污水处理工艺脱氮

污水处理工艺脱氮
污水处理工艺脱氮

污水处理A/O工艺脱氮除磷

一般的活性污泥法以去除污水中可降解有机物和悬浮物为主要目的,对污水中氮、磷的去除有限。随着对水体环境质量要求的提高,对污水处理厂出水的氮、磷有控制也越来越严格,因此有必要采取脱氮除磷的措施。一般来说,对污水中氮、磷的处理有物化法和生物法,而生物法脱氮除磷具有高效低成本的优势,目前出现了许多采用生物脱氮除磷的新工艺。

一、生物脱氮除磷工艺的选择

按生物脱氮除磷的要求不同,生物脱氮除磷分为以下五个层次:

(1)去除有机氮和氨氮;

(2)去除总氮;

(3)去除磷;

(4)去除氨氮和磷;

(5)去除总氮和磷。

对于不同的脱氮除磷要求,需要不同的处理工艺来完成,下表列出了生物脱氮除磷5个层次对工艺的选择。

生物脱氮除磷5个层次对工艺的选择

对于不同的TN出水水质要求,需要选择不同的脱氮工艺,不同的TN出水水质要求与脱氮工艺的选择见下表。

不同TN出水水质要求对脱氮工艺的选择

生物除磷工艺所需B0D5或COD与TP之间有一定的比例要求,生物除磷工艺所需BOD5或COD与T比例P的要求见下表。

生物除磷工艺所需BOD5或COD与TP的比例要求

二、A/O工艺生物脱氮工艺

(一)工艺流程

A/0工艺以除氮为主时,基本工艺流程如下图1。

图1 缺氧/好氧工艺流程

A/O工艺有分建式和合建式工艺两种,分别见图2、图3。分建式即硝化、反硝化与BOD 的去除分别在两座不同的反应器内进行;合建式则在同一座反应器内进行。

合建式反应器节省了基建和运行费用以及容易满足处理工程对碳源和碱度等条件的要求,但受以下闲素影响:溶解氧(0.5~1.5mg/L)、污泥负荷[0. 1~ 0. 15kgBOD5/ (kgMLVSS?d)]、C/N 比(6 -7)、pH值( 7. 5~8.0) ,而不易控制。

对于pH值,分建式A/O工艺中,硝化液一部分回流至反硝化池,池内的反硝化脱氮菌以原污水中的有机物作碳源,以硝化液中NOx-N中的氧作为电子受体,将NOz-N还原成N2 ,不需外加碳源。反硝化池还原1gNOx -N 产生3.57g碱度,可补偿硝化池中氧化1gNH3-N所需碱度(7. 14g)的一半,所以对含N浓度不高的废水,不必另行投碱调pH 值,反硝化池残留的有机物可在好氧硝化池中进一步去除。

一般来说分建式反应器(A/O工艺)硝化、反硝化的影响因素控制范围可以相应增大,更为有效地发挥和提高活性污泥中某些微生物(如硝化菌、反硝化菌等)所特有的处理能力,从而达到脱、处理难降解有机物的目的,减少了生化池的容积,提高了生化处理效率,同时也节省了环保投资及运行费用;而合建式A/O工艺便于对现有推流式曝气池进行改造。

图2 分建式缺氧一好氧活性污泥脱氮系统

图3 合建式缺氧好氧活性污泥脱氮系统

(二)A/O工艺生物脱氮工艺的特点

1. 优点

①同时去除有机物和氮,流程简单,构筑物少,只有一个污泥回流系统和混合液回流系统,节省基建费用。

②反硝化缺氧池不需外加有机碳源,降低了运行费用。

③好氧池在缺氧池后,可使反硝化残留的有机物得到进一步去除,提高了出水水质c

④缺氧池中污水的有机物被反硝化菌所利用,减轻了好氧池的有机物负荷,同时缺氧池中反硝化产生的碱度可弥补好氧池中硝化需要碱度的一半。

2. 缺点

①脱氮效率不高,一般去除率为70%~80%。

②好氧池出水含有一定浓度的硝酸盐,如二沉池运行不当,则会发生反硝化反应,造成污泥上浮,使处理水水质恶化。

(三)影响工艺的因素

①水力停留时间t

反硝化t≤2h, 硝化t≤6h,当硝化水力停留时间与反硝化水力停留时间为3: 1时,氨氮去除率达到70% ~80%, 否则去除率下降。

②有机物浓度与DO

进入硝化好氧池中BOD5≤80mg/L; 硝化好氧池中DO大于2mg/L。

③BOD5/NOx -N比值

反硝化缺氧池污水中溶解氧性的BOD5/NOx -N比值应大于4, 以保证反硝化过程中有充足的

有机碳源。

④混合液回流比

混合液回流比不仅影响脱氮效率,而且影响动力消耗。混合液回流比对脱氮效率的影响见下表。从表中可以看出,RN≤50% , 脱氮效率加很低;RN <200%,ηN随RN的上升而显着上升;当RN >200%后,ηN上升比较缓漫,一般内回流比控制在200%~400%。

混合液回流比对脱氮效率的影响

⑤污泥浓度(MLSS)

污泥浓度一般要求大于3000mg/L , 否则脱氮效率下降。

⑥污泥龄(θc)

污泥龄应达到15d 以上。

⑦硝化段的污泥有机负荷率

硝化段的污泥有机负荷率要小于0.18kgBOD5/( kgMLVSS?d );硝化段的TKN/MLVSS负荷率小于0. 05kgTKN/(kgMLVSS?d)。

⑧温度与pH值

硝化最适宜的温度20~30℃、反硝化最适宜的温度20~40℃;硝化最佳pH值为8~8.4 , 反硝化最佳pH值为6. 5~7. 5。

⑨原污水总氮浓度TN

原污水总氮浓度TN <30mg/L。

(四)A/O工艺设计参数

A/O工艺设计参数见下表。

A/O工艺设计参数

(五)A/O工艺设计计算

包括缺氧池(区)容积计算、好氧区容积、混合液回流量、需氧量的计算。

1. 缺氧池(区)容积计算、好氧区容积、混合液回流量计算

氧化1gNH3 - N需氧4. 57g , 并消耗7. 14g碱度;而反硝化1gNOx—N 生成3. 57g碱度,并消耗1.72gBOD5 , 同时还提供2. 6g O2,需氧量可按式(1)计算。需氧呈详细计算公式见下式。

