活性氧化铝的改性

活性氧化铝的改性
活性氧化铝的改性

活性氧化铝的改性

一、前言

氧化铝是一种重要的化工产品,具有高硬度、高强度、耐磨、耐热、耐腐蚀等一系列优异性能。大部分的氧化铝被用于制备原铝,不过由于其优异的性能也广泛用于陶瓷、磨料、医药、吸附剂、催化剂及其载体等领域[1~4]。到目前为止,已知氧化铝有15种以上不同的结构形态(δ-,γ-,κ-,η-,θ-,χ-,ρ-,α-Al2O3等),因其结构形态的不同,氧化铝的宏观结构性质(如密度、孔隙率、孔径分布、比表面积等)也各不相同。

氧化铝按其用途可分为稳定态氧化铝和过渡态氧化铝。稳定态氧化铝指的是刚玉相氧化铝(α-Al2O3),其结构稳定且不含水,是各种形态的氢氧化铝在温度超过1000℃后完全脱水得到的产品[5]。这类氧化铝一般不具有活性。

过渡态氧化铝是由氧化铝前驱体在不同温度下制得的区别于刚玉(α

-Al2O3)的所有晶相的总称,按生成温度可分为低温氧化铝和高温氧化铝两大类[6]。

(1)低温氧化铝(又称γ-组):这类氧化铝有ρ-、η-、γ-和χ-Al2O3,是由氢氧化铝在脱水温度不超过600℃时煅烧得到的产品。这类氧化铝分子中存在大量的羟基,可以用化学式Al2O3·nH2O(0

(2)高温氧化铝(又称δ-组):是氢氧化铝在900~1000℃脱水得到的产品。这类包括δ-、θ-、κ-氧化铝。

随着石油化工的发展和催化技术的进步,活性氧化铝越来越受到关注,其中γ-Al2O3由于比表面积大、晶相温度范围广、孔结构可调节、表面又具有酸性等特性,在化工领域被广泛用作催化剂及其载体[7]。重整、汽车尾气净化等高温体系中,Al2O3的微晶或颗粒极易烧结并转变为α-Al2O3,使Al2O3载体比表面积丧失,孔道坍塌,从而导致催化剂活性下降甚至失活[8]。

二、制备方法

目前我国制备活性氧化铝主要工艺是碱式中和法和酸式中和法。碱式中和法的特点是用碱性物质去中和酸性的铝盐溶液,如高温并流成胶法、室温单流成胶法、铝溶胶热油成球法等;酸式中和法,特点是用酸性物质去中和碱性的铝盐溶液,如硝酸法制备γ-Al2O3。由于碱法制备活性氧化铝成本较低,得到的产品相对较纯所以最为常用。除此之外,还有快脱法和醇铝法等制备方法,不同的制备工艺得到的氧化铝载体的物理性能存在较大差异。

2.1 碱式中和法

2.1.1.高温并流成胶法

使铝盐溶液和氨水分别控制一定的流速同时进入中和罐,使生成的氢氧化铝凝胶维持在温度大于70℃,pH大于8.5。待生成足够量的胶体时即可停止中和。胶体经反复过滤、洗涤后,成型、干燥,再经500-600℃焙烧就可得到能供工业使用的γ-Al2O3。这种γ-Al2O3的特点使孔容大,纯度高。

2.1.2.室温单流成胶法

先将一定浓度的铝盐溶液置于中和罐内,再猛烈搅拌的情况下以一定的速度将氨水徐徐注入其中,立即生成了白色絮状的氢氧化铝凝胶,大约在pH=4.5

左右能出现一个“稠点”,此时胶体粘度最大,再继续加入氨水又可变稀,直至胶体的pH≤8为止,视为中和完毕。将胶体过滤,洗涤,烘干和焙烧也可得到以γ-Al2O3为主的活性氧化铝。这样氧化铝孔小,纯度较差。

2.1.

3.铝溶胶热油成球法

此法和上两种方法不同,它用的原料是“铝溶胶”和六次甲基四胺水溶液,它们两者以体积比11相混和后,滴落在90℃左右的热油中,依靠六次甲基四胺在温度的作用下发生水解生成氨气,使混和液凝固成一个个小球,再使小球经过老化处理完全转变成氢氧化铝,水洗去其中的氯离子,烘干,经500℃煅烧后就能得到纯度较高的γ-Al2O3小球供工业使用。这种生产方法可以完全甩去板框压滤,生产效率提高。

2.2 酸式中和法

硝酸法制备γ-Al2O3的过程中,首先使氢氧化铝和氢氧化钠反应生成偏铝酸钠溶液,再加入净水稀释到一定浓度,用硝酸去中和,生成的氢氧化铝凝胶,经反复洗涤、压滤,得到的滤饼干燥、焙烧,就得到了γ-Al2O3。除上述方法之外,还有醇铝法制备活性氧化铝,该法制备得到的氧化铝纯度高,活性好,比表面积大,而且不含电解质,但制备方法相对复杂,且成本较高。上述方法所得到的活性氧化铝产品具有抗破碎强度高,热稳定性好,比表面积适中[3],孔容、孔径分布可调和表面具有酸性等特性,是迄今在工业上最广泛用作催化剂、催化剂载体、吸附剂等的无机材料。不同制备方法,通过改变制备条件、加入改性元素等,可以得到不同物化性质的氢氧化铝,得到晶型、孔结构、表面性能复杂多变的氧化铝,正好适应了千变万化的催化反应过程。

三、活性氧化铝的改性研究

活性氧化铝具有高比表面积和高活性等特性,在工业上被广泛用作催化剂或催化剂载体。然而,但对于汽车尾气催化净化、催化燃烧及甲烷选择性催化氧化等高温反应体系,催化剂床层温度常常高于1000℃,引起氧化铝的比表面下降,活性位减少,甚至转变为热力学稳定的α相,导致催化活性下降甚至失活,因此,

提高A12O3的高温抗烧结和抗相变性能具有重要的理论意义和实际意义。γ

-Al2O3具有“缺陷的尖晶石”结构,其晶胞是由32个氧原子立方紧密堆积而成,其中有8个四面体空隙和16个八面体空隙,也即其中会有阳离子空位。而γ

-Al2O3属于亚稳态结构,随煅烧温度的升高,在晶体结构的转变过程中会发生脱水/脱羟基反应而产生阴离子空位,这些阴离子和阳离子的空位会导致高温煅烧时结构晶相发生变化。因此可通过将外来离子掺入到氧化铝中,占据着尖晶石的阴阳离子空位,从而防止高温煅烧时γ-Al2O3发生晶相变化。为了克服氧化铝的高温烧结以及相变引起的比表面积下降、孔结构破坏等一系列问题,各国学者开展了对氧化铝热稳定性的改性研究,主要采用的方法为:改进制备工艺、添加助剂以及生成新的物质[9]。

