基于集合卡尔曼滤波的非线性目标跟踪算法

基于集合卡尔曼滤波的非线性目标跟踪算法
基于集合卡尔曼滤波的非线性目标跟踪算法

Kalman滤波在运动跟踪中建模

目录 一、kalman滤波简介 (1) 二、kalman滤波基本原理 (1) 三、Kalman滤波在运动跟踪中的应用的建模 (3) 四、仿真结果 (6) 1、kalman的滤波效果 (6) 2、简单轨迹的kalman的预测效果 (7) 3、椭圆运动轨迹的预测 (9) 4、往返运动归轨迹的预测 (10) 五、参数的选取 (11) 附录: (13) Matlab程序: (13) C语言程序: (13)

Kalman滤波在运动跟踪中的应用 一、kalman滤波简介 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 Kalman滤波是卡尔曼(R.E.kalman)于1960年提出的从与被提取信号的有关的观测量中通过算法估计出所需信号的一种滤波算法。他把状态空间的概念引入到随机估计理论中,把信号过程视为白噪声作用下的—个线性系统的输出,用状方程来描述这种输入—输出关系,估计过程中利用系统状态方程、观测方程和白噪声激励(系统噪声和观测噪声)的统计特性形成滤波算法,由于所用的信息都是时域内的量,所以不但可以对平稳的一维随机过程进估计,也可以对非平稳的、多维随机过程进行估汁。 Kalman滤波是一套由计算机实现的实时递推算法.它所处理的对象是随机信号,利用系统噪声和观测噪声的统计特性,以系统的观测量作为滤波器的输入,以所要估计值(系统的状态或参数)作为滤波器的输出,滤波器的输入与输出之间是由时间更新和观测更新算法联系在一起的,根据系统方程和观测方程估计出所有需要处理的信号。所以,Kalman滤波与常规滤波的涵义与方法不同,它实质上是一种最优估计法。 卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法),对于解决很大部分的问题,他是最优,效率最高甚至是最有用的 二、kalman滤波基本原理 Kalman滤波器是目标状态估计算法解决状态最优估计的一种常用方法具有计算量小、存储量低、实时性高的优点。实际应用中,可以将物理系统的运行过程看作是一个状态转换过程,卡尔曼滤波将状态空间理论引入到对物理系统的数学建模过程中来。其基本思想是给系统信号和噪声的状态空间建立方程和观测方程,只用信号的前一个估计值和最近一个观察值就可以在线性无偏最小方差估计准则下对信号的当前值做出最优估计。 设一系统所建立的模型为:

(整理)Kalman滤波在运动跟踪中的建模.

目录一、kalman滤波简介 1 二、kalman滤波基本原理 (1) 三、Kalman滤波在运动跟踪中的应用的建模 (3) 四、仿真结果 (6) 1、kalman的滤波效果 (6) 2、简单轨迹的kalman的预测效果 (7) 3、椭圆运动轨迹的预测 (9) 4、往返运动归轨迹的预测 (10) 五、参数的选取 (11) 附录: (13) Matlab程序: (13) C语言程序: (13)

Kalman滤波在运动跟踪中的应用 一、kalman滤波简介 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 Kalman滤波是卡尔曼(R.E.kalman)于1960年提出的从与被提取信号的有关的观测量中通过算法估计出所需信号的一种滤波算法。他把状态空间的概念引入到随机估计理论中,把信号过程视为白噪声作用下的—个线性系统的输出,用状方程来描述这种输入—输出关系,估计过程中利用系统状态方程、观测方程和白噪声激励(系统噪声和观测噪声)的统计特性形成滤波算法,由于所用的信息都是时域内的量,所以不但可以对平稳的一维随机过程进估计,也可以对非平稳的、多维随机过程进行估汁。 Kalman滤波是一套由计算机实现的实时递推算法.它所处理的对象是随机信号,利用系统噪声和观测噪声的统计特性,以系统的观测量作为滤波器的输入,以所要估计值(系统的状态或参数)作为滤波器的输出,滤波器的输入与输出之间是由时间更新和观测更新算法联系在一起的,根据系统方程和观测方程估计出所有需要处理的信号。所以,Kalman滤波与常规滤波的涵义与方法不同,它实质上是一种最优估计法。 卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法),对于解决很大部分的问题,他是最优,效率最高甚至是最有用的 二、kalman滤波基本原理 Kalman滤波器是目标状态估计算法解决状态最优估计的一种常用方法具有计算量小、存储量低、实时性高的优点。实际应用中,可以将物理系统的运行过程看作是一个状态转换过程,卡尔曼滤波将状态空间理论引入到对物理系统的数学建模过程中来。其基本思想是给系统信号和噪声的状态空间建立方程和观测方程,只用信号的前一个估计值和最近一个观察值就可以在线性无偏最小方差估计准则下对信号的当前值做出最优估计。 设一系统所建立的模型为:

基于卡尔曼滤波器的雷达目标跟踪

随机数字信号处理期末大作业(报告) 基于卡尔曼滤波器的雷达目标跟踪 Radar target tracking based on Kalman filter 学院(系):创新实验学院 专业:信息与通信工程 学生姓名:李润顺 学号:21424011 任课教师:殷福亮 完成日期:2015年7月14日 大连理工大学 Dalian University of Technology

摘要 雷达目标跟踪环节的性能直接决定雷达系统的安全效能。由于卡尔曼滤波器在状态估计与预测方面具有强大的性能,因此在目标跟踪领域有广泛应用,同时也是是现阶段雷达中最常用的跟踪算法。本文先介绍了雷达目标跟踪的应用背景以及研究现状,然后在介绍卡尔曼滤波算法和分析卡尔曼滤波器性能的基础上,将其应用于雷达目标跟踪,雷达在搜索到目标并记录目标的位置数据,对测量到的目标位置数据(称为点迹)进行处理,自动形成航迹,并对目标在下一时刻的位置进行预测。最后对在一个假设的情境给出基于卡尔曼滤波的雷达目标跟踪算法对单个目标航迹进行预测的MATLAB仿真,对实验的效果进行评估,分析预测误差。 关键词:卡尔曼滤波器;雷达目标跟踪;航迹预测;预测误差;MATLAB仿真 - 1 -

1 引言 1.1 研究背景及意义 雷达目标跟踪是整个雷达系统中一个非常关键的环节。跟踪的任务是通过相关和滤波处理建立目标的运动轨迹。雷达系统根据在建立目标轨迹过程中对目标运动状态所作的估计和预测,评估船舶航行的安全态势和机动试操船的安全效果。因此,雷达跟踪环节工作性能的优劣直接影响到雷达系统的安全效能[1]。 鉴于目标跟踪在增进雷达效能中的重要作用,各国在军用和民用等领域中一直非常重视发展这一雷达技术。机动目标跟踪理论有了很大的发展,尤其是在跟踪算法的研究上,理论更是日趋成熟。在跟踪算法中,主要有线性自回归滤波、两点外推滤波、维纳 α-滤波和卡尔曼滤波,其中卡尔曼滤波算法在目标跟踪滤波、加权最小二乘滤波、β 理论中占据了主导地位。 雷达跟踪需要处理的信息种类多种多样。除了目标的位置信息外,一般还要对目标运动速度进行估计,个别领域中的雷达还要对目标运动姿态进行跟踪。雷达跟踪的收敛速度、滤波精度和跟踪稳定度等是评估雷达跟踪性能的重要参数。因此提高雷达跟踪的精度、收敛速度和稳定度也就一直是改善雷达跟踪性能的重点。随着科技的发展,各类目标的运动性能和材质特征有了大幅度的改善和改变,这就要求雷达跟踪能力要适应目标特性的这种变化。在不断提高雷达跟踪性能的前提下,降低雷达跟踪系统的成本也是现代雷达必须考虑的问题。特别是在民用领域中由于雷达造价不能过高,对目标跟踪进行快收敛性、高精度和高稳定性的改良在硬件上是受到一些制约的,因此雷达跟踪算法的研究就越来越引起学者们的关注。通过跟踪算法的改进来提高雷达的跟踪性能还有相当大的挖掘潜力。考虑到雷达设备的造价,民用雷达的跟踪系统首要的方法就是对于雷达的跟踪算法进行开发。