式中

aSr一降解有机物的需氧量;

a—BOD5 的氧当量,1. 0 , 即降解1kgBOD5需氧1kgO2 ;

s—BOD5 去除量;

K—污水日变化系数;

Q一污水平均日流量,m3/d ;

S。,Se—污水流入、流出的BOD5浓度,g/m3;

bNr—氨氮硝化需氧量;

b—氨氮的氧当量,4. 57即硝化1g 氨氮需氧4.57g;

Nr一氨氮被硝化去除盐,kg/d;

NK。,Nke—进出水TKN浓度,g/m3;

Xw—每日净增活性污泥量,即每日排放剩余活性污泥量,kg/d;

0. 12一生成1kg生物体需0. 12kg氮量( C5 H7 NO2中N约占12% ) ;

CXw—排放剩余污泥氧当量的总量;

c一活性污泥的氧当量,为 1.42 ;

Xw—每日净增活性污泥量,即每日排放剩余活性污泥;

bND—反硝化脱氮所放出的氧量;

ND—NOx -N的耗氧量,kg/d ;

NOe一出水中NOx -N的浓度,g/m3。

污水处理生物脱氮除磷工艺

污水处理生物脱氮除磷工艺 在城市生活污水处理厂,传统活性污泥工艺能有效去除污水中的BOD5和SS,但不能有效地去除污水中的氮和磷。如果含氮、磷较多的污水排放到湖泊或海湾等相对封闭的水体,则会产生富营养化导致水体水质恶化或湖泊退化,影响其使用功能。因此,在对污水中的BOD5和SS进行有效去除的同时,还应根据需要,考虑污水的脱氮除磷。其中A-A-O(厌氧-缺氧-好氧)为同步生物脱氮除磷工艺的一种。 一、工艺原理及过程 A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷。 在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP保持稳定。在好氧段,由于聚磷菌的吸收,TP迅速降低。在厌氧段和缺氧段,NH3-N浓度稳中有降,至好氧段,随着硝化的进行,NH3-N逐渐降低。在缺氧段,由于内回流带入大量NO3-N,NO3-N瞬间升高,但随着反硝化的进行,NO3-N浓度迅速降低。在好氧段,随着硝化的进行,NO3-N浓度逐渐升高。 二、A-A-O脱氮除磷系统的工艺参数及控制 A-A-O生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要求。如能有效地脱氮或除磷,一般也能同时高效地去除BOD5。但除磷和脱氮往往是相互矛盾的,具体体现的某些参数上,使这些参数只能局限在某一狭窄的范围内,这也是A-A-O系统工艺系统控制较复杂的主要原因。 1.F/M和SRT。完全生物硝化,是高效生物脱氮的前提。因而,F/M(污泥负荷)越低,SRT(污泥龄)越高。脱氮效率越高,而生物除磷则要求高F/M低SRT。A-A-O生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。如果既要求一定的脱氮效果,也要求一定的除磷效果,F/M一般应控制在0.1-0.18㎏ BOD5/(kgMLVSS·d),SRT一般应控制在8-15d。

污水处理工艺中如何进行脱氮除磷

污水处理工艺中如何进行脱氮除磷? 氮、磷的主要危害:一是受纳水体富营养化;二是影响水源水质,增加给水处理成本;三是对人和生物有一定的毒害。 生物脱氮分为三步: 1、氨化作用,即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中,氨化作用进行得很快,无需采取特殊的措施。 2、硝化作用,即在供氧充足的条件下,水中的氨氮首先在亚硝酸钠的作用下被氧化成亚硝酸盐,然再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。 3、反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。 生物除磷原理 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 可分为三个阶段,,即细菌的压抑放磷、过渡积累和奢量吸收。 首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并 大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。 脱氮除磷工艺 1、传统A2/O 法即厌氧→缺氧→好氧活性污泥法。污水在流经三个不同功能分区的过程中,在不同微生物菌群作用下,使污水中的有机物、氮和磷得到去除。原污水的碳源物质(BOD)首先进入厌氧池聚磷菌优先利用污水中易生物降解有机物成为优势菌种,为除磷创造了条件,然后污水进入缺氧池,反硝化菌利用其它可利用的碳源将回流到缺氧池的硝态氮还原成氮气排入到大气中, 达到脱氮的目的。 2、氧化沟工艺是一种污水处理工艺形式,因其构造简单、易于维护管理,很快得到广泛应用。主要有Passveer单沟型、Orbal同心圆型、Carrousel循环折流型、D型双沟式和T型三沟式等。传统Passveer单沟型和Carrousel型氧化沟不具备脱氮除磷功能,但是在Carrousel氧化沟前增设厌氧池,在沟体内通过曝气装置的合理设置形成缺氧区和好氧区,形成改良型氧化沟,便具备生物脱氮除磷功能。 3、SBR 法是间歇式活性污泥法,降解有机物,属循环式活性污泥法范围,主要是好氧活性污泥,回流到反应池前部的污泥吸附区,回流污泥中硝酸盐得以反硝化在充分条件下可大量吸附进水中的有机物达到脱氮除磷的效果。 随着对脱氮除磷机理的深入探究,新工艺的不断出现及其可行性, 为水处理工艺提供了新的理论和思路。但社会的可持续发展给污水脱氮除磷处理提出了越来越高的要求,污水处理已不仅限于满足排放标准,更要考虑污水的资源化和能源化的问题,必须朝着最小的COD 氧化、最低的氮磷排放量、最少的剩余污泥排放等可持续污水处理工艺的方向发展。而生物学及其技术的发展,能使生物脱氮除磷工艺得到更大的发展。