3.1 助剂改性

早在1946 年,Francis[40]等人发现,无论是活性氧化铝本身含有其他物质或是有目的的添加其它元素,都可以提高氧化铝的稳定性。之后Levy[10]等尝试用一些金属元素(Li、Na、K、Mg)来对氧化铝进行表面改性,希望能抑制其比表面积的下降,但效果并不明显。

七、八十年代,人们开始广泛用各种金属元素来修饰氧化铝载体,通常采用浸渍法将金属元素添加到氧化铝中。虽然高温下改性后的样品比表面积较未改性样品有一定的改善,但当温度达到1200℃,仍避免不了比表面积的急剧减少。Hindin[11]等人用浸渍法得到金属混合氧化物改性的活性氧化铝,在1200℃下煅烧4h 后,最好样品的比表面积保持在45.9m2?g-1。到了九十年代,更多的用溶胶凝胶法来制备活性氧化铝,比起用浸渍法得到的样品,其稳定性要高很多。Hamano[12]用溶胶凝胶法制得的镧改性活性氧化铝在1200℃煅烧5h后仍具有113 m2?g-1的高比表面积。

总之,在Al2O3结构表面引入某些元素或物质对γ-Al2O3的烧结和相转变具有显著影响。经过多年来的实践经验总结,改善氧化铝热稳定性的添加剂基本分为四大类:即稀土金属氧化物[13-24]、碱土金属氧化物[24-31]、二氧化硅[32-34]和其他氧化物。目前国内外普遍采用稀土La和Ce、碱土金属Ba对氧化铝进行改性,以适应活性氧化铝在高温反应体系中的应用。

3.2 镧改性氧化铝研究

La 是最常用,也是研究最多的改性元素之一。Rossignol[24]等人通过溶胶凝胶法制备得到镧改性氧化铝,1050℃高温煅烧后,样品仍然以δ、θ相为主,比表面积为80m2·g-1;赫崇衡[25]、谢春英[36]等人研究发现,1100℃的高温煅烧32h后,镧改性样品中α相转变被抑制,同时比表面积仍保持98m2·g-1,远大于未改性的样品的17.6m2·g-1。

一种观点认为La 对氧化铝的稳定作用主要是因为它在氧化铝表面形成了钙钛矿型的LaAlO3,这些稳定的化合物首先成核,并通过界面结合方式牢固地锚定在Al2O3晶格的边角上,阻止了烧结和表面扩散,进一步抑制了α相转变。

另一种观点认为LaAlO3的生成并不是稳定氧化铝的主要原因。龚茂初[20]、谢有畅[37]和Masarani Ozawa[38]发现La3+在较高温度下可以直接插入具有阳离子缺陷的Al2O3尖晶石结构中,占据紧密堆积氧离子形成的空隙,从而降低了

Al2O3晶格中的离子活性和表面能,抑制了表面或体相Al3+和O2-的离子扩散以及α相的形核过程。

3.3铈改性氧化铝研究

卢伟光[39-40]等人发现,铈改性氧化铝1000℃煅烧24小时后,比表面积从112.12m2·g-1下降到62.07m2·g-1,幅度只有44.6%。Rossignol[24]等人发现,铈的添加能改善氧化铝的高温热稳定性,在1050℃下煅烧5h 后仍有65m2·g-1,且添加量为1%时的效果最好。但在经过1200℃煅烧5h 后铈改性样品的比表面只有3m2·g-1。相对于镧改性来说,铈的改性作用相对较差。

赫崇衡[35]、卢伟光[39-40]等人认为Ce3+离子价态与Al3+相同,填充在Al2O3空位中,对烧结的阻碍作用较强;而高温时部分Ce3+氧化成Ce4+,导致Ce以CeO2形式析出,由于Ce4+价态与Al3+不同,造成部分区域晶格发生扭曲,导致晶体稳定性下降,转晶加快。龚茂初[28]等人认为Ce3+氧化成Ce4+,CeO2在高温下容易烧结且比表面积较小,所以铈对氧化铝的高温热稳定性效果不如镧。通过在铈中添加锆离子可以提高铈在高温下的稳定性。在铈锆固溶体改性的氧化铝中,锆离子进入氧化铈的晶格并稳定其结构,限制颗粒之间的接触,从而抑制烧结并降低CeO2的转化活性,使氧化铝载体在高温老化后仍能具有一定的比表面积。翁端[41]等人研究了Ce-Zr 固溶体对γ-Al2O3热稳定性的影响,制备得到的Ce/Zr=73的改性氧化铝样品在1100℃老化6h后比表面积保持62m2·g-1,老化50h后仍有24m2·g-1,相转变温度提高到了1222℃。

3.4 钡改性氧化铝研究

碱土金属中Ba 作为改性元素的研究最多。Church[42]的研究发现Ba 改性氧化铝在1200℃煅烧4h 后仍然能保持比表面在37m2·g-1左右。Sepulveda Escribano[43]通过浸渍法得到的Ba改性氧化铝,经800℃和1200℃煅烧后,表面积仍保持在75m2·g-1和42m2·g-1。Arai[44]认为,BaO 在高温下通过抑制Al2O3的体相扩散而使γ-Al2O3稳定,经过高温固相反应生成的六铝酸盐也具有特殊的热稳定性。王军威[45]等人也发现高温下钡改性样品中有β-Al2O3结构的六铝酸盐(BaO·6Al2O3)的存在,稳定了氧化铝的结构。Rossignol[24]等人的实验发现,钡改性氧化铝在1000℃~1200℃之间仍保持δ、θ相,表面生成了BaO·6Al2O3,α相变温度从1180℃提高到1315℃。与上述观点产生分歧的是,刘东艳等人[27]认为铝酸盐的生成不是稳定氧化铝的根本原因,通过烧结动力学分析发现,碱土金属的稳定作用主要是分散态的氧化物抑制了氧化铝煅烧过程中最初1h内的烧结和α相变引起的比表面积的损失。

3.5 其他非金属元素改性

以上所述的改性都是金属元素对对氧化铝的改性,除此之外,一些学者也对氧化铝加入非金属元素进行表面改性,如氟改性、硅改性和磷改性等。目前,研究较多的是硅改性,稀土和碱土金属改性一般是在无水条件下能有效抑制相变,但在含有水蒸气的情况下,由于表面羟基间的脱水,会使载体表面颗粒不断形成,长大,从而产生烧结,用稀土,碱土金属改性效果也不明显。研究人员发现通过添加二氧化硅可以解决这个问题,H. Arial[46]等人认为氧化硅在氧化铝表面形成玻璃状表面层,抑制了γ→α相转变时所需的重新结晶。

四、结束语

随着社会科技的发展,活性氧化铝的应用越来越广泛,对活性氧化铝的性能要求也在不断的提高,在催化反应中活性氧化铝的热稳定性严重影响了催化剂的稳定性和活性,通过改进制备方法以及通过添加稀土金属、碱土金属和其他非金属元素来控制活性氧化铝的相变和提高其热稳定性是很有必要的。