TLD目标跟踪算法

TLD目标跟踪算法 一、算法的背景 TLD(Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生Zdenek 出的一种新的单目标长时间(long term tracking)跟踪算法。该算法与传统跟踪算法的显著区别在于将传统的跟踪算法和传统的检测算法相结合来解决被跟踪目标在被跟踪过程中发生的形变、部分遮挡等问题。同时,通过一种改进的在线学习机制不断更新跟踪模块的“显著特征点”和检测模块的目标模型及相关参数,从而使得跟踪效果更加稳定、鲁棒、可靠。 对于长时间跟踪而言,一个关键的问题是:当目标重新出现在相机视野中时,系统应该能重新检测到它,并开始重新跟踪。但是,长时间跟踪过程中,被跟踪目标将不可避免的发生形状变化、光照条件变化、尺度变化、遮挡等情况。传统的跟踪算法,前端需要跟检测模块相互配合,当检测到被跟踪目标之后,就开始进入跟踪模块,而此后,检测模块就不会介入到跟踪过程中。但这种方法有一个致命的缺陷:即,当被跟踪目标存在形状变化或遮挡时,跟踪就很容易失败;因此,对于长时间跟踪,或者被跟踪目标存在形状变化情况下的跟踪,很多人采用检测的方法来代替跟踪。该方法虽然在某些情况下可以改进跟踪效果,但它需要一个离线的学习过程。即:在检测之前,需要挑选大量的被跟踪目标的样本来进行学习和训练。这也就意味着,训练样本要涵盖被跟踪目标可能发生的各种形变和各种尺度、姿态变化和光照变化的情况。换言之,利用检测的方法来达到长时间跟踪的目的,对于训练样本的选择至关重要,否则,跟踪的鲁棒性就难以保证。 考虑到单纯的跟踪或者单纯的检测算法都无法在长时间跟踪过程中达到理想的效果,所以,TLD方法就考虑将两者予以结合,并加入一种改进的在线学习机制,从而使得整体的目标跟踪更加稳定、有效。 简单来说,TLD算法由三部分组成:跟踪模块、检测模块、学习模块;如下图所示 其运行机制为:检测模块和跟踪模块互补干涉的并行进行处理。首先,跟踪模块假设相邻视频帧之间物体的运动是有限的,且被跟踪目标是可见的,以此来估计目标的运动。 如果目标在相机视野中消失,将造成跟踪失败。检测模块假设每一个视帧都是彼此独立的,并且根据以往检测和学习到的目标模型,对每一帧图片进行全图搜索以定位目标可能出现的区域。同其它目标检测方法一样,TLD中的检测模块也有可能出现错误,且错误无非是错误的负样例和错误的正样例这两种情况。而学习模块则根据跟踪模块的结果对检测模块的这两种错误进行评估,并根据评估结果生成训练样本对检测模块的目标模型进行更新,同时对跟踪模块的“关键特征点”进行更新,以此来避免以后出现类似的

目标跟踪算法的分类

运动目标跟踪就是在一段序列图像中的每幅图像中实时地找到所感兴趣的运动目标 (包括位置、速度及加速度等运动参数)。在运动目标跟踪问题的研究上,总体来说有两种思路: a)不依赖于先验知识,直接从图像序列中检测到运动目标,并进行目标识别,最终跟踪感兴趣的运动目标; b)依赖于目标的先验知识,首先为运动目标建模,然后在图像序列中实时找到相匹配的运动目标。 一、运动目标检测 对于不依赖先验知识的目标跟踪来讲,运动检测是实现跟踪的第一步。运动检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测。 静态背景下运动检测就是摄像机在整个监视过程中不发生移动,只有被监视目标在摄像机视场内运动,这个过程只有目标相对于摄像机的运动;动态背景下运动检测就是摄像机在整个监视过程中发生了移动 (如平动、旋转或多自由度运动),被监视目标在摄像机视场内也发生了运动,这个过程就产生了目标与摄像机之间复杂的相对运动。 1、静态背景 背景差分法 背景差分法是利用当前图像与背景图像的差分来检测运动区域的一种技术。它一般能够提供最完全的特征数据,但对于动态场景的变化,如天气、光照、背景扰动及背景物移入移出等特别敏感,运动目标的阴影也会影响检测结果的准确性及跟踪的精确性。其基本思想就是首先获得一个背景模型,然后将当前帧与背景模型相减,如果像素差值大于某一阈值,则判断此像素属于运动目标,否则属于背景图像。背景模型的建立与更新、阴影的去除等对跟踪结果的好坏至关重要。 帧间差分法 相邻帧间差分法是通过相邻两帧图像的差值计算,获得运动物体位置和形状等信息的运动目标检测方法。其对环境的适应性较强,特别是对于光照的变化适应性强,但由于运动目标上像素的纹理、灰度等信息比较相近,不能检测出完整

基于meanshift的目标跟踪算法——完整版

基于Mean Shift的目标跟踪算法研究 指导教师:

摘要:该文把Itti视觉注意力模型融入到Mean Shift跟踪方法,提出了一种基于视觉显著图的Mean Shift跟踪方法。首先利用Itti视觉注意力模型,提取多种特征,得到显著图,在此基础上建立目标模型的直方图,然后运用Mean Shift方法进行跟踪。实验证明,该方法可适用于复杂背景目标的跟踪,跟踪结果稳定。 关键词:显著图目标跟踪Mean Shift Mean Shift Tracking Based on Saliency Map Abstract:In this paper, an improved Mean Shift tracking algorithm based on saliency map is proposed. Firstly, Itti visual attention model is used to extract multiple features, then to generate a saliency map,The histogram of the target based on the saliency map, can have a better description of objectives, and then use Mean Shift algorithm to tracking. Experimental results show that improved Mean Shift algorithm is able to be applied in complex background to tracking target and tracking results are stability. 1 引言 Mean Shift方法采用核概率密度来描述目标的特征,然后利用Mean Shift搜寻目标位置。这种方法具有很高的稳定行,能够适应目标的形状、大小的连续变化,而且计算速度很快,抗干扰能力强,能够保证系统的实时性和稳定性[1]。近年来在目标跟踪领域得到了广泛应用[2-3]。但是,核函数直方图对目标特征的描述比较弱,在目标周围存在与目标颜色分布相似的物体时,跟踪算法容易跟丢目标。目前对目标特征描述的改进只限于选择单一的特征,如文献[4]通过选择跟踪区域中表示目标主要特征的Harris点建立目标模型;文献[5]将初始帧的目标模型和前一帧的模型即两者的直方图分布都考虑进来,建立混合模型;文献[6]提出了以代表图像的梯度方向信息的方向直方图为目标模型;文献[7-8]提出二阶直方图,是对颜色直方图一种改进,是以颜色直方图为基础,颜色直方图只包含了颜色分布信息,二阶直方图在包含颜色信息的前提下包含了像素的均值向量和协方差。文献[9]提出目标中心加权距离,为离目标中心近的点赋予较大的权值,离目标中心远的点赋予较小的权值。文献[4-9]都是关注于目标和目标的某一种特征。但是使用单一特征的目标模型不能适应光线及背景的变化,而且当有遮挡和相似物体靠近时,容易丢失目标;若只是考虑改进目标模型,不考虑减弱背景的干扰,得到的效果毕竟是有限的。 针对上述问题,文本结合Itti 提出的视觉注意模型[5],将自底向上的视觉注意机制引入到Mean Shift跟踪中,提出了基于视觉显著图的Mean Shift跟踪方法。此方法在显著图基础上建立目标模型,由此得到的目标模型是用多种特征来描述的,同时可以降低背景对目标的干扰。 2 基于视觉显著图的Mean Shift跟踪方法

卡尔曼滤波中文

处理线性滤波以及预测问题的一种新途径R.E.Kalman1引言通讯与控制中的理论与实际问题中有很重要的一类具有统计性质。 这样的问题有:(1)、随机信号的预测;(2)、从随机噪声中分离随机信 号;(3)、在有噪声的情况下探测已知形式的信号(脉冲、正弦波)。 在Wiener开拓性的工作中,他证明[1]从问题(1)和问题(2)可导 出所谓Wiener-Hopf积分方程;他同样给出了解决具有实际重要意义的特 殊情况——定态统计和有理数频谱——之积分方程的方法(频谱因式分解)。 在Wiener的基础性工作之后出现了许多延伸和推广。Zadeh与 Ragazzini给出了有限存储器情况的解[2]。Bode和Shannon[3]同时独 立的给出上述情况的解,并且给出了简化的求解方法。Booton讨论了非定 态统计Wiener-Hopf方程[4]。这些结果现在都写入了标准教科书中[5,6]。 最近Darlington[7]沿着这些主线给出了一种稍微有些不同的方法。对抽 样信号的延伸,参见Franklin[8]和Lees[9]的工作。基于Wiener-Hopf方 程(同样应用于非定态问题,尽管前述方法一般并非如此)特征函数的 方法由Davis[10]开创并被许多其他人应用,例如Shinbrot[11],Blum[12], Pugachev[13],Solodovnikov[14]. 在所有这些工作中,目标都是获取一个线性动力系统的明确说明 (Wiener滤波器),由此可以完成预测、分离或者探测随机信号。 现有求解Wiener问题的方法受制于若干限制,这样就使得它们的实际 用处收到削弱: 1.最佳的滤波器由其脉冲响应具体指定。由这些数据合成滤波器并非易 事。 2.数值确定最佳的脉冲响应往往十分复杂并且不很适合机器计算。这种 情况随着问题复杂度的增加而迅速变得更为糟糕。 11引言2 3.重要的推广(如增长存储器滤波器、非定态预测)需要新的推导过 程,经常给非专业人士带来相当大的困难。 4.这些推导过程的数学部分并不透明。基本假设及其后果趋于模糊。 本文回避上述困难,提出看待这些问题的整个集合的新方式。以下是 本文的亮点: 5.最佳估计和正交投影。Wiener问题是以条件分布与期望的观点处理 的。这样,Wiener理论的基本事实可以迅速获取;结果的范围以及基 本假设可以清楚的显现出来。可以看到所有的统计计算以及结果都基 于一阶和二阶平均;不需要其他的统计数据。这样一来困难(4)便被 排除。这种方法在概率论中为人们所熟知(见Doob[15]第148至155 页以及Lo`eve[16]第455至464页),但在工程上还没有大量的应用。 6.随机过程模型。继前人之后,尤其是Bode与Shannon[3],任意随机 信号可以被表示(直到二阶平均统计性质)为线性动力系统受独立或 不相关随机信号(“白噪声”)激励后的输出。这是工程上应用Wiener 理论的标准手法[2,3,4,5,6,7]。这里用到的方法与传统方法相比只 在线性动力系统的描述方法上不同。我们将强调状态以及状态过渡; 换言之,线性系统将以一阶差分(或微分)方程组来刻画。为了利用 (5)中提到的简化,这种观点是自然的,也是必要的。 7.求解Wiener问题。使用状态——过渡方法,单独一次推导即覆盖多