污水处理技术概述

污水处理技术概述 污水处理技术,就是采用各种方法将污水中所含有的污染物质分离出来,或将其转化为无害和稳定的物质,从而使污水得以净化。 一、污水处理方法的分类 现代的污水处理技术,按其作用原理可分为物理法、化学法、物理化学法和生物处理法四大类。 (一)物理法 通过物理作用,以分离、回收污水中不溶解的呈悬浮状的污染物质(包括油膜和油珠),在处理过程中不改变其化学性质。物理法操作简单、经济。常采用的有重力分离法、离心分离法、过滤法及蒸发、结晶法等。 1.重力分离(即沉淀)法 利用污水中呈悬浮状的污染物和水密度不同的原理,借重力沉降(或上浮)作用,使水中悬浮物分离出来。沉淀(或上浮)处理设备有沉砂池、沉淀池和隔油池。 在污水处理与利用方法中,沉淀与上浮法常常作为其他处理方法前的预处理。如用生物处理法处理污水时,一般需事先经过预沉池去除大部分悬浮物质减少生化处理构筑物的处理负荷,而经生物处理后的出水仍要经过二次沉淀池的处理,进行泥水分离保证出水水质。 2.过滤法 利用过滤介质截流污水中的悬浮物。过滤介质有钢条、筛网、砂布、塑料、微孔管等,常用的过滤设备有格栅、栅网、微滤机、砂滤机、真空滤机、压滤机等(后两种滤机多用于污泥脱水)。 3.气浮(浮选) 将空气通入污水中,并以微小气泡形式从水中析出成为载体,污水中相对密度接近于水的微小颗粒状的污染物质(如乳化油)黏附在气泡上,并随气泡上升至水面,从而使污水中的污染物质得以从污水中分离出来。根据空气打入方式不同,气浮处理方法有加压溶气气浮法、叶轮气浮法和射流气浮法等。为了提高气

浮效果,有时需向污水中投加混凝剂。 4.离心分离法 含有悬浮污染物质的污水在高速旋转时,由于悬浮颗粒(如乳化油)和污水受到的离心力大小不同而被分离的方法。常用的离心设备按离心力产生的方式可分为两种:由水流本身旋转产生离心力的为旋流分离器,由设备旋转同时也带动液体旋转产生离心力的为离心分离机。 旋流分离器分为压力式和重力式两种。因它具有体积小、单位容积处理能力高的优点,近几十年来广泛用于轧钢污水处理及高浊度河水的预处理。离心机的种类很多,按分离因素分有常速离心机和高速离心机。常速离心机用于分离低浆废水效果可达60%~70%,还可用于沉淀池的沉渣脱水等。高速离心机适用于乳状液的分离,如用于分离羊毛废水,可回收30%~40%的羊毛脂。 (二)化学法 向污水中投加某种化学物质,利用化学反应来分离、回收污水中的某些污染物质,或使其转化为无害的物质。常用的方法有化学沉淀法、混凝法、中和法、氧化还原(包括电解)法等。 1.化学沉淀法 向污水中投加某种化学物质,使它与污水中的溶解性物质发生互换反应,生成难溶于水的沉淀物,以降低污水中溶解物质的方法。这种处理法常用于含重金属、氰化物等工业生产污水的处理。按使用沉淀剂的不同,化学沉淀法可分为石灰法(又称氢氧化物沉淀法)、硫化物法和钡盐法。 2.混凝法 向水中投加混凝剂,可使污水中的胶体颗粒失去稳定性,凝聚成大颗粒而下沉。通过混凝法可去除污水中细分散固体颗粒、乳状油及胶体物质等。该法可用于降低污水的浊度和色度,去除多种高分子物质、有机物、某种重金属毒物(汞、镉、铅)和放射性物质等,也可以去除能够导致富营养化物质如磷等可溶性无机物,此外还能够改善污泥的脱水性能。因此混凝法在工业污水处理中使用得非常广泛,既可作为独立处理工艺,又可与其他处理法配合使用,作为预处理、中间处理或最终处理。目前常采用的混凝剂有硫酸铝、碱式氯化铝、铁盐(主要指硫酸亚铁、三氯化铁及硫酸铁)等。

污水处理工艺流程

污水处理工艺流程 工业废水处理理论 一、工业废水(Industrial Wastewater)的含义和分类 定义:指工业企业各行业生产过程中产生和排放的废水。 包括:生产污水(包括生活污水)和生产废水两大类。 二、工业废水的分类、种类、指标 1分类 按行业的产品加工对象:冶金、造纸、纺织、印染等。 按工业废水中主要污染物分:无机废水(电镀、矿物加工),有机废水(食品加工) 按废水中污染物的主要成分:酸性、碱性、含酚等 按处理难易程度和危害性分:易处理危害性小的废水,易生物降解无明显毒性的废水,难生物降解又有毒性的废水。 2工业废水造成环境污染的种类 1)含无毒物质的有机废水和无机废水的污染; 2)含有毒物质的有机废水和无机废水的污染; 3)含有大量不溶性悬浮物废水的污染; 4)含油废水产生的污染; 5)含高浊度和高色度废水产生的污染; 6)酸性和碱性废水产生的污染; 7)含有多种污染物质废水产生的污染; 8)含有氮、磷等工业废水产生的污染。 三、工业废水处理方法概述 1 工业废水的物理处理(Physical Treatment) 定义:应用物理作用没有改变废水成分的处理方法称为物理处理法; 操作单元(Operating Units):调节(Adjust)、离心分离(CentrifugalSeparation)、除油(Oil Elimination)、过滤(Filtration)等。 废水经过物理处理过程后并没有改变污染物的化学本性,而仅使污染物和水分离。 2 工业废水的化学处理(Chemical Treatment) 定义:应用化学原理和化学作用将废水中的污染物成分转化为无害物质,使废水得到净化的方法称为化学处理。 操作单元(Operating Units):中和( Neutralization)、化学沉淀( Chemical Precipitation)、药剂氧化还原(Chemical Oxidation Reduction)、臭氧氧化(Ozone Oxidation )、电解(Electrolysis)、光氧化法(Photo- Oxidation)等。 污染物在经过化学处理过程后改变了化学本性,处理过程中总是伴随着化学变化。 3工业废水的物理化学处理(Physic-chemicalTreatment) 定义:废水中的污染物在处理过程中是通过相转移的变化而达到去除的目的的处理方法称为物理化学处理。 操作单元(Operating Units):混凝(Coagulation)、气浮(Floatation)、吸附(Adsorption)、离子交换(Ion Exchange)、电渗析(Electro-dialysis)、扩散渗析(Diffusion Dialysis)、反渗透(Reverse Osmosis)、超滤(Ultra Filtrate)等。 污染物在物化过程中可以不参与化学变化或化学反应,直接从一相转移到另一相,也可以经过化学反应后再转移。