参考文献

[1] 杨昭民,杨苏.氧化铝和铝土矿的一些非冶金用途[J].世界有色金属,2002 (11) :47

[2] 宋晓岚,等.特种氧化铝生产研究开发现状及其展望[J].材料导报,2004,

I 8(4) :1 2~16

[3] Chang-Jiu Li,BoSun.Microstructure and property of AIzO3 coatin gmicroplasma—spray edusinganovel hollow cathode to rch[J].Materials Letters,2003,58:179—1 83

[4] 周绍辉,林衍洲,倪海勇.荧光级高纯氧化铝的制备和应用[J].广东有色金属学报,2003 ,1 3(2) :110—113

[5] 苗建国,李小斌,龚辉辉,多品种氧化铝的研究进展,轻金属,1997,8:12~14

[6] Lippens B C,Boer J H,Studies on pore systems in catalysts III. Pore-size distribution curves in aluminum oxide systems,J Catal,1964,3(1):38~43

[7] 田川重和,新型无机化合物(于树新),北京:中国建筑工业出版社,1989,39

[8] 刘勇,陈晓银,氧化铝稳定性的研究进展,化学通报,2001,(2):65~70

[9] Aria H,MachidaM,Thermal stabilization of catalyst supports and their application to high-temperature catalytic combustion,Appl Catal,1996,138:161~176 [10] Francis C R,Adventures with alumina.Industrial and Engineering Chemistry,1946,38(2):129~131

[11] Levy R M,Bauer D J,Roth J F,Effect of the aging on the physical properties of activated alumina,I&EC PRODUCT RESEARCH AND DEVELOPMENT,1968,3 (7):217~220

[12] Hindin,Saul G,Pond et al,High temperature stable catalyst composition 、and method for its preparation,USP 4056489,1977

[13] Hamano,Seiichi,Yamanishi et al,Heat resistant transition alumina and process for producing the same,USP5155085,1992

[14] Navarroa R M,Production of hydrogen by oxidative reforming of ethanol over Pt catalysts supported on Al2O3 modified with Ce and La. Applied Catalysis

B:Environmental,2005,(55):229~241.

[15] Ozawa M,Onoe R,Kato H,Formation and decomposition of some rare earth(RE=La,Ce,Pr) hydroxides and oxides by homogeneous precipitation,Journal of alloys and compounds,2006,(408-412):556~559

[16] Vazquez A,Synthesis, characterization and catalytic properties of Pt/CeO2–

Al2O3 and Pt/La2O3-Al2O3sol-gel derived catalysts,JOURNAL OF MOLECULAR CATAL YSIS A-CHEMICAL,2001,(167):91~99.

[17] Kimura,Mareo,Ozawa,Alumina catalyst supports,USP4722920,1988

[18] M Ozawa,Y nishio,Thermal stalilization of γ-Al2O3 with modification

of lanthanum through homogeneous precipitation. Joumal of Alloys and Compounds,2004,374:397~400

[19] Oudet F,Courtine P,Vejux A,Thermal stabilization of transition alumina

by structural coherence with LnAl2O3 (Ln = La, Pr, Nd),J Catal,1988,114(1):112~120

[20] Ersoy B,Gunay V,Effect of La2O3 addition on the thermal stability of γ-Al2O3 gels,Ceramics Inernational,2004,(30):163~170

[21] Fraga M A,Addition of La and Sn to alumina-supported Pd catalysts for methane combustion,Applied Catalysis A: General,2004,(259):57~63

[22] Angel G D,Lanthanum effect on the textural and structural properties of γ

-Al2O3obtained from Boehmite,Materials Letters,2005,(59),499~502

[23] Roberta D M, Fornasiero P, Kaspar J, Stabilization of nanostructured Ce

Zr0.8O2solid solution by impregnation on Al2O3: a suitable method for the the

0.2

production of thermally stable oxygen storage/release promoters for

three-waycatalysts. The Royal Society of Chemistry,2000,2167~2168

[24] Rossignol S,Charles K,Effect of doping elements on the thermal stability of ransition alumina,2003,(3):51~58

[25] Szailer T S,Effects of Ba loadin andcalcinationtemperatureonBaAl2O4formation for BaO/Al2O3 NOx storage and reduction catalysts,

Catalysis Today,2006,(114):86~93

[26] 刘勇,陈晓银,牛国兴,锶改性对γ-Al2O3的高温热稳定作用,催化学报,2000,21,(2):121~124

[27] 刘东艳,张园力,王桂香等,碱土金属修饰Al2O3的表面热稳定性,物理化学学报,2001,17(1):1036~1039

[28] 龚茂初,文梅,高士杰等,耐高温高表面积氧化铝的制备及性质,催化学报,2000,21 (5):404~406

[29] Labalme V,Benhamou N,Guilhaume N et al,Modifications of Pt/alumina combustion catalyst by barium addition. 1.Properties of fresh catalysts,Appl Catal A,1995,(133):351~366

[30] Labalme V,Benhamou N,Guilhaume N et al,Modifications of

Pt/aluminacombustion catalyst by barium addition. 2. Properties of aged catalysts,Appl Catal A,1996,(138):93~108

[31] Labalme V,Beguin B,Gaillard F et al,Characterisation and acid properties

of some modified combustion catalysts: Pt/alumina with barium and Pt/zirconia with yttrium,Applied catalysis A: General,2000,(192):307~316

[32] Wan Chung-Zong,Dettling et al,Stabilized alumina catalyst support coatings,USP 4677095,1987

[33] Silversand A F A,Odembrand C U I,Combusion of methane over a

Pd-Al2O3/SiO2catalyst,catalyst activity and stability,Appl Catal,1997,(153):157~175

[34] Michel,Max,Poisson et al,Alumina-based bodies obtained by agglomeration

which are resistant to elevated temperatures,USP4061594,1977

[35] 赫崇衡,张文敏,汪仁,稀土修饰Al2O3的表面积热稳定性.物理化学学报,1996,12(11):971~975

[36] 谢春英,龚茂初,章洁等,镍基镧钡改性氧化铝催化剂性能研究,2002,27:4~7

[37] 谢有畅,钱民协,唐有祺,添加La2O3对甲烷化催化剂中镍分散度和热稳定性的影响,中国科学,1983,(9):788~795

[38] Ozawa M,Kimurta M,Akioisogai,J Less-Common Metals,1990,(62):297

[39] 卢伟光,龙军,田辉平,溶胶法稀土改性对氧化铝高温稳定性的影响,石油炼制与化工,2003,34(5):40~43

[40] 卢伟光,龙军,田辉平,镧和铈改性对氧化铝性质的影响.催化学报,2003,24 (8):574~578

[41] Xiaodong Wu,Bing Yang,Duan Weng,Effect of Ce-Zr mixed oxides on the thermal stability of transition aluminas at elevated temperature,Joumal of Alloys and Compounds,2004,(376):241~245

[42] Church J S,Cant N W,Trimm D L,Appl Catal A,1994,107:269

[43] Sepulveda-Escribano A,Primet M,Praliand H,Appl Catal A,1994,108:221

[44] Aria H,Machida M,Thermal stabilization of catalyst supports and their application to high temperature catalytic combustion,Appl Catal,1996,(138):161~176

