f f f f f f 而 又 ()()()()()().,11是奇函数x f x f xf x f x f x f ∴-=-+-=?-=- 2. 利用定义的等价命题来判断 ()()()()()().00是偶函数是奇函数;x f x f x f x f x f x f ?=--?=-+ 或:当()()()()()() ().110是偶函数是奇函数;时, x f x f x f x f x f x f x f ?=-?-=-≠

函数的奇偶性导学案

1.3.2奇偶性 【学习目标导航】 1.结合具体函数,了解奇函数,偶函数的定义. 2.掌握判断函数奇偶性的方法,了解奇偶性与函数图象对称性之间的关系. 3.会利用函数的奇偶性解决简单问题. 【学习重、难点】 1.根据函数奇偶性的定义判断函数的奇偶性.(重点) 2.函数奇偶性的应用.(难点) 【问题提出导入新知】 1.画出以下函数图象,观察两个图形,思考并讨论以下问题: (1)f (x)=x2(2)g(x)=|x| (1)这两个函数图象有什么共同特征吗? (2)关于y轴对称的点的坐标有什么关系吗? (3)点(x, f (x))在函数y= f (x)的图象上,关于y轴的对称点(—x, f (x))也一定在y= f (x)的图象上吗?为什么? )= ;)= 这时我们称函数f (x)=x2与g(x)=|x|为偶函数。 (5)偶函数的定义:如果对于函数f (x)的,都有,那么函数f (x)就叫做偶函数。 偶函数的图象特征:图象关于对称。 2.画出以下函数图象,观察两个图形,思考并讨论以下问题: 1 (1)f (x)=x(2)g(x)= x (1)这两个函数图象有什么共同特征吗? (2)关于原点对称的点的坐标有什么关系吗? (3)点(x, f (x))在函数y= f (x)的图象上,关于原点的对称点(—x, —f (x))也一定在y= f (x)的图象上吗?为什么?

对于R 内的任意的一个x ,都有f (—x )= ;g (—x )= 这时我们称函数f (x )=x 与g (x )= x 1 为奇函数。 (5)奇函数的定义:如果对于函数f (x )的 ,都有 ,那么函数f (x )就叫做奇函数。 奇函数的图象特征:奇函数的图象关于 对称。 3.函数是奇函数或是偶函数称为函数的单调性,回答下列问题: (1)奇函数、偶函数的定义中有“定义域内任意的x ”中的“任意”二字,说明函数的奇偶性是怎样的一个性质?与单调性有何区别? (2)-x 与x 两个数在数轴上所表示的点有何关系?具有奇偶性的函数的定义域有何特征? 得出结论: (3)如果一个函数的图象是以y 轴为对称轴的轴对称图形,能否判断它的奇偶性? 得出结论: (4)如果一个函数的图象是以坐标原点为对称中心的中心对称图形,能否判断它的奇偶性? 得出结论: 【典例分析】 【例1】 判断下列函数的奇偶性: (1) f (x )=x +x 3+x 5; (2) f (x )=x 2+1; (3) f (x )=x +1; (4) f (x )=x 2,x ∈[-1, 3]; (5) f (x )=0; (6) f (x )=5. (注意:既是奇函数又是偶函数的函数是f (x )=0常函数. 前提是定义域关于原点对称). 【归纳】1.用定义判断函数奇偶性的步骤: (1)先求定义域,看是否关于原点对称; (2)再判断f(-x)=-f(x)或f(-x)=f(x)是否恒成立. 2.对于一个函数来说,它的奇偶性有四种可能: 。 【活学活用1】判断下列函数的奇偶性: (2) f(x)=2x 4+3x 2; (5) f(x)=x 3+2x ; (6)2 211)(x x x f -+-= 【思考】讨论并判断我们已经学习过的基本初等函数的奇偶性。 (3)()f x =(4)()f x = 1(1)()f x x x =-