污水处理厂的脱氮除磷改造

-- ●Vol.27,No.62009年6月 中国资源综合利用 China Resources Comprehensive Utilization 1 概况 漯河市污水处理厂,系“九五”期间淮河流域水污染防治规划重点项目之一,一期工程设计规模日处理城市混合污水80000m 3,工艺流程如图1所示。该工程采用carrousel 氧化沟工艺,设计出水标准为GB8978-1996二级排放标准。服务面积约28km 2,服务区人口35万人。该污水处理厂1997年12月开工建设,2000年7月进水试运行,同年10月底达标排放。 图1工艺流程图 该污水处理厂运行八年来,累计净化城市综合污水2亿多t ,日均进水量为70000~85000m 3,出水水质基本符合原设计出水要求,出水COD Cr 均低于120mg /L ,其去除率均在80%以上,有时甚至高于 90%;出水BOD 5均低于30mg /L ,去除率均在90%以上;只有SS 时有超标现象发生。同时,carrousel 氧 化沟具有较好的除磷功能,但脱氨氮功能有限。 随着环境保护形势的日益严峻,国家对重点流域出水断面的水质要求在进一步提高,尤其更加关切氮、磷污染物的污染问题。根据豫发改城市[2008]579号文件要求,10座省辖市污水处理厂需要进行脱氮改造,其中要求漯河市污水处理厂出水NH 3-N ≤10mg /L ,TN ≤15mg /L ,COD Cr ≤60mg /L 。从原厂检测数据看,出水NH 3-N 没有达到水质排放要求,出水COD Cr 虽然与排放指标接近,但不稳定。 2问题分析 2.1 进水水质超标。 原设计进水COD Cr 标准为500mg /L ,污水处理厂实际进水COD Cr 大多超过设计指标,有时甚至超设计标准数倍,导致污泥负荷过高,氧化沟内没有足够的氧气氧化分解污染物质,影响污水处理效果。另外,原设计进水SS 为200mg /L ,而实际进水大都在400mg /L 以上,进水SS 高,会导致氧化沟内污泥含量MLSS 快速上升,影响氧气的传递吸收[1]。由于污 收稿日期:2009-02-25作者简介:王 斌(1974-),男,河南漯河人,学士,工程师,从事污水治理方面的研究工作。 污水处理厂的脱氮除磷改造 王 斌1,朱学红1,赵若尘2 (1.漯河市水务投资有限公司,河南 漯河 462000;2.南京市排水管理处江心洲污水处理厂,南京210019) 摘要:结合城镇污水处理厂脱氮除磷改造工程实例,对老氧化沟进行功能区划分、设备改造:增加好氧区溶解氧浓度,降低缺(厌)区溶解氧浓度;同时适当增容,延长氧化沟水力停留时间和污泥泥龄。运行结果表明,系统出水主要指标稳定达到GB18918-2002一级A 标准。关键词:污水处理;脱氮除磷;功能区改造中图分类号:X703.1 文献标识码:A 文章编号:1008-9500(2009)06-0032-03 Reconstruction in N and P Removal in Wastewater Treatment Plants Wang Bin 1,Zhu Xuehong 1,Zhao Ruochen 2 (1.Luohe Water Co.Ltd.Luohe 46200,China ; 2.Jiangxinzhou Wastewater Treatment Plant of Nanjing Discharge Water Conducting Center ,Nanjing 210019,China ) Abstract :According to the reconstruction case in the town ,classing function zone and improving equipment on oxidation channel.At the same time enforcing the DO concentration of aerobic zone ,while decreasing the DO concentration of anoxic zone;meantime,cementing the capacity of oxidation channel to extend HRT an d SRT.The results show that the key output indicators of the system stably achieve GB18918-2002first-degree emission standards. Keywords :N and P removal;class zone ;increase the DO concentration ;increase the volume 污水治理32

常见污水处理工艺介绍

常见污水处理工艺介绍 Prepared on 24 November 2020

常见污水处理工艺介绍 一.物理法: 1.沉淀法:主要去除废水中无机颗粒及SS 2.过滤法:主要去除废水中SS和油类物质等 3.隔油:去除可浮油和分散油 4.气浮法:油水分离、有用物质的回收及相对密度接近于1(水的密度近似1)的悬浮固体 5.离心分离:微小SS的去除 6.磁力分离:去除沉淀法难以去除的SS和胶体等 二.化学法: 1.混凝沉淀法:去除胶体及细 2.中和法:酸碱废水的处理 3.氧化还原法:有毒物质、难生物降解物质的去除 4.化学沉淀法:重金属离子、硫离子、硫酸根离子、磷酸根、铵根等的去除 三.物理化学法: 1.吸附法:少量重金属离子、难生物降解有机物、脱色除臭等 2.离子交换法:回收贵重金属,放射性废水、有机废水等 3.萃取法:难生物降解有机物、重金属离子等 4.吹脱和汽提:溶解性和易挥发物质的去除。 重点介绍 (随着各种工艺不断改进,原有缺点不断被修正,因此只列出各种工艺的优 点)

四.生物法 1.活性污泥法:中微生物(micro-organism)悬浮在水中的各种方法的统称。(1)SBR法 序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。 工艺流程图: SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。 优点: 1)工艺简单,节省费用 2)理想的推流过程使生化反应推力大、效率高 3)运行方式灵活,脱氮除磷效果好 4)防治污泥膨胀的最好工艺 5)耐冲击负荷、处理能力强 (2)CASS法 CASS法是SBR法的改进型,特点是占地小、运行费用低、技术成熟、工艺稳定。 CASS法是在CASS反应池前部设置生物选择区,后部设置可升降的自动滗水装置。 工艺流程图: (3)AO法