[45] 王军威,徐金光,田志坚等,Ba、Mn对Al2O3热稳定性和甲烷催化燃烧活性的影响,物理化学学报,2002,18(11):1018~1022

[46] H. Aria, M. Machida. Appl Catal.1996(138):161-176

活性氧化铝

活性氧化铝 活性氧化铝产品简介: 活性氧化铝是用高纯度氧化铝经科学调配,催化精 加工而成。它的吸附性可做干燥剂也可以去除水中 对人体有害的氟,可用于饮用水及工业装置的除 氧、除氟、脱砷、污水脱色、除臭等。 活性氧化铝产品详情: 活性氧化铝具有许多毛细孔道,表面积大,可作为 吸附剂、干燥剂及催化剂使用。同时还根据吸附物质的极性强弱来确定,对水、氧化物、醋酸、碱等具有较强的亲合力,是一种微水深度干燥剂,也是吸附极性分子的吸附剂。活性氧化铝除氟类似于阴离子交换树脂,但对氟离子的选择性阴离子树脂大。活性氧化铝吸附脱氟效果好,容量稳定,每立方米活性氧化铝吸氟6400克。本产品具有强度高、磨损低、水浸不变软、不膨胀、不粉化、不破裂。可广泛用于石油裂解气、乙烯丙烯气的深度干燥和制氢、空分装置、仪表风干机的干燥、双氧水中氟化物处理还可以去除废气中的硫气氢、二氧化硫、氟化氢、烃类等污染物质,特别适应含氟水的除氟处理。 活性氧化铝应用范围: 活性氧化铝是一种多孔性的吸附剂,由于它有很大的比表面积而致使它具有高度的吸附活性,因此被广泛用作高效吸附剂和各种催化剂的载体。活性氧化铝不仅具有很大的比表面积,且具有很大的机械强度,物化稳定性,耐高温及抗腐蚀性,但不宜在强酸,强碱下操作。 1、干燥型:主要用于化工、冶金、电子、石油等工业气体脱水干燥,如空气、氧气、氮气等永久性气体,冶炼气及石油裂解气等。我公司生产的活性氧化铝是具有多细孔的、高强度的x-ρ型氧化铝产品,对水有较强的亲和力,是一种微量水深度干燥用的干燥剂。具有在使用介质中用水浸泡不变软、不膨胀、不粉化等特点,因此被广泛应用于石油化工中气相、液相干燥、纺织工业、制氧工业及自动化仪表风干燥。由于本公司产品强度及耐磨性能好,单分子吸附层的净热时高,所以非常适用于无热再生装置。本产品还可以根据用户要求,用不同的工艺条件。制造出不同球径的高强度球粒。 2、催化剂:为一种白色球状的多孔性物质,微孔分布均匀,容积大,吸水性强,堆密度小,机械强度高,磨耗低,是极其稳定的催化剂载体,也可作催化剂使用。 3、除氟,砷剂:用于食用水的脱氟,脱砷处理,吸氟容量:2.1mg/g。 4、双氧水专用:用于双氧水工作液的净化。 5、净油剂:用于变压器油的脱色净化。

活性氧化铝颗粒

活性氧化铝在更换停车时,需要关闭其进出口阀,让它降至常压,然后在其与生产系统隔离的情况下,再利用空气对塔内原料气进行置换,直到塔内的气体含氧量达到20%以上。活性氧化铝颗粒哪家好?您可以选择安徽天普克环保吸附材料有限公司,下面小编为您介绍活性氧化铝的使用方法,希望能给您带来一定程度上的帮助。 一、装卸方案、方法及要求: 1、在活性氧化铝塔内炉篦上先铺上两层孔眼小于5mm 的不锈钢丝网,在钢网上再铺一层100mmΦ20mm 的瓷球。 2、用专用工具将活性氧化铝均匀装填到塔内,装填时活性氧化铝自由下落高度不能超过1米。

3、活性氧化铝要装填平整均匀,操作人员进入塔内工作,需踩在木板上。 4、塔顶活性氧化铝上方要铺上一层不锈钢丝网和高100mm 的Φ20mm 的瓷球,以防气流吹散活性氧化铝,并使气流分布均匀。 二、开车: 1、正式开车前需用氮气或其它惰性气体对系统进行吹扫置换,至气体中氧含量小于0.5%后,通原料气。 2、活性氧化铝加入系统后,通原料气逐步升压。压力正常后,系统半负荷生产2~5 小时以调整工艺条件,稳定后加大负荷至正常生产。

三、停车:临时停车,关闭活性氧化铝塔进口阀,保压。若系统有泄漏应用N2进行保压,以防系统负压。 安徽天普克环保吸附材料有限公司是原上海摩力克分子筛有限公司直属公司,本公司成立于2004年,由于生产量扩增,本公司在安徽合肥空港寿县新桥产业园投资建设生产基地。公司目前拥有年产2000吨分子筛、1500吨活性氧化铝生产线各一条。 产品系列化、经营多元化,这些都是企业的发展方针,而OEM----更是公司多年的经营模式,并且得到广泛好评。我们的用户涉及石油、化工、冶金、汽车、空调、电子仪表等行业,我们的客户群不仅是在国内而且遍及东南亚、欧美等地。公司热忱欢迎国内外客商与我们真诚合作。我们将以精美的产品、可靠的技术、精益求精的服务满足广大客户的要求。 分子筛广泛用于制氧、炼油、化工化肥、医药、钢铁、冶金、酒精、玻璃行业,是气体、液体纯制、分离干燥的好的产品。安徽天普克环保吸附材料有限公司始建于2001年,已有18多年历史,产品有分子筛系列3A分子筛、4A分子筛、5A分子筛、lOX分子筛、13x 分子筛、K13X中空玻璃专用分子筛、变压吸附、富氧专用分子筛、活性氧化铝、瓷球等塔填料。

HGT-3927工业活性氧化铝简介

HG/T 3927-2007 工业活性氧化铝 1 范围 本标准规定了工业活性氧化铝的要求、试验方法、检验规则、标志、标签、包装、运输和贮存。 本标准适用于工业活性氧化铝。该产品用于炼油、化肥、石化、天然气、制氧和化工等行业,主要用作气体和液体吸附剂、吸氟剂、干燥剂、和催化剂载体等。 分子式:Al2O3 ?nH2O(n<1) 3 分类 工业活性氧化铝分为六类: 吸附剂——通用型,用于各种烃类气体、天然气、石油裂解气等的吸附、脱水等。 除氟型——用于饮用水、工业水除氟。 再生剂——用于蒽醌法生产双氧水。 脱氯剂——用于各种气体及黏性树脂等液体的脱氯。 催化剂载体——用作各种催化剂载体。 空分干燥剂——空分专用干燥剂。 4 要求 4.1 外观:白色球状或柱状。 4.2 工业活性氧化铝应符合表1要求。 表1 要求