(完整版)函数奇偶性知识点和经典题型归纳

函数奇偶性 知识梳理 1. 奇函数、偶函数的定义 (1)奇函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=-, 则这个函数叫奇函数. (2)偶函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=, 则这个函数叫做偶函数. (3)奇偶性:如果函数()f x 是奇函数或偶函数,那么我们就说函数()f x 具有奇偶性. (4)非奇非偶函数:无奇偶性的函数是非奇非偶函数. 注意:(1)奇函数若在0x =时有定义,则(0)0f =. (2)若()0f x =且()f x 的定义域关于原点对称,则()f x 既是奇函数又是偶函数. 2.奇(偶)函数的基本性质 (1)对称性:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)单调性:奇函数在其对称区间上的单调性相同,偶函数在其对称区间上的单调性相反. 3. 判断函数奇偶性的方法 (1)图像法 (2)定义法 ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f(-x)与f(x)的关系; ○ 3 作出相应结论: 若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数; 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 例题精讲 【例1】若函数2()f x ax bx =+是偶函数,求b 的值. 解:∵函数 f (x )=ax 2+bx 是偶函数, ∴f (-x )=f (x ).∴ax 2+bx= ax 2-bx. ∴2bx=0. ∴b =0. 【例3】已知函数21()f x x =在y 轴左边的图象如下图所示,画出它右边的图象. 题型一 判断函数的奇偶性 【例4】判断下列函数的奇偶性. (1)2()||(1)f x x x =+; (2)1()f x x x =;

最新函数的奇偶性的经典总结

x x x f 1)(+ =1 )(2+= x x x f x x f 1)(= 函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴ x x x f +=2)(,(2) x x x f -=3)( (3) ()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。

苏教版高中数学高一必修1教学案 第19课时 函数的奇偶性1

一、复习引入 1、函数的单调性、最值 2、函数的奇偶性 (1)奇函数 (2)偶函数 (3)与图象对称性的关系 (4)说明(定义域的要求) 二、例题分析 例1、判断下列函数是否为偶函数或奇函数 (1)1)(2-=x x f (2)x x f 2)(= (3)||2)(x x f = (4)2)1()(-=x x f 例2、证明函数x x x f 5)(3+=在R 上是奇函数。 例3、试判断下列函数的奇偶性 (1)x x x x u -+-=11)1()( (2)22(1), 0()0, 0(1), x x x g x x x x x ?- >?==??-+

例4、设3()1f x ax bx =++,且0)2(=f ,求)2(-f 的值。 三、随堂练习 1、函数5)(2+=x x f 、 A 是奇函数但不是偶函数 、 B 是偶函数但不是奇函数 、 C 既是奇函数又是偶函数 、 D 既不是奇函数又不是偶函数 2、下列4个判断中,正确的是_______. (1)1)(=x f 既是奇函数又是偶函数; (2)1 )(2--=x x x x f 是奇函数 (3)x x x x f -+? -=11)1()(是偶函数; (4)12)(2+-=x x x f 是非奇非偶函数 3、函数x x x f 2)(2+=的图象是否关于某直线对称?它是否为偶函数? 4、证明函数x x x f -=3 )(在R 上是奇函数。 5、判断下列函数的奇偶性 (1)1()f x x x =+ (2)421()x f x x -=

四、回顾小结 1、判断函数奇偶性。 2、证明一些简单函数的奇偶性。 课后作业 班级:高一( )班 姓名__________ 一、基础题 1、若函数(]2,1,)(2 ∈=x x x f ,则下列说法中,正确的是______。 (1)奇函数 (2)偶函数 (3)既是奇函数又是偶函数 (4)既不是奇函数也不是偶函数 2、函数3x y =的奇偶性是_______,它的图象关于_______对称。 3、设函数x x f -= )(,则)(x f 的奇偶性是___________。 4、设函数22)(-+-=x x x f ,则)(x f 的奇偶性是___________。 5、设)(x f 在[]5,5-上是偶函数,则)2(-f 与)2(f 的大小关系是___________。 二、提高题 6、已知函数)2)(1()(+-=x x x f 。 (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出其定义域、值域、奇偶性、单调区间。 7、已知函数12)(2 --=x x x f ,试判断函数)(x f 的奇偶性,并画出函数的图象。

《函数的单调性和奇偶性》经典例题

经典例题透析 类型一、函数的单调性的证明 1.证明函数上的单调性. 证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0 则 ∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0 ∴上递减. 总结升华: [1]证明函数单调性要求使用定义; [2]如何比较两个量的大小?(作差) [3]如何判断一个式子的符号?(对差适当变形) 举一反三: 【变式1】用定义证明函数上是减函数. 思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 证明:设x1,x2是区间上的任意实数,且x10 ∴x1f(x2) 上是减函数. 总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.