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理 国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用。从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步 实现工业化流程。目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。 ?生物脱氮原理 生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件: 硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。 反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。 生物脱氮过程如图5—1所示。 反硝化细菌 +有机物(氨化作用)(硝化作用)(反硝化作用)

?生物除磷原理 磷常以磷酸盐(H 2PO 4 -、HPO 4 2-和H 2 PO 4 3-)、聚磷酸盐和有机磷的形式存在于废水中,生物除 磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。 生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。有报道称,当泥龄为30d时,除磷率为40%,泥龄为17d时,除磷率为50%,而当泥龄降至5d时,除磷率达到87%。 大量的试验观测资料已经完全证实,再说横无除磷工艺中,经过厌氧释放磷酸盐的活性污泥,在好氧状态下有很强的吸磷能力,也就是说,磷的厌氧释放是好氧吸磷和除磷的前提,但并非所有磷的厌氧释放都能增强污泥的好氧吸磷,磷的厌氧释放可以分为两部分:有效释放和无效释放,有效释放是指磷被释放的同时,有机物被吸收到细胞内,并在细胞内储存,即磷的释放是有机物吸收转化这一耗能过程的偶联过程。无效释放则不伴随有机物的吸收和储存,内源损耗,PH变化,毒物作用引起的磷的释放均属无效释放。 在除磷系统的厌氧区中,含聚磷菌的会留污泥与污水混合后,在初始阶段出现磷的有效释放,随着时间的延长,污水中的易降解有机物被耗完以后,虽然吸收和储存有机物的过程基本上已经停止,但微生物为了维持基础生命活动,仍将不断分解聚磷,并把分解产物(磷)释放出来,虽然此时释磷总量不断提高,但单位释磷量所产生吸磷能力随无效释放量的加大而降低。一般来说,污水污泥混合液经过2小时厌氧后,磷的释放已经甚微,在有效释放过程中,磷的释放量与有机物的转化量之间存在着良好的相关性,磷的厌氧释放可使污泥的好氧吸磷能力大大提高,每厌氧释放1mgP,在好氧条件下可吸收2.0~2.24mgP,厌氧时间加长,无效释放逐渐增加,平均厌氧释放1mgP,所产生的好氧吸磷能力降至1mgP以下,甚至达到0.5mgP。因此,生物除磷并非厌氧时间越长越好,同时在运行管理中要尽量避免PH的冲击,否则除磷能

生活污水处理工艺流程概述

生活污水处理工艺流程概述 随着人们生活水平的提高,应当鼓励采用经济、简易、有效、尽可能与当地农业生产相结合的多样化生活污水处理技术,实现污水的无害化处理和资源化利用。污泥沉降性能好,污泥增长率低,量少,沉降性能好。 1、设备埋于地表以下,设备上面的地表可作为绿化或其它用地,不需要建房及采暖、保温。 2、A/O生物处理工艺均采用推流式生物接触氧化,其处理效果优于完全混合式或二、三级串联完全混合式生物接触氧化池。并比活性污泥池体积小,对水质的适应性强,耐冲击负荷性能好,出水水质稳定,不会产生污泥膨胀。池中采用新型弹性立体填料,比表面积大,微生物易挂膜,脱膜,在同样有机物负荷条件下,对有机物去除率高,能提高空气中的氧在水中溶解度。 3、A/O池采用了生物接触氧化,其填料的体积负荷比较低,微生物处于自身氧化阶段,产泥量少,仅需三个月(90天)以上排一次泥(用粪车抽吸外运)。 4、该设备采用的鼓风机除采取常规的消声措施(如隔振垫、消声器)外,房入口入安装消音装置,使设备运行时的噪声小于A声级50db(分贝),符合安静小区要求,对周围环境基本上无影响。 5、该地埋式生活污水处理设备的除臭方式除采用常规高空排气,另配有土壤脱措施。 6、整个设备处理系统配有全自动电器控制系统和设备故障损坏报警系统,运行安全可靠,平时一般人不需要专人管理,只需适时地对设备进行维护和保养。 生活污水净化沼气池是一种小型分散化污水治理装置,具有投资少,效果好,运行无需能源支持等特点。该技术在涟水、东海等地得到广泛应用,成效较为显著。 (l)泵。泵是系统连续运行的关键设备。由于输送介质是排泥水,在水处理阶段已经过PH值调整,又经过了多层格姗的固形物拦截,普通的污水泵已可满足污水提升的工艺要求。如构筑物设置在地下,一般应选用潜水排污泵,以节省泵房开挖带来的投资,如构筑物高于地面,可选用立式排污泵。含固率达到2%以上的污泥水及输送进脱水机的污泥.应选用能适应高粘度介质、流最基本无脉动的螺杆泵。所有泵的密封宜采用机械密封。如泵用于抽取具浓缩作用的构筑物底部积液,其进液管路上应加装一条压力水管.当吸人管堵塞时可冲散

水处理中脱氮原理及工艺

水处理中脱氮原理及工艺 张路 摘要:水资源短缺和水污染严重已经成为严重制约我国社会经济持续发展、危害环境生态、影响人民生活和身体健康的突出问题,迫切需要加以解决。本文论述了我国水处理的概况以及脱氮的原理及传统脱氮工艺和新的脱氮工艺。 关键字:水处理;脱氮工艺 1 氮污染概况 我国水资源总量较为丰富,总量28124亿m3,位居世界第六,然而人均占有水资源量仅2340 m3,约为世界人均占有量的1/4。并且我国水资源主要来源于降水,受大气环流、海陆位置、地形及地势等因素影响严重,在地域及时间上分布都极不均匀。尤其近年来水资源短缺危机日益严重,如何合理配置现有水资源、在最大程度上避免水资源的浪费成为亟待解决的重大问题。与此同时,全国年排污水量为350亿m3,城市污水集中处理率仅为百分之七,百分之八十的污水未经有效处理就排入江河湖海,使我国的水污染状况和水质富营养化十分严重,并进一步加剧了水资源的短缺。可以说水资源短缺和水污染严重已经成为严重制约我国社会经济持续发展、危害环境生态、影响人民生活和身体健康的突出问题,迫切需要加以解决。 我国缺水的东北、华北和沿海地区,每年可回收污水量约五十多亿立方米,通过污水回用可以在相当程度上缓解全国的水资源紧缺状况,成为江,河,湖,地下水之外的新水源,从而促进工农业产值的大幅度提高。 污水的再生利用往往离不开脱氮除磷技术,这是因为传统的污水二级生物处理技术氮磷去除能力低,氮磷含量较高的再生污水回用于城市水体、工业冷却水、工业生产用水或者市政杂用水时将造成危害。因此,当利用城市污水处理厂作为第二水源开发时,在污水再生利用过程中,对于某些回用对象,必须对氮和磷的含量加以控制。