5 试验方法 5.1 安全提示 本试验方法中使用的部分试剂具有腐蚀性,操作时须小心谨慎!如贱到皮肤上应立即用水冲洗,严重者应立即治疗。 5.2 一般规定 本标准所用试剂和水在没有注明其他要求时,均指分析纯试剂和GB/T 6682一1992中规定的三级水。试验中所用标准滴定溶液、制剂及制品,在没有注明其他要求时,均按HG/T 3696.3的规定制备。 5.3 外观判别 在自然光条件下,用目视法判别。 5.4 三氧化二铝含量的测定 5.4.1 方法提要 铝离子与已知过量的乙二胺四乙酸二钠标准溶(EDTA)进行络合,形成稳定的A1-EDTA 络合物,过剩的EDTA在pH=5条件下,以二甲酚橙做指示剂,用氯化锌标准滴定溶液回滴至终点。 5.4.2 试剂 5.4.2.1 六次甲基四胺。 5.4.2.2 硫酸溶液:1+1。 5.4.2.3 盐酸溶液:1+4。 5.4.2.4 氨水溶液:1+9。 5.4.2.5 乙二胺四乙酸二钠标准滴定溶液:c(EDTA)≈0.05mol/L。 5.4.2.6 氯化锌标准滴定溶液:c(ZnCl2)≈0.05mol/L。 5.4.2.7 二甲酚橙指示剂.2g/L。 5.4.3 分析步骤 5.4.3.1 试验溶液的制备 称取已研细并经(250±100)℃烘干2h的约0.5g试样,精确至0.0002g,置于150mL 烧杯中。慢慢加入少量水,搅拌至糊状。再加入10mL硫酸溶液,移至电炉上加热溶解至透明,取下冷却。移入100mL容量瓶中,用水稀释至刻度,摇匀。 5.4.3.2 测定 用移液管移取10mL试验溶液,置于300mL锥形瓶中。准确加入30mL EDTA标准溶液,用水冲洗瓶壁。加入六滴二甲酚橙指示液,用氨水溶液调至溶液呈紫红色,移至电炉上加热煮沸1min,取下冷却(若氨水溶液过量,再用盐酸溶液调呈亮黄色再过一滴)。加1.5g六次甲基四胺,用氯化锌标准滴定溶液滴定至出现玫瑰红色即为终点。 5.4.4 结果计算 三氧化二铝含量以三氧化二铝(Al2O3)的质量分数ω1计,数值以%表示,按公式(1)计算: () () ()1 ...... .......... 100 100 / 10 m 10 c c3 2 2 1 1 1? ? - =- M V V ω 式中: C1——乙二胺四乙酸二钠标准滴定溶液的浓度的准确数值,单位为摩尔每升(mol/L);V1——加入EDTA标准滴定溶液的体积的数值,单位为毫升(mL); C2——氯化锌标准滴定溶液的浓度的准确数值,单位为摩尔每升(mol/L);

活性氧化铝的制备

活性氧化铝的制备 一、实验目的 1、通过铝盐与碱性沉淀剂的沉淀反应,掌握氧化铝催化剂和催化剂载体的制备过程。 2、了解制备氧化铝水合物的技术和原理。 3、掌握活性氧化铝的成型方法。 二、实验原理 活性氧化铝(γ-A l2O3)是一种多孔性,高分散度的固体物料,具有表面积大、吸咐性能好、表面酸性、热稳定性良好的特点,可作为多种化学反应的催化剂及催化剂载体。除此之外,它还广泛用于石油、国防、化肥、医药、卫生等部门。学习有关γ-A l2O3的制备方法,对掌握催化剂制备有重要意义。 催化剂或催化剂载体用的氧化铝,在物性和结构方面都有一定要求。最基本的是比表面积、孔结构、晶体结构等。例如,重整催化剂是将贵重金属铂、铼载在γ—Al2O3或η—Al2O3上。氧化铝的结构对反应活性影响极大,载于其他形态的氧化铝上,其活性是很低的,如烃类脱氢催化剂,若将Cr—K载在γ—Al2O3或η—Al2O3上,活性较好,而载在其他形态氧化铝上,活性很差。这说明它不仅起载体作用,而且也起到了活性组分的作用,因此,也称这种氧化铝为活性氧化铝。α—Al2O3在反应中是惰性物质,只能作载体使用。制备活性氧化铝的方法不同,得到的产品结构亦不相同,其活性的差异颇大,因此制备中应严格掌握每一步骤的条件,不应混入杂质,尽管制备方法和路线很多,但无论哪种路线都必须制成氧化铝水合物(氢氧化铝),再经高温脱水生成氧化铝。自然界存在的氧化铝或氢氧化铝脱水生成的氧化铝,不能作载体或催化剂使用,这不仅因杂质多,主要是难以得到所要求的结构和催化活性。为此,必须经过重新处理,可见制备氧化铝水合物是制活性Al2O3的基础。 氧化铝水合物经X射线分析,可知有多种形态,通常分为结晶态和非结晶态。结晶态中有一水和三水化物两类形体;非结晶态则含有无定形和结晶度很低的水化物两种形体,它们都是凝胶态。可总括为下述表达形式:

HGT工业活性氧化铝

H G T工业活性氧化铝 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

HG/T 3927-2007 工业活性氧化铝 1 范围 本标准规定了工业活性氧化铝的要求、试验方法、检验规则、标志、标签、包装、运输和贮存。 本标准适用于工业活性氧化铝。该产品用于炼油、化肥、石化、天然气、制氧和化工等行业,主要用作气体和液体吸附剂、吸氟剂、干燥剂、和催化剂载体等。 分子式:Al 2O 3 ?nH 2 O(n<1) 3 分类 工业活性氧化铝分为六类: 吸附剂——通用型,用于各种烃类气体、天然气、石油裂解气等的吸附、脱水等。 除氟型——用于饮用水、工业水除氟。 再生剂——用于蒽醌法生产双氧水。 脱氯剂——用于各种气体及黏性树脂等液体的脱氯。 催化剂载体——用作各种催化剂载体。 空分干燥剂——空分专用干燥剂。 4 要求 外观:白色球状或柱状。

工业活性氧化铝应符合表1要求。 表1 要求

5 试验方法 安全提示 本试验方法中使用的部分试剂具有腐蚀性,操作时须小心谨慎!如贱到皮肤上应立即用水冲洗,严重者应立即治疗。 一般规定 本标准所用试剂和水在没有注明其他要求时,均指分析纯试剂和GB/T 6682一1992中规定的三级水。试验中所用标准滴定溶液、制剂及制品,在没有注明其他要求时,均按HG/T 的规定制备。 外观判别 在自然光条件下,用目视法判别。 三氧化二铝含量的测定 方法提要 铝离子与已知过量的乙二胺四乙酸二钠标准溶(EDTA)进行络合,形成稳定的A1-EDTA络合物,过剩的EDTA在pH=5条件下,以二甲酚橙做指示剂,用氯化锌标准滴定溶液回滴至终点。 试剂 六次甲基四胺。 硫酸溶液:1+1。 盐酸溶液:1+4。 氨水溶液:1+9。 乙二胺四乙酸二钠标准滴定溶液:c(EDTA)≈L。 氯化锌标准滴定溶液:c(ZnCl )≈L。 2