类型二、求函数的单调区间 2. 判断下列函数的单调区间; (1)y=x2-3|x|+2;(2) 解:(1)由图象对称性,画出草图 ∴f(x)在上递减,在上递减,在上递增. (2) ∴图象为 ∴f(x)在上递增. 举一反三: 【变式1】求下列函数的单调区间: (1)y=|x+1|;(2)(3). 解:(1)画出函数图象, ∴函数的减区间为,函数的增区间为(-1,+∞); (2)定义域为,其中u=2x-1为增函数,

在(-∞,0)与(0,+∞)为减函数,则上为减函数; (3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 总结升华: [1]数形结合利用图象判断函数单调区间; [2]关于二次函数单调区间问题,单调性变化的点与对称轴相关. [3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数. 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小. 解:又f(x)在(0,+∞)上是减函数,则. 4. 求下列函数值域: (1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1); (2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2]. 思路点拨:(1)可应用函数的单调性;(2)数形结合. 解:(1)2个单位,再上移2个单位得到,如图 1)f(x)在[5,10]上单增,;

函数的奇偶性练习题附标准答案资料全

函数的奇偶性 1.函数f (x )=x(-1﹤x ≦1)的奇偶性是 ( ) A .奇函数非偶函数 B .偶函数非奇函数 C .奇函数且偶函数 D .非奇非偶函数 2. 已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 3. 若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数, 且f (2)=0,则使得f (x )<0的x 的取值围是 ( ) A.(-¥,2) B. (2,+¥) C. (-¥,-2)è(2,+¥) D. (-2,2) 4.已知函数f (x )是定义在(-∞,+∞)上的偶函数. 当x ∈(-∞,0)时,f (x )=x -x 4,则 当x ∈(0.+∞)时,f (x )= . 5. 判断下列函数的奇偶性: (1)f (x )=lg (12+x -x ); (2)f (x )=2-x +x -2 (3) f (x )=? ? ?>+<-). 0() 1(),0() 1(x x x x x x 6.已知g (x )=-x 2-3,f (x )是二次函数,当x ∈[-1,2]时,f (x )的最小值是1,且f (x )+g (x )是奇函数,求f (x )的表达式。 7.定义在(-1,1)上的奇函数f (x )是减函数,且f(1-a)+f(1-a 2)<0,求a 的取值围

8.已知函数21 ()(,,)ax f x a b c N bx c += ∈+是奇函数,(1)2,(2)3,f f =<且()[1,)f x +∞在上是增函数, (1)求a,b,c 的值; (2)当x ∈[-1,0)时,讨论函数的单调性. 9.定义在R 上的单调函数f (x )满足f (3)=log 23且对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ). (1)求证f (x )为奇函数; (2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,数k 的取值围. 10下列四个命题: (1)f (x )=1是偶函数; (2)g (x )=x 3,x ∈(-1,1]是奇函数; (3)若f (x )是奇函数,g (x )是偶函数,则H (x )=f (x )·g (x )一定是奇 函数; (4)函数y =f (|x |)的图象关于y 轴对称,其中正确的命题个数是 ( ) A .1 B .2 C .3 D .4 11下列函数既是奇函数,又在区间[]1,1-上单调递减的是( ) A.()sin f x x = B.()1f x x =-+ C.() 1()2x x f x a a -=+ D.2()2x f x ln x -=+ 12若y =f (x )(x ∈R )是奇函数,则下列各点中,一定在曲线y =f (x )上的是( ) A .(a ,f (-a )) B .(-sin a ,-f (-sin a ))