污水脱氮除磷

中小城镇污水处理厂生物除磷脱氮工艺的选择 一概述 改革开放以来,在我国的大中型城市中,建设了一批污水处理设施,对于保护大中型城市的环境,治理水污染起到了很大作用。随着我国城乡经济的发展,人民生活水平的显著提高,我国农村城市化的速度将大大加快,大量的小城镇将迅速兴起,预计到本世纪末,全国设市城市将达1200个左右,建制镇25000~3O000个左右,全国城镇人口达6.8亿左右,城市化水平约为45%,其中小城镇人口所占比例达65%左右。从发展眼光看,今后我国的大部分人口将生活在中小城镇。 目前全国共有1700O个建制镇,绝大多数没有排水和污水处理设施,而且,由于二十几年来,乡镇企业的蓬勃发展,造成一些中小城镇尤其是经济比较发达的中小城镇,污染严重,已经影响到人民的生活和健康。 从另一方面讲,中小城镇和大中城市在水系上是相通的,而且往往处于大中城市的上游,中小城镇的污水治理工作做不好,大中城市水环境的质量也不会有明显改善,因此,中小城市的环境保护问题越来越引起人们的重视。针对目前的情况,国家提出至2010年我国污水处理率要达到4O%,因此,未来一段时间内我国将会集中在中小城镇建设一大批污水处理厂,这些污水处理厂的规模,小的只有每日几十吨,大的每日几万吨,因此在规模上和大型污水处理厂相差较大,而且,由于这些中小城镇和大中城市经济发展水平、排水体制,基础资料,融资渠道有很大不同,因此以往建设大型污水处理厂的经验只有借鉴的意义,不可能也不应该把大中城市的污水治理工艺、技术装备等搬用到城镇级的污水处理厂中去,否则目前在大中城市中出现的“建的起,用不起”的局面将会在中、小城镇更加强烈的表现出来,甚至会演变成“既建不起,更用不起”的局面,因此探索适合中小城镇的经济实用的污水处理工艺,以较少的投资建成污水处理厂,以较低的运行费用运转污水处理厂,达到消除污染、保护环境的目的是摆在给排水工作者面前的一个挑战。 考虑到1998年1月1日之后,已经开始实行《污水排放综合标准》(GB8978-1996),因此中小城镇的污水处理厂在选择处理工艺时都要考虑除磷脱氮,本文谨就适合于中小城镇城市污水处理厂的生物除磷脱氮工艺谈一些粗浅的看法,供大家参考,不妥之处请指正。 二可供选择的工艺 各种除磷脱氮工艺一般都是除碳、除氮、除磷三种流程的有机组合,得利满公司提出了“SARAOE”概念,来描述用于除磷脱氮的不同区域。 1.选择区(Selectorzone) 设置选择区的目的主要是为了避免污泥膨胀。 2.厌氧区(Anaerobiczone) 设置厌氧区是为了提供一个使聚磷菌释放磷的环境,为后续的好氧吸磷创造条件。 3.再活化区(Reactivationzone) 设置再活化区用于再活化回流污泥。 4.缺氧区(Anoxiczone) 设置缺氧区,提供一个缺氧环境,使硝酸盐氮被还原为氮气。 5.好氧区(Oxidationzone) 该区为主反应区,在该反应区内完成碳的氧化和氨氮的硝化。 6.内源呼吸区(Endogenouszono) 在该区内进一步完成硝酸盐氮的反硝化。 在实际的工程设计中,根据受纳水体的要求和其它一些实际情况,生物除磷脱氮工艺可以分成以下几个层次: 1、去除有机物、氨氮和硝酸盐氮,因对总氮无要求,可以采用生物硝化工艺,生物硝化工艺与传统活

最新城镇污水处理厂工艺设计(生物脱氮除磷工艺水污染课程设计

城镇污水处理厂工艺设计(生物脱氮除磷工艺)水污染课程设 计

精品好文档,推荐学习交流 目录 1.设计任务书 (3) 2.设计说明书 (4) 2.1 工程概况 (4) 2.2污水处理厂设计规模及污水水质 (5) 2.2.1 设计规模 (5) 2.2.2 污水水质及污水处理程度 (5) 2.3 污水处理厂工艺设计 (5) 2.3.1污水处理工艺设计要求 (5) 2.3.2污水处理工艺选择 (6) 2.3.3污泥处理工艺选择 (10) 2.4 污水处理厂工程设计 (12) 2.4.1污水处理厂总平面设计 (12) 2.4.2污水处理厂总高程设计 (15) 2.5 各主要构筑物及设备说明 (16) 2.5.1粗格栅间 (16) 2.5.2水提升泵房 (17) 2.5.3细格栅间 (18) 2.5.4曝气沉砂池 (18) 2.5.5氧化沟 (19) 2.5.6二沉池 (19) 2.5.7 接触池 (19) 2.5.8加氯间 (20) 2.5.9污泥回流泵房 (21) 2.5.10污泥浓缩池 (21) 2.5.11污泥脱水间 (21) 2.5.12其他建筑物 (22) 3.设计计算书 (22) 3.1 设计依据 (22) 3.2设计流量 (23) 3.3格栅设计 (23) 3.3.1设计参数 (23) 3.3.2设计计算 (23) 3.4曝气沉砂池 (28) 3.4.1设计参数 (28) 3.4.2设计计算 (28) 3.5氧化沟 (30)