活性氧化铝产品简介

活性氧化铝产品简介 大家都知道活性氧化铝,又名活性矾土,在催化剂中使用氧化铝的通常专称为“活性氧化铝”,它是一种多孔性、高分散度的固体材料,有很大的表面积,其微孔表面具备催化作用所要求的特性,如吸附性能、表面活性、优良的热稳定性等,所以广泛地被用作化学反应的催化剂和催化剂载体。 活性氧化铝产品简介。如下: 活性氧化铝产品简介:活性氧化铝是用高纯度氧化铝经科学调配,催化精加工而成。它的吸附性可做干燥剂也可以去除水中对人体有害的氟,可用于饮用水及工业装置的除氧、除氟、脱砷、污水脱色、除臭等。活性氧化铝产品详情:活性氧化铝具有许多毛细孔道,表面积大,可作为吸附剂、干燥剂及催化剂使用。同时还根据吸附物质的极性强弱来确定,对水、氧化物、醋酸、碱等具有较强的亲合力,是一种微水深度干燥剂,也是吸附极性分子的吸附剂。活性氧化铝除氟类似于阴离子交换树脂,但对氟离子的选择性阴离子树脂大。活性氧化铝吸附脱氟效果好,容量稳定,每立方米活性氧化铝吸氟6400克。本产品具有强度高、磨损低、水浸不变软、不膨胀、不粉化、不破裂。可广泛用于石油裂解气、乙烯丙烯气的深度干燥和制氢、空分装置、仪表风干机的干燥、双氧水中氟化物处理还可以去除废气中的硫气氢、二氧化硫、氟化氢、烃类等污染物质,特别适应含氟水的除氟处理。活性氧化铝应用范围:活性氧化铝是一种多孔性的吸附剂,由于它有很大的比表面积而致使它具有高度的吸附活性,因此被广泛用作高效吸附剂和各种催化剂的载体。活性氧化铝不仅具有很大的比表面积,且具有很大的机械强度,物化稳定性,耐高温及抗腐蚀性,但不宜在强酸,强碱下操作。 活性氧化铝球的产品说明 我们对活性氧化铝有一定的认知,那来熟悉一下活性氧化铝球的产品说明吧! 活性氧化铝球是具有很多毛细管道的白色球状,有很多毛细孔通道,这些孔道的表面有较高的活性,能对气体,蒸汽,液体的水份具有选择吸附本能主要去除水中的氟离子效果非常好。在一定条件下干燥深度可达-70℃以下的露点,饱和可在175℃-400℃加热除水而复活,能进行多次,还可从染污的氧、氢、二氧化硫中吸附润滑油及其它油类蒸汽,并可做催化剂或载体。广泛用于石化、炼油、电子、乙烯、丙烯、空气等干燥装置,已在全国许多双氧水厂,化肥厂,制氧厂和石油化工炼油单位使用,并取得了良好效果。活性氧化铝球还根据吸附物质的极性强弱来确定,对水、氧化物、醋酸、碱等具有较强的亲合力,是一种微水深度干燥剂,也是吸附极性分子的吸附剂。 活性氧化铝球除氟类似于阴离子交换树脂,但对氟离子的选择性比阴离子树脂大,活性氧化铝吸附脱氟效果好,容量稳定,每立方米活性氧化铝吸氟6400克,本产品具有强度高,磨损低、水浸不变软、不膨胀、不粉化、不破裂。可广泛用于石油裂解气、乙烯丙烯气的深度干燥和制氢、空分装置、仪表风干机的干燥、双氧水中氟化物处理,还可以去除废气中的硫气氢、二氧化碳、氟化氢、烃类等污染物质,特别适应含氟水的除氟处理。 活性氧化铝的制备(沉淀法) 氧化铝含有多种变体,目前已知的有6种,即α-Al2O3;、κ-Al2O3、δ-Al2O3、γ-Al2O3、η-Al2O3及ρ-Al2O3。其中γ-Al2O3和η-Al2O3,具有较高的化学活性(酸性),称为活性氧化铝,是一种良好的催化剂及其载体;α-Al2O3(刚玉)因其晶体结构最稳定,是一种高温低表面高强度的载体。 为了适应催化剂或载体的特殊要求,各类氧化铝变体通常由相应的水合氧化铝加热失水而制备。水合氧化铝变体也很多,常见的有α-三水铝石(α-Al2O3·3H2O)、β-三水铝石(β-Al2O3·3H2O)、假-水软铝石(ρ-Al2O3。nH2O,H2O:Al2O=1.5:2.0)及无定形氢氧化铝凝胶(ρ-Al2O3。nH2O)。

活性氧化铝吸附

发现改性活性氧化铝对磷的吸附作用以物理吸附为主,随着温度和pH值的升高,除磷效果呈现下降的趋势。并且水中的浊质对吸附除磷效果的影响比较大,活性氧化铝可以用于滤后饮用水的深度除磷。活性氧化铝吸附哪家好?您可以选择安徽天普克环保吸附材料有限 公司,下面小编为您介绍,希望能给您带来一定程度上的帮助。 对比研究了在pH值为7、滤速为8m/h、连续过滤时间为3h 时7种自来水厂常用滤料(煤质柱状炭、活化沸石、陶粒、椰壳炭、石英砂、生物页岩陶粒、石英海砂)与活性氧化铝对DTP(溶解性总磷)质量浓度为50μg/L的模拟水样和颗粒态总磷(PP)质量浓度为50μ g/L的模拟水样中磷的吸附,研究发现在滤料的厚度相同、粒径范围

一致、pH值、滤速相同的情况下,活性氧化铝对DTP的去除效果明显。 要优于其他7种滤料,活性氧化铝对DTP的平均去除率为82.19%。而去除PP和浊度的效果相近,活性氧化铝对PP和浊度的去除不存在优势。用19.8t活性氧化铝为某鱼塘用水建造了日处理 500m3的吸附床,使磷含量由0.5 mg/L降到0.05 mg/L,过滤速度为1~2 m/h。装置连续运行900d而未对吸附剂进行再生,仍能达到设计的出水要求。他们还计划放大处理装置,把一个容积为116 000m3的湖泊水的磷含量,从0.16mg/L降低到0.03mg/L以内。 安徽天普克环保吸附材料有限公司是原上海摩力克分子筛有限公司直属公司,本公司成立于2004年,由于生产量扩增,本公司在安