函数的奇偶性与周期性

函数的奇偶性与周期性 1.函数的奇偶性 2.(1)周期函数 对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期 如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)若f (x )是定义在R 上的奇函数,则f (-x )+f (x )=0.(√) (2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×) (3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.(√) (4)定义域关于原点对称是函数具有奇偶性的一个必要条件.(√) (5)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.(√) (6)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.(√) (7)函数f (x )=0,x ∈(0,+∞)既是奇函数又是偶函数.(×) (8)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.(√) (9)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.(√) (10)若某函数的图象关于y 轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√) 考点一 判断函数的奇偶性

奇偶性的典型例题

函数的奇偶性 一、关于函数的奇偶性的定义 定义说明:对于函数)(x f 的定义域内任意一个x : ⑴)()(x f x f =- ?)(x f 是偶函数; ⑵)()(x f x f -=-?)(x f 奇函数; 函数的定义域关于原点对称是函数为奇(偶)函数的必要不充分条件。 二、函数的奇偶性的几个性质 ①、对称性:奇(偶)函数的定义域关于原点对称; ②、整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; ③、可逆性: )()(x f x f =- ?)(x f 是偶函数; )()(x f x f -=-?)(x f 奇函数; ④、等价性:)()(x f x f =-?0)()(=--x f x f )()(x f x f -=-?0)()(=+-x f x f ⑤、奇函数的图像关于原点对称,偶函数的图像关于y 轴对称; ⑥、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、 非奇非偶函数。 三、函数的奇偶性的判断 判断函数的奇偶性大致有下列两种方法: 第一种方法:利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下: ①、定义域是否关于原点对称; ②、数量关系)()(x f x f ±=-哪个成立; 例1:判断下列各函数是否具有奇偶性 ⑴、x x x f 2)(3+= ⑵、2 432)(x x x f += ⑶、1 )(2 3--=x x x x f ⑷、2)(x x f = []2,1-∈x

⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-= 解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数 ⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数 注:教材中的解答过程中对定义域的判断忽略了。 例2:判断函数???<≥-=)0()0()(22x x x x x f 的奇偶性。 .)(),()() ()()()(,0,0) ()()(,0,0) (0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-== 第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。 四、关于函数的奇偶性的几个命题的判定。 命题 1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分 条件。 此命题正确。如果函数的定义域不关于原点对称,那么函数一定是非奇非偶函数,这一点可以由奇偶性定义直接得出。 命题2 两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数。 此命题错误。一方面,如果这两个函数的定义域的交集是空集,那么它们的和或差没有定义;另一方面,两个奇函数的差或两个偶函数的差可能既是奇函数又是偶函数,如f(x)=x(x ∈〔-1,1〕),g(x)=x(x ∈〔-2,2〕),可以看出函数f(x)与g(x)都是定义域上的函数,它们的差只在区间〔-1,1〕上有定义且f(x)-g(x)=0,而在此区间上函数f(x)-g(x)既是奇函数又是偶函数。 命题3 f(x)是任意函数,那么|f(x)|与f(|x|)都是偶函数。 此命题错误。一方面,对于函数|f(x)|=? ??<-≥),0)((),(0)((),(x f x f x f x f 不能保证f(-x)=f(x)或f(-x)=-f(x);另一方面,对于一个任意函数f(x)而言,不能保证它的定义域关于原点对称。如果所给函数的定义域关于原点对称,那么函数f(|x|)是偶函数。 命题4 如果函数f(x)满足:|f(x)|=|f(-x)|,那么函数f(x)是奇函数或偶 函数。

函数的奇偶性练习题及答案

函数的奇偶性练习题 一、选择题 1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx ( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( ) A .a=1/3,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( ) A .y =x (x -2) B .y =x (|x |-1) C .y =|x |(x -2) D .y =x (|x |-2) 4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 5.函数1111)(22+++-++=x x x x x f 是( )A 偶函数B 奇函数C 非奇非偶函数D 既是奇函数又是偶函数 6.若)(x ?,g (x )都是奇函数,2)()(++=x bg a x f ?在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5 B .最大值-5 C .最小值-1 D .最大值-3 二、填空题 7.函数212 2)(x x x f ---=的奇偶性为________(填奇函数或偶函数) 8.若y =(m -1)x 2+2mx +3是偶函数,则m =_________ 9.已知f (x )是偶函数,g (x )是奇函数,若11 )()(-=+x x g x f ,则f (x )的解析式为_______ 10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为________ 三、解答题 11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围 12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0, 试证f (x )是偶函数 13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2 —1,求f (x )在R 上的表达式 14.f (x )是定义在(-∞,-5] [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明 15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2), 求证f (x )是偶函数