精品好文档,推荐学习交流 3.5.1设计参数 (30) 3.5.2设计计算 (30) 3.6辐流式二沉池 (36) 3.6.1设计参数 (36) 3.6.2 设计计算 (36) 3.7消毒池 (38) 3.7.1设计参数 (38) 3.7.2 设计计算 (38) 3.8液氯投配系统 (39) 3.8.1设计参数 (39) 3.8.2设计计算 (39) 3.9计量堰 (39) 3.10泥回流泵房 (40) 3.11浓缩池 (40) 3.12泥脱水间 (41) 4.污水厂成本概算 (41) 4.1 水厂工程造价 (41) 4.1.1 计算依据 (41) 4.1.2 单项构筑物工程造价计算 (41) 4.2 污水处理成本计算 (43) 参考文献 (44)

常用生活污水处理工艺介绍及对比

?几种常用生活污水处理工艺的比较 一、概述 生活污水处理工艺目前已相当成熟,其核心技术为活性污泥法和生物膜法,对活性污泥法(或生物膜法)的改进及发展形成了各种不同的生活污水处理工艺,传统的活性污泥法处理工艺在中小型生活污水处理已较少使用。根据污水的水量、水质和出水要求及当地的实际情况,选用合理的污水处理工艺,对污水处理的正常运行、处理费用具有决定性的作用。 本文主要对生活污水几种常用的处理工艺作简单介绍,包括氧化沟、序批式活性污泥法(SBR)、生物接触氧化法、曝气生物滤池(BAF)、A-0工艺、膜生物反应器(MBR)等。 二、中小型生活污水处理工艺简介 典型的生活污水处理完整工艺如下: 污水——前处理——生化法——二沉池——消毒——出水 | | ——-——污泥处理系统-- 前处理也称为预处理技术,常用的有格栅或格网、调节池、沉砂池、初沉池等。

由于生活污水处理的核心是生化部分,因此我们称污水处理工艺是特指这部分,如接触氧化法、SBR法、A/O法等。用生化法(包括厌氧和好氧)处理生活污水在目前是最经济、最适用的污水处理工艺,根据生活污水的水量、水质及现场的条件而选择不同的污水处理工艺对投资及运行成本具有决定性的影响。下面就目前常用的生活污水处理工艺作一简介。 1、氧化沟工艺 氧化沟是活性污泥法的一种变形,其池体狭长,故称为氧化沟。氧化沟有多种构造型式,典型的有:A:卡罗塞式;B:奥巴尔型;C:交替工作式氧化沟;D:曝气—沉淀一体化氧化沟 氧化沟技术已广泛应用于大中型城市污水处理厂,其规模从每日几百立方米至几万立方米,工艺日趋完善,其构造型式也越来越多。其主要特点是:进出水装置简单;污水的流态可看成是完全混合式,由于池体狭长,又类似于推流式;BOD负荷低,处理水质良好;污泥产率低,排泥量少;污泥龄长,具有脱氮的功能。 设计要点:混合液悬浮固体浓度5000mg/l;生物固体平均停留时间,去除BOD5时,取5~8天,当要求硝化反应时取10~30天;水力停留时间为20、24、36、48h,根据对处理水水质要求而定;BOD—SS负荷(Ns)为0.03~0.07kgBOD/(kgMLSS.d);BOD容积负荷(Nv)为0.1~0.2 kgBOD/(m3.d);污泥回流比为50~150%;混合液在渠内的流速为0.4~0.5m/s;沟底流速为0.3 m/s。 但氧化沟工艺与SBR和普通活性污泥工艺比较,能耗高,且占地面积较大。 2、A/O法 即厌氧—好氧污水处理工艺,流程如下:

污水处理中的脱氮除磷工艺

污水处理中的脱氮除磷工艺 摘要:在陈述城市污水生物脱氮除磷机理的基础下,简单分析生物脱氮除磷的处理工艺。 关键词:脱氮除磷;机理;工艺 1 前言 城市污水中的氮、磷主要来自生活污水和部分工业废水。氮、磷的主要危害:一是使受纳水体富营养化;二是影响水源水质, 增加给水处理成本;三是对人和生物产生毒害。上述 危害严重制约了城市水环境正常功能的发挥, 并使城市缺水状况加剧,而且随着人民生 活水体的提高和环境的恶化,对水质的要求也越来越高。为了达到较好的脱氮除磷效果,环境工作者对一些传统工艺进行了改进或设计出新工艺,本文简单介绍一些脱氮除磷工艺。 2 生物脱氮原理【1】 一般来说, 生物脱氮过程可分为三步: 第一步是氨化作用, 即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中, 氨化作用进行得很快, 无需采取特殊的措施。第二步是硝化作用, 即在供氧充足的条件下, 水中的氨氮首先在亚硝酸菌的作用下被氧化成亚硝酸盐, 然后再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。第三步是反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。反应方程式如下: ( 1) 硝化反应: 硝化反应总反应式为: ( 2) 反硝化反应:

另外, 由荷兰Delft 大学Kluyver 生物技术实验室试验确认了一种新途径, 称为厌氧氨( 氮) 氧化。即在厌氧条件下,以亚硝酸盐作为电子受体,由自养菌直接将氨转化为氮, 因而不必额外投加有机底物。反应式为:NH4+NO2→N2+2H2O 3 生物除磷原理【1】 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 生物除磷过程可分为3 个阶段,即细菌的压抑放磷、过渡积累和奢量吸收。首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。反应方程式如下: ( 1) 聚磷菌摄取磷: ADP+H3PO4+能量→ATP+H2O ( 2) 聚磷菌的放磷: ATP+H2O→ADP+H3PO4+能量 4.脱氮除磷工艺 4.1 AB法【2】 AB法污水处理工艺是一种新型两段生物处理工艺,是吸附生物降解法的简称。该工艺将高负荷法和两段活性污泥法充分结合起来,不设初沉池,A、B两段严格分开,形成各自的特征菌群,这样既充分利用了上述两种工艺的优点,同时也克服了两者的缺点。所以