卡尔曼滤波基础知识

卡尔曼滤波 马尔可夫过程: 在随机理论中,把在某时刻的事件受在这之前事件的影响,其影响范围有限的随机过程,称为马尔可夫过程。一个事件受在它之前的事件的影响的深远程度,通常用在它之前的事件作为条件的概率来表达。受前一个事件的影响,简称为马尔可夫过程;受前两个事件的影响,称为二阶马尔可夫过程;受前三个事件的影响,称为三阶马尔可夫过程! 卡尔曼滤波简介+算法实现代码(转): 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 现设线性时变系统的离散状态防城和观测方程为: X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1) Y(k) = H(k)·X(k)+N(k) 其中 X(k)和Y(k)分别是k时刻的状态矢量和观测矢量 F(k,k-1)为状态转移矩阵 U(k)为k时刻动态噪声

T(k,k-1)为系统控制矩阵 H(k)为k时刻观测矩阵 N(k)为k时刻观测噪声 则卡尔曼滤波的算法流程为: 1 2预估计X(k)^= F(k,k-1)·X(k-1) 3计算预估计协方差矩阵C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)' Q(k) = U(k)×U(k)' 4计算卡尔曼增益矩阵 K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1) R(k) = N(k)×N(k)' 5更新估计 X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^] 6计算更新后估计协防差矩阵 C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)' 7X(k+1) = X(k)~ C(k+1) = C(k)~ 重复以上步骤 其c语言实现代码如下: #include "stdlib.h" #include "rinv.c" int lman(n,m,k,f,q,r,h,y,x,p,g) int n,m,k; double f[],q[],r[],h[],y[],x[],p[],g[]; { int i,j,kk,ii,l,jj,js; double *e,*a,*b; e=malloc(m*m*sizeof(double)); l=m;

卡尔曼滤波在目标跟踪中的应用

卡尔曼滤波在目标跟踪中的应用 摘要:机动卡尔曼算法(VD 算法)在扩展卡尔曼滤波诸算法中原理较为简单,目标跟踪效果也较好。 一. 模型建立 (1) 非机动模型(匀速直线运动) 系统模型 )()()1(k GW k X k X +Φ=+ 其中 ?????? ????? ???=)()()()()(k V k y k V k x k X y x ; ? ? ??????????=Φ10001000010001 T T ; ????? ? ? ???? ???=10200102T T G ? ?? ???=)()()(k W k W k W y x ; 0)]([=k W E ; kj T Q j W k W E δ=)]()([ 测量模型为: )()()(k V k HX k Z +=; 其中 ?? ? ???=01000001H )(k V 为零均值,协方差阵为R 白噪声,与)(k W 不相关。 (2) 机动模型 系统模型 );(*)()1(k W G k X k X m m m m m +Φ=+ 其中

?? ? ? ??? ? ?? ??????????=)()()()()()()(k a k a k V k y k V k x k X m y m y m y m m x m m ;??? ???????????? ?????=Φ100 00 00100000100020100000100200 122 T T T T T T m ;??? ???????????????????=10012040020422T T T T G m 0)]([=k W E m , kj m m m Q j W k W E T δ=)]()([ 观测模型与机动模型的相同,只是H 矩阵为m H 。 ?? ? ???=000100000001m H 二.Kalman 滤波算法 作为一般的Kalman 滤波算法其算法可以描述如下: )1/1(?)1/(?--Φ=-k k X k k X T T G k GQ k k P k k P )1()1/)1()1/(-+Φ--Φ=- 1])1/([)1/()(-+--=R H k k HP H k k P k K T T )]1/()()[()1/(?)/(?--+-=k k HX k Z k K k k X k k X )1/()()1/()/(---=k k HP k K k k P k k P 起始估计值为 ()()()()()()()221/?2/2221/x x x y y y z z z T z z z T ????-??????=????????-???? X 起始估计的估计误差为 (2)(1)(2)(1)2(2/2)(2) (1)(2)(1)2x x x x y y y y v v v T u T v v v T u T -?? ??-?? ?+?? =??-?? -???+???? X 起始估计的估计误差协方差矩阵为

目标跟踪算法的分类

目标跟踪算法的分类

主要基于两种思路: a)不依赖于先验知识,直接从图像序列中检测到运动目标,并进行目标识别,最终跟踪感兴趣的运动目标; b)依赖于目标的先验知识,首先为运动目标建模,然后在图像序列中实时找到相匹配的运动目标。 一.运动目标检测 对于不依赖先验知识的目标跟踪来讲,运动检测是实现跟踪的第一步。运动检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测 (一)静态背景 1.背景差 2.帧差 3.GMM 4.光流 背景减算法可以对背景的光照变化、噪声干扰以及周期性运动等进行建模,在各种不同情况下它都可以准确地检测出运动目标。因此对于固定