徽合肥空港寿县新桥产业园投资建设生产基地。公司目前拥有年产2000吨分子筛、1500吨活性氧化铝生产线各一条。 产品系列化、经营多元化,这些都是企业的发展方针,而OEM----更是公司多年的经营模式,并且得到广泛好评。我们的用户涉及石油、化工、冶金、汽车、空调、电子仪表等行业,我们的客户群不仅是在国内而且遍及东南亚、欧美等地。公司热忱欢迎国内外客商与我们真诚合作。我们将以精美的产品、可靠的技术、精益求精的服务满足广大客户的要求。 分子筛广泛用于制氧、炼油、化工化肥、医药、钢铁、冶金、酒精、玻璃行业,是气体、液体纯制、分离干燥的好的产品。安徽天普克环保吸附材料有限公司始建于2001年,已有18多年历史,产品有分子筛系列3A分子筛、4A分子筛、5A分子筛、lOX分子筛、13x 分子筛、K13X中空玻璃专用分子筛、变压吸附、富氧专用分子筛、活性氧化铝、瓷球等塔填料。 安徽天普克环保吸附材料有限公司周边交通便利,环境优美,我们热忱欢迎新老客户来厂洽谈业务,我们将以优良的产品、合理的价格,为客户提供批发,零售来料交工等服务。

实验讲义-活性氧化铝的制备

实验1 催化剂载体——活性氧化铝的制备 一、目的与要求 1.通过铝盐与碱性沉淀剂的沉淀反应,掌握氧化铝催化剂载体的制备过程。 2.了解制备氧化铝水合物的技术和原理。 3.掌握活性氧化铝的成型方法。 二、实验原理 活性氧化铝(Al2O3)是一种具有优异性能的无机物质,不仅能作脱水吸附剂、色谱吸附剂,更重要的是作催化剂和催化剂载体,并广泛用于石油化工领域,涉及重整、加氢、脱氢、脱水、脱卤、歧化、异构化等各种反应。它之所以能如此广泛地被采用,主要原因是它在结构上有多种形态及物理性质和化学性质的千差万别。学习有关Al2O3的制备方法,对掌握催化剂的制备有重要意义。 催化剂或催化剂载体用的氧化铝,在物理性质和结构方面都有一定要求。最基本的是比表面积、孔结构、晶体结构等。例如,重整催化剂是将贵重金属铂、铼载在γ-Al2O3或η-Al2O3上。氧化铝的结构对反应活性影响极大。载于其他形态的氧化铝上,其活性是很低的,如烃类脱氢催化剂,若将Cr-K载在γ-Al2O3或η-Al2O3上,活性较好,而载在其他形态氧化铝上,活性很差。这说明它不仅起载体作用,而且也起到了活性组分的作用,因此,也称这种氧化铝为活性氧化铝。α-Al2O3在反应中是情性物质,只能作载体使用。制备活性氧化铝的方法不同,得到的产品结构亦不相同,其活性的差异也很大,因此制备中应严格掌握每一步骤的条件,并且不应混入杂质。尽管制备方法和路线很多,但无论哪种路线都必须制成氧化铝水合物(氢氧化铝),再经高温脱水生成氧化铝。自然界存在的氧化铝或氢氧化铝脱水生成的氧化铝,不能作载体或催化剂使用。这不仅是杂质多,主要是难以得到所要求的结构和催化活性。为此,必须经过重新处理。可见制备氧化铝水合物是制备活性Al2O3的基础。 氧化铝水合物经X射线分析,可知有多种形态,通常分为结晶态和非结晶态。结晶态中含有一水和三水化物2类形体;非结晶态则含有无定形和结晶度很低的水化物2种形体,它们都是凝胶态。可总括为下述表达形式: -Al2O3·H2O,一软水铝石 -Al2O3·H2O,一硬水铝石 -Al2O3·3H2O,α三水铝石 -Al2O3·3H2O,β三水铝石 β-Al2O3·3H2O,新β三水铝石 2 O3≥3 2 O/Al2O3≈1.5~2.0 水合氧化铝

活性氧化铝探讨

氧化铝化学式Al2O3,分子量101.96。矾土的主要成分。白色粉末。具有不同晶型,常见的是α-Al2O3和γ-Al2O3。自然界中的刚玉为α-Al2O3,六方紧密堆积晶体,α-Al2O3的熔点2015±15℃,密度3.965g/cm3,硬度8.8,不溶于水、酸或碱。γ-Al2O3属立方紧密堆积晶体,不溶于水,但能溶于酸和碱,是典型的两性氧化物。Al2O3+6H+=2Al3++3H2O Al2O3+2OH-=2AlO2-+H2O 南京活性氧化铝用途南京活性氧化铝厂家 活性氧化铝根据氧化铝的孔径大小大致可分为以下三类:小孔氧化铝、中孔氧化铝和大孔氧化铝。对具体的催化反应,要求氧化铝的孔径大小合适。除孔径大小外,氧化铝的比表面和孔容也是最基本的物性参数,大多数要求尽可能大的比表面和孔容,以及孔分布集中的氧化铝。目前,国内外市场拟薄水铝石的价格从不足万元到3万元左右,制备成特种活性氧化铝的价格更高。 价格决定市场,市场体现价格 目前我国对小孔氧化铝的需求量约5万吨以上。其中仅兰州炼油催化剂厂、山东齐鲁石化和湖南长岭催化剂厂年需求量都在1万吨以上。大孔氧化铝主要用户有抚顺石化催化剂厂、沈阳催化剂厂、温州华华集团、姜堰化工助剂总厂、长岭石油催化剂厂、北京长城、上海石油化工、天津石油化工研究院和其它化肥行业催化剂厂等,总用量也达到3万吨以上。中孔氧化铝主要用户在国外,仅在美国肯塔基州sud-chemie公司每年的用量要超过5000吨,国内目前没有中孔氧化铝生产厂,但也有需求。总之,作为催化剂用的特种活性氧化铝的国内用量应该在10万吨左右。 活性氧化铝具有许多毛细孔道,表面积大,可作为吸附剂、干燥剂及催化剂使用。同时还根据吸附物质的极性强弱来确定,对水、氧化物、醋酸、碱等具有较强的亲合力,是一种微水深度干燥剂,也是吸附极性分子的吸附剂。 福建泉州|活性氧化铝球-活性氧化铝干燥剂|活性氧化铝制造工艺技术配方-温县开碧源净 水材料厂活性氧化铝除氟类似于阴离子交换树脂,但对氟离子的选择性阴离子树脂大。活性氧化铝吸附脱氟效果好,容量稳定,每立方米活性氧化铝吸氟6400克。本产品具有强度高、磨损低、水浸不变软、不膨胀、不粉化、不破裂。可广泛用于石油裂解气、乙烯丙烯气的深度干燥和制氢、空分装置、仪表风干机的干燥、双氧水中氟化物处理还可以去除废气中的硫气氢、二氧化硫、氟化氢、烃类等污染物质,特别适应含氟水的除氟处理 活性氧化铝

高纯三氧化二铝产业链情况简介.doc

实用标准 目录 一、三氧化二铝基本信息 二、三氧化二铝主要用途 三、产业链结构 四、主流制备方法 五、主要生产企业情况 六、下游蓝宝石生产的工艺 七、主要蓝宝石生产企业 八、结论