半导体行业废水处理方法概述

半导体行业废水处理方法概述 发表时间:2018-11-14T19:26:30.977Z 来源:《防护工程》2018年第20期作者:张学良[导读] 该文章主要叙述了半导体行业的废水种类、来源、处理方法,并预测废水处理的未来发展方向。 江苏中电创新环境科技有限公司江苏省无锡市 214073 摘要:该文章主要叙述了半导体行业的废水种类、来源、处理方法,并预测废水处理的未来发展方向。 关键词:含氟废水;含磷废水;有机废水;研磨废水;氨氮废水;酸碱废水 从国家经济发展、工业布局和产业导向的变化来看,信息产业将是未来重点发展的行业之一。其中,半导体行业作为信息产业的基础,将会有迅猛的发展。而随着该行业的快速发展,其对环境的影响及压力势必有所增加。半导体行业的废水处理形势也必然越来越严峻。 沃威沃公司面对的主要是半导体行业,兼做纯水处理和废水处理。纯水是用于生产工程的供水,废水则是生产线上形成的清洗水。目前,半导体行业的废水以处理后排放为主。本文章主要叙述目前半导体行业产生的废水种类、来源和处理方法。 1. 废水的种类及来源 1.1.废水的种类 由于半导体公司的最终产品不同,各公司生产过程中产生的废水种类都不一样,各公司对产生的废水来源不一样所进行的分类也不一样。总的来水,半导体行业的废水可以分为含氟废水、含磷废水、有机废水、研磨废水、氨氮废水和酸碱废水。如无锡华润上华没有含磷废水,上海天马没有研磨废水。 1.2.废水的来源 含氟废水主要来源于来自于自芯片制造过程中的扩散工序及化学机械研磨工序,在对硅片及相关器皿的清洗过程中也多次用到氢氟酸。对粘膜、上呼吸道、眼睛、皮肤组织有极强的破坏作用。污染物主要为氟离子。 含磷废水主要来源于生产工程中的铝刻蚀液。 有机废水,由于生产工艺的不同,有机溶剂的使用量对于半导体行业而言具有很大的差距。但是作为清洗剂,有机溶剂仍然广泛使用在制造封装的各个环节上。部分溶剂则成为有机废水排放。有机废水主要来源于IPA溶剂、显影液、ITO刻蚀液、酸洗塔酸碱废水、酸洗塔有机废水。 研磨废水主要来源于晶圆切割抛光后的后续清洗制程。主要污染物为悬浮固体。 氨氮废水主要来源于刻蚀过程中使用的氨水、氟化铵及用高纯水清洗。 酸碱废水主要来源于制造过程中的清洗工艺;纯水系统中多介质过滤器、活性炭过滤器的反冲洗水,混床再生后的清洗水;冷却塔排水。 2. 废水处理技术 2.1.含氟废水处理 含氟废水的治理技术主要为化学沉淀+混凝沉淀法,即投加化学药品形成氟化物沉淀或氟化物被吸附于所形成的沉淀物中而共沉淀,然后分离固体沉淀物即可除去氟化物。在半导体行业中,投加Ca(OH)2 或NaOH 和CaCl2 的混合物产生难溶于水的CaF2 沉淀。由于半导体厂对环境要求比较高,我们常存在用CaCl2作为反应物。CaCl2沉淀的化学反应为: 2F + Ca2+ → CaF2↓ 在钙的化学计量浓度下,氟化钙的理论最大溶解度约为8mg/l。因此,氟化钙浓度超过此溶解度极限后即产生沉淀物。一般考虑停留时间为0.5hr。CaF2沉淀的缺陷是沉淀物的沉降特性较差,因此在化学沉淀后,一般加混凝剂(PAC和PAM)进一步形成更大的沉淀体,最后在沉淀池中去除沉淀物。若加多过量石灰或CaCl2,可进一步降低氟化物浓度。通常,会在反应池中设氟表控制钙剂的投加量。 2.2.含磷废水处理 含磷废水处理目前应用较多的主要是化学沉淀法和生物法,生产处理多数用于处理有机磷废水,半导体行业中产生的含磷废水主要以磷酸盐的形式存在,采用化学沉淀法处理。沉淀剂采用钙剂或铝剂。我们采用的方法是先用CaCl2沉淀磷酸盐,后加PAC混凝处理。 CaCl2和PO43-的反应式为: Ca2++ PO43-→ Ca3(PO4)2↓ 磷酸钙的理论溶解度约为20mg/L。后续混凝处理进一步形成更大的沉淀体,最后在沉淀池中去除沉淀物。一般控制pH在8-10的条件下进行反应。 2.3.有机废水处理 有机废水的处理方法很多,如活性污泥法、生物膜法、MBR膜法等。目前,我们主要采用接触氧化法进行处理,厌氧+好氧的处理方式,该方法处理效果稳定,投入低,受业主青睐。 2.4.研磨废水处理 研磨废水中的主要污染物为固体,但是这些固体颗粒细小,比较难沉淀,一般通过混凝的方法增大颗粒的直径,使颗粒更易于沉降。 2.5.氨氮废水 氨氮废水的处理方法有吹脱法、氯折点法、生物法、中和法、沉淀法、离子交换法、蒸汽气提法。吹脱法用于处理高浓度氨氮废水具有流程简单、处理效果稳定、基建费和运行费较低等优点,实用性较强。当氨氮废水的浓度比较高(几百以上)时,采用吹脱法将氨氮的浓度降低至100mg/L以下,吹脱出的氨氮用加酸吸收成硫酸铵外运。半导体行业中的氨氮废水含碳量低,生化法不适用。吹脱法和沉淀法适合于高浓度的氨氮废水。中和法不能完全去除氨氮的污染,将氨氮从废水中驱逐出来,但是需要另外配置吸收塔进行吸收,这对于处理量小的项目来说,投入比较高。有的半导体厂氨氮废水水量小,浓度不高,在100-200mg/L时,采用氯折点法对氨氮废水进行处理,该种方法要求的投入低、占地面积小、设备比较简单。在反应池设置氯表控制氯和还原剂的投加。

相关文档
最新文档