个关键技术: a)匹配法则,如最大相关、最小误差等 b)搜索方法,如三步搜索法、交叉搜索法等。 c) 块大小的确定,如分级、自适应等。 光流法 光流估计的方法都是基于以下假设:图像灰度分布的变化完全是目标或者场景的运动引起的,也就是说,目标与场景的灰度不随时间变化。这使得光流方法抗噪声能力较差,其应用范围一般局限于目标与场景的灰度保持不变这个假设条件下。另外,大多数的光流计算方法相当复杂,如果没有特别的硬件装置,其处理速度相当慢,达不到实时处理的要求。 二.目标跟踪 运动目标的跟踪,即通过目标的有效表达,在图像序列中寻找与目标模板最相似候选目标区位置的过程。简单说,就是在序列图像中为目标定位。运动目标的有效表达除了对运动目标建模外,目标跟踪中常用到的目标特性表达主要包括视觉特征 (图像边缘、轮廓、形状、纹理、区域)、统计特征 (直方图、各种矩特征)、变换系数特

基于卡尔曼滤波的目标跟踪研究_毕业设计

毕业设计 设计题目:基于卡尔曼滤波的目标跟踪研究 姓名 院系信息与电气工程学院 专业电气工程及其自动化 年级 学号 指导教师 2012年4月24 日

独创声明 本人郑重声明:所呈交的毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。尽我所知,除文中已经注明引用的内容外,本论文(设计)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。 此声明的法律后果由本人承担。 作者签名: 二〇一年月日 毕业论文(设计)使用授权声明 本人完全了解鲁东大学关于收集、保存、使用毕业论文(设计)的规定。 本人愿意按照学校要求提交论文(设计)的印刷本和电子版,同意学校保存论文(设计)的印刷本和电子版,或采用影印、数字化或其它复制手段保存论文(设计);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布论文(设计)的部分或全部内容,允许他人依法合理使用。 (保密论文在解密后遵守此规定) 论文作者(签名): 二〇一年月日

目录 引言 1.绪论 1.1研究背景 1.1.1卡尔曼滤波提出背景 1.1.2 应用范围 1.2本文研究的主要内容 2 2.初步认识卡尔曼滤波 2 2.1关于卡尔曼 2.2滤波及滤波器问题浅谈 2 2.3 卡尔曼滤波起源及发展 3.估计原理和卡尔曼滤波 2 4.卡尔曼滤波的实现 4.1卡尔曼滤波的基本假设 5 4.2卡尔曼滤波的特点 5 4.3卡尔曼滤波基本公式 6 4.4卡尔曼滤波参数的估计和调整 5.卡尔曼滤波的相关知识 5.1 8 5.2 8 5.3 9 6.卡尔曼滤波器的设计 7.目标跟踪模型的建立 8.结合数学模型进行matlb编程 9.目标跟踪仿真 10.结论11 11.参考文献11 12.致谢12 13 15 16

目标跟踪算法综述

。 目标跟踪算法综述 大连理工大学卢湖川一、引言 目标跟踪是计算机视觉领域的一个重 要问题,在运动分析、视频压缩、行为识 别、视频监控、智能交通和机器人导航等 很多研究方向上都有着广泛的应用。目标 跟踪的主要任务是给定目标物体在第一帧 视频图像中的位置,通过外观模型和运动 模型估计目标在接下来的视频图像中的状 态。如图1所示。目标跟踪主要可以分为5 部分,分别是运动模型、特征提取、外观 模型、目标定位和模型更新。运动模型可 以依据上一帧目标的位置来预测在当前帧 目标可能出现的区域,现在大部分算法采用的是粒子滤波或相关滤波的方法来建模目标运动。随后,提取粒子图像块特征,利用外观模型来验证运动模型预测的区域是被跟踪目标的可能性,进行目标定位。由于跟踪物体先验信息的缺乏,需要在跟踪过程中实时进行模型更新,使得跟踪器能够适应目标外观和环境的变化。尽管在线目标跟踪的研究在过去几十年里有很大进展,但是由被跟踪目标外观及周围环境变化带来的困难使得设计一个鲁棒的在线跟踪算法仍然是一个富有挑战性的课题。本文将对最近几年本领域相关算法进行综述。 二、目标跟踪研究现状 1. 基于相关滤波的目标跟踪算法 在相关滤波目标跟踪算法出现之前,大部分目标跟踪算法采用粒子滤波框架来进行目标跟踪,粒子数量往往成为限制算法速度的一个重要原因。相关滤波提出了 一种新颖的循环采样方法,并利用循环样 本构建循环矩阵。利用循环矩阵时域频域 转换的特殊性质,将运算转换到频域内进 行计算,大大加快的分类器的训练。同时, 在目标检测阶段,分类器可以同时得到所 有循环样本得分组成的响应图像,根据最 大值位置进行目标定位。相关滤波用于目 标跟踪最早是在MOSSE算法[1]中提出 的。发展至今,很多基于相关滤波的改进 工作在目标跟踪领域已经取得很多可喜的 成果。 1.1. 特征部分改进 MOSSE[1] 算法及在此基础上引入循 环矩阵快速计算的CSK[2]算法均采用简单 灰度特征,这种特征很容易受到外界环境 的干扰,导致跟踪不准确。为了提升算法 性能,CN算法[3]对特征部分进行了优 化,提出CN(Color Name)空间,该空 间通道数为11(包括黑、蓝、棕、灰、绿、 橙、粉、紫、红、白和黄),颜色空间的引 入大大提升了算法的精度。 与此类似,KCF算法[4]采用方向梯度 直方图(HOG)特征与相关滤波算法结合, 同时提出一种将多通道特征融入相关滤波 的方法。这种特征对于可以提取物体的边 缘信息,对于光照和颜色变化等比较鲁棒。 方向梯度直方图(HOG)特征对于运 动模糊、光照变化及颜色变化等鲁棒性良 好,但对于形变的鲁棒性较差;颜色特征 对于形变鲁棒性较好,但对于光照变化不 够鲁棒。STAPLE算法[5]将两种特征进行 有效地结合,使用方向直方图特征得到相 关滤波的响应图,使用颜色直方图得到的 统计得分,两者融合得到最后的响应图像 并估计目标位置,提高了跟踪算法的准确 度,但也使得计算稍微复杂了一些。 图1 目标跟踪算法流程图