函数的奇偶性的经典总结

x x x f 1)(+=1 )(2+= x x x f x x f 1)(=函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-,0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及 ) ()(x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴x x x f +=2)(,(2)x x x f -=3)( (3)()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3)(x x f =,x x f sin )(=, (3)常见的奇函数有:2)(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时,) ()(x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时,) ()(x g x f 是偶函数。

奇偶性教案

1.3.2《函数的奇偶性》教学设计 一、教材分析 “奇偶性”是人教A版必修1第一章“集合与函数概念”的第3节“函数的基本性质”的第2小节。奇偶性是函数的一条重要性质,教材从学生熟悉的函数入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性.从知识结构看,它既是函数概念的拓展和深化,又为后续研究指数函数、对数函数、幂函数、三角函数的基础。因此,本节课起着承上启下的重要作用。学习奇偶性,能使学生再次体会到数形结合思想,初步学会用数学的眼光看待事物,感受数学的对称美。 二、学情分析 从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,积累了研究函数的基本方法与初步经验。从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题。但是,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定的困难。 三、教学目标 【知识与技能】1.能判断一些简单函数的奇偶性。2.能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。 【过程与方法】经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。 【情感、态度与价值观】通过自主探索,体会数形结合的思想,感受数学的对称美。

四、教学重点和难点 重点:函数奇偶性的概念和几何意义。难点:判断函数奇偶性的方法和格式。 五、教学方法 引导发现法为主,直观演示法、类比法为辅。 六、教学手段 PPT课件 七、教学过程 (一)设疑导入、观图激趣:出示一组轴对称和中心对称的图片。 设计意图:通过图片引起学生的兴趣,培养学生的审美观,激发学习兴趣。

函数的基本性质(考点加经典例题分析)

函数的基本性质 函数的三个基本性质:单调性,奇偶性,周期性 一、单调性 1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当21x x <时,都有))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。 2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。) 3.二次函数的单调性:对函数c bx ax x f ++=2 )()0(≠a , 当0>a 时函数)(x f 在对称轴a b x 2- =的左侧单调减小,右侧单调增加; 当0-x f x f x f x f 或; ⑸根据定义下结论。 例2、判断函数1 2)(-+= x x x f 在)0,(-∞上的单调性并加以证明.

5.复合函数的单调性:复合函数))((x g f y =在区间),(b a 具有单调性的规律见下表: 以上规律还可总结为:“同向得增,异向得减”或“同增异减”。 例3:函数322-+=x x y 的单调减区间是 ( ) A.]3,(--∞ B.),1[+∞- C.]1,(--∞ D.),1[+∞ 6.函数的单调性的应用: 判断函数)(x f y =的单调性;比较大小;解不等式;求最值(值域)。 例4:求函数1 2-= x y 在区间]6,2[上的最大值和最小值. 二、奇偶性 1.定义: 如果对于f(x)定义域内的任意一个x,都有)()(x f x f =-,那么函数f(x)就叫偶函数; (等价于:0)()()()(=--?=-x f x f x f x f ) 如果对于f(x)定义域内的任意一个x,都有)()(x f x f -=-,那么函数f(x)就叫奇函数。 (等价于:0)()()()(=+-?-=-x f x f x f x f ) 注意:当0)(≠x f 时,也可用1) ()(±=-x f x f 来判断。 2.奇、偶函数的必要条件:函数的定义域在数轴上所示的区间关于原点对称。 若函数)(x f 为奇函数,且在x=0处有定义,则0)0(=f ; 3.判断一个函数的奇偶性的步骤 ⑴先求定义域,看是否关于原点对称; ⑵再判断)()(x f x f -=-或)()(x f x f =- 是否恒成立。

相关文档
最新文档