卡尔曼滤波的原理说明(通俗易懂)

为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。 另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。 好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。 假如我们要估算k时刻的是实际温度值。 首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。 然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。 由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance 来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg =0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23) =24.56度。可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。 现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5 =2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。 就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的covariance。上面的Kg,就是卡尔曼增益(Kalman Gain)。他可以随不同的时刻而改变他自己的值,是不是很神奇! 下面就要言归正传,讨论真正工程系统上的卡尔曼。

目标跟踪算法

clc; clear; x=[0 16 25 33 50 65 75 82 100]; y=[0 172.5 227.5 324.2 330.7 286.1 237.7 201.7 0]; plot(xx,yy); 的图为 xx = 0:.01:100; yy = spline(x,y,xx); plot(xx,yy)

Matlab画平滑曲线的两种方法(拟合或插值后再用plot即可) 分类:MATLAB2012-12-02 11:15 25540人阅读评论(4) 收藏举报自然状态下,用plot画的是折线,而不是平滑曲线。 有两种方法可以画平滑曲线,第一种是拟合的方法,第二种是用spcrv,其实原理应该都一样就是插值。下面是源程序,大家可以根据需要自行选择,更改拟合的参数。 clc,clear; a = 1:1:6; %横坐标 b = [8.0 9.0 10.0 15.0 35.0 40.0]; %纵坐标

plot(a, b, 'b'); %自然状态的画图效果 hold on; %第一种,画平滑曲线的方法 c = polyfit(a, b, 2); %进行拟合,c为2次拟合后的系数 d = polyval(c, a, 1); %拟合后,每一个横坐标对应的值即为d plot(a, d, 'r'); %拟合后的曲线 plot(a, b, '*'); %将每个点用*画出来 hold on; %第二种,画平滑曲线的方法 values = spcrv([[a(1) a a(end)];[b(1) b b(end)]],3); plot(values(1,:),values(2,:), 'g');

卡尔曼滤波在目标跟踪中的应用

卡尔曼滤波在目标跟踪中的应用 [摘要]机动卡尔曼算法(VD 算法)在扩展卡尔曼滤波诸算法中原理较为简单,目标跟踪效 果也较好. 一.模型建立 (1) 非机动模型(匀速直线运动) 系统模型 )()()1(k GW k X k X +Φ=+ 其中 ??????????? ???=)()()()()(k V k y k V k x k X y x ; ? ? ?? ????????=Φ10001000010001T T ; ??????????????=10200102T T G ; ? ? ????=)()()(k W k W k W y x ; 0)]([=k W E ; kj T Q j W k W E δ=)]()([。 测量模型为: )()()(k V k HX k Z +=; 其中 ? ? ? ? ??=01000001H ; )(k V 为零均值,协方差阵为R 白噪声,与)(k W 不相关。 (2) 机动模型 系统模型 );(*)()1(k W G k X k X m m m m m +Φ=+ 其中

?? ? ? ??? ? ?? ??????????=)()()()()()()(k a k a k V k y k V k x k X m y m y m y m m x m m ;??? ???????????? ?????=Φ100 00 0010000010002010000 010*******T T T T T T m ;??? ???????????????????=10012040020422T T T T G m ; 0)]([=k W E m , kj m m m Q j W k W E T δ=)]()([。 观测模型与机动模型的相同,只是H 矩阵为m H , ?? ? ???=000100000001m H 二.kalman 滤波算法 作为一般的kalman 滤波算法其序贯算法可以描述如下: )1/1(?)1/(?--Φ=-k k X k k X T T G k GQ k k P k k P )1()1/)1()1/(-+Φ--Φ=- 1])1/([)1/()(-+--=R H k k HP H k k P k K T T )]1/()()[()1/(?)/(?--+-=k k HX k Z k K k k X k k X )1/()()1/()/(---=k k HP k K k k P k k P 起始估计值为 ()()()()()()()221/?2/2221/x x x y y y z z z T z z z T ?? ??-??????=????????-???? X 起始估计的估计误差为

目标定位跟踪算法及仿真程序(修改后)

目标定位跟踪算法及仿真程序 质心算法是最简单的定位算法,如图2-1所示,四个小圆为观测站,实线三角形是目标真实的位置,假设四个圆形观测站都探测到目标的存在,则根据质心定位算法,目标的位置(x,y )可以表示为:4 4 321x x x x x +++= , 4 4 321y y y y y +++= ,这里观测站得位置为),(i i y x ,同理,当观测站数目为N 时,这时候的质心定位算法可以表示为: ???? ? ??? ????=??????∑ ∑ ==N i i N i i y N x N y x 1 1 11 图1 质心定位 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 质心定位算法Matlab 程序 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function main % 定位初始化 Length=100; % 场地空间,单位:米 Width=100; % 场地空间,单位:米 d=50; % 目标离观测站50米以内都能探测到,反之则不能 Node_number=6; % 观测站的个数 for i=1:Node_number % 观测站的位置初始化,这里位置是随机给定的 Node(i).x=Width*rand; Node(i).y=Length*rand; end % 目标的真实位置,这里也随机给定 Target.x=Width*rand; Target.y=Length*rand; % 观测站探测目标 X=[]; for i=1:Node_number

多目标跟踪算法

多目标跟踪算法 先来回顾下卡尔曼滤波器: 假定k k x |表示当前k 时刻目标的状态,k 1k x |+表示下一个时刻目标的状态,k z 则表示k 时刻的实际观测。一般地模型都假定为线性的: 这里的1k x +为k+1时刻目标的状态,k x 为k 时刻的状态,为状态转移矩阵,而是服从均值为0方差为的正态分布,表示由噪声等引起的干扰。卡尔曼滤波采取初步估 计: 这里的估计只是初步的估计,状态估计与实际状态的误差矩阵等于状态1k x +的的方差,即: 更新(修正): 这里已知了实际观察,同样是假定观测与状态的似然关系是线性的,即满足: 服从一个均值为0方差为 的正态分布。 卡尔曼滤波器给出了经过更新后得到的比较合理的k+1时刻的估计为: 相应地得到了更新后方差的估计: 这里: 其实这些都是通过最小二乘法推出来的,即使得误差: 最小,而初步估计也是通过最小二乘法获得,即使得: 最小。有了上述估计方程后,便可以获得一个估计流程:

下面再介绍下贝叶斯公式 先看一个定义 马氏链: 设{} ,,,k j i E =为有限集或可列集,称()0n n X ≥为定义在概率空间()P F,,Ω上,取值于空间E 的马氏链,如果满足下面的马氏性:对一切n 10i i i ,,, 有 [][]1n 1n n n 1n 1n 00n n i X i X P i X i X i X P ----======|,,| 若左边的条件概率有定义,则称[]i X j X P 1n n ==-|为在n-1时刻状态为i,在n 时刻在j 的转移概率函数,若它与n 无关,则记为ij p ,并称为时齐的或齐次的。显然这里的马氏性接近于独立性,在一定程度上可以称为无记忆性或无后效性。 下面我们来推导贝叶斯公式: 容易由条件概率公式定义知 而 ()()()()()()( ) ()() ()( ) ()() ( )() ()()() 1 k 1 k 1k k k 1 k k 1k k k 1k k 1k k k 1k k k k k 1k 1k 1k k k 1k k k k k 1k 1k 1k k k 1k 1k 1k k k 1k 1k 1k 1k 1k z x f dx x f x z f x f x z f z f dx x f x z f x z f z f x f x z f x z f dx z x f x z f z x f x z f x f +++++++++++++++++++++++== ? == ?? ?||||||||||||||||||||||||| 就得到了更新后的公式如下: 这里记 于是就可以得到贝叶斯滤波器跟踪流程如下: 实际上可以证明,卡尔曼滤波器是贝叶斯滤波器的一种特殊形式,由于假定噪声服从正态分布,同样地观测与状态估计的误差也是服从正态分布,那么不难得:

相关文档
最新文档