高纯三氧化二铝产业链情况简介 一、三氧化二铝基本信息 分子式: AL2O3 分子量: 102 熔点: 2050℃ 比重: AL2O32。 5-3 。 2g/cm3 特点:高纯度、超细、粒度分布均匀,白色无味粉末,纯度为99。 99%以上的称为高纯 一般可以按以下四种分类方式区分: (一)按晶型分类 氧化铝是白色晶状粉末,已经证实氧化铝有α、β、γ、δ、η、θ、κ和χ等十一种 晶体。不同的制备方法及工艺条件可获得不同结构的纳米氧化铝:χ、β、η和γ型氧化铝,其特点是多孔性,高分散、高活性,属活性氧化铝;κ、δ、θ型氧化铝;α-Al2O3 ,其比表面低,具有耐高温的惰性,但不属于活性氧化铝,几乎没有催化活性;β -Al2O3 、γ-Al2O3 的比表面较大,孔隙率高、耐热性强,成型性好,具有较强的表面酸性和一定的表面碱性, 被广泛应用作催化剂和催化剂载体等新的绿色化学材料。 (二)按纯度分可以分为 1、普通型, 99。 99%以下 2、 4N-4N5, 99。 99%-99。 995% 3、 4N5-5N, 99。 995%-99。 999% (三)按照粒径尺寸不同可以分为 1、普通氧化铝,粒径尺寸大于100nm。 2、纳米氧化铝,粒径100nm以下,基本要求是30nm。 (四)按照物理尺寸和其他一些物理指标 1、饼料 2、粉料 3、晶块料 4、球形颗粒料 二、主要用途 根据氧化铝纯度和粒径的不同,使用场合也不同,概括如下: ( 1)透明陶瓷:高压钠灯灯管、EP-ROM窗口。 (2)化妆品填料。 (3)单晶、红宝石、蓝宝石、白宝石、钇铝石榴石。 (4)高强度氧化铝陶瓷、 C基板、封装材料、刀具、高纯坩埚、绕线轴、轰击靶炉管。 (5)精密抛光材料、玻璃制品、金属制品、半导体材料、塑料、磁带、打磨带。 (6)涂料、橡胶、塑料耐磨增强材料、高级耐水材料。 (7)气相沉积材料、荧光材料、特种玻璃、复合材料和树脂材料。 (8)催化剂、催化载体、分析试剂。 (9)宇航飞机机翼前缘。 一般 4N5以上高纯氧化铝系列主要用于LED人造蓝宝石晶体,高级陶瓷,PDP荧光粉及一些高性能材料。作为蓝宝石晶体原料,根据不同的要求可提供粉体,颗粒,块状或者柱状 等类型。 4N 高纯氧化铝系列主要用于高压钠灯,新型发光材料,特殊陶瓷,高级涂层,三基色,催化剂及一些高性能材料。根据不同的要求可提供粉体,颗粒等类型。

活性氧化铝规格

活性氧化铝是一种催化剂的载体,它具有耐高温以及抗氧化等特点,从它的问世以来,在很多地方都被做为载体所广泛用,比如说汽车(尾气)催化剂、石油炼制催化剂、加氢和加氢脱硫催化剂等载体。活性氧化铝规格哪家好?您可以选择安徽天普克环保吸附材料有限公司,下面小编为您介绍,希望能给您带来一定程度上的帮助。 活性氧化铝是一种坚硬含水的氧化铝颗粒。含水氧化铝经脱水、活化后成多孔结构的固体颗粒或粉末,可用作空气或气体的干燥,有机碳氢化合物或石油气的浓缩、脱硫,焦炉气或炼厂气的精制等。随着活性氧化铝应用和开发的深入,人们对载体的性能提出了更高的要求,这对增强活性氧化铝载体的市场竞争能力,提高经济效益有着十分重要的作用。

活性氧化铝载体的工艺流程:工业氢氧化铝烘干后粉碎至325目以下,作为快脱原料,经快速脱水得到主相为ρ-氧化铝的快脱粉;合格的快脱粉在成型机中加入添加剂喷淋成型,并在一定的温度下养生;然后经筛分、熟化等工序除去碎球和杂质;最后活化得到孔分布合理的活性氧化铝产品。 活性氧化铝载体的物化指标: 安徽天普克环保吸附材料有限公司是原上海摩力克分子筛有限公司直属公司,本公司成立于2004年,由于生产量扩增,本公司在安徽合肥空港寿县新桥产业园投资建设生产基地。公司目前拥有年产2000吨分子筛、1500吨活性氧化铝生产线各一条。 产品系列化、经营多元化,这些都是企业的发展方针,而OEM----更是公司多年的经营模式,并且得到广泛好评。我们的用户涉及石油、化工、冶金、汽车、空调、电子仪表等行业,我们的客户

群不仅是在国内而且遍及东南亚、欧美等地。公司热忱欢迎国内外客商与我们真诚合作。我们将以精美的产品、可靠的技术、精益求精的服务满足广大客户的要求。 分子筛广泛用于制氧、炼油、化工化肥、医药、钢铁、冶金、酒精、玻璃行业,是气体、液体纯制、分离干燥的好的产品。安徽天普克环保吸附材料有限公司始建于2001年,已有18多年历史,产品有分子筛系列3A分子筛、4A分子筛、5A分子筛、lOX分子筛、13x 分子筛、K13X中空玻璃专用分子筛、变压吸附、富氧专用分子筛、活性氧化铝、瓷球等塔填料。 安徽天普克环保吸附材料有限公司周边交通便利,环境优美,我们热忱欢迎新老客户来厂洽谈业务,我们将以优良的产品、合理的价格,为客户提供批发,零售来料交工等服务。

HGT-3927工业活性氧化铝简介.docx

HG/T 3927 - 2007 工业活性氧化铝 1范围 本标准规定了工业活性氧化铝的要求、试验方法、检验规则、标志、标签、包装、运输 和贮存。 本标准适用于工业活性氧化铝。该产品用于炼油、化肥、石化、天然气、制氧和化工等 行业,主要用作气体和液体吸附剂、吸氟剂、干燥剂、和催化剂载体等。 分子式 :Al 2O3 ? nH2O( n< 1) 3分类 工业活性氧化铝分为六类 : 吸附剂——通用型,用于各种烃类气体、天然气、石油裂解气等的吸附、脱水等。 除氟型——用于饮用水、工业水除氟。 再生剂——用于蒽醌法生产双氧水。 脱氯剂——用于各种气体及黏性树脂等液体的脱氯。 催化剂载体——用作各种催化剂载体。 空分干燥剂——空分专用干燥剂。 4要求 4.1 外观 : 白色球状或柱状。 4.2工业活性氧化铝应符合表 1 要求。 表 1要求 项目 指标 吸附剂除氟剂再生剂脱氟剂催化剂载体空分干燥剂 三氧化二铝质量分数/%≥909092909388灼烧失量 /%≤888889振实密度 / (g/cm3)≥0.650.700.650.600.500.60比表面积 / ( m2/g )≥280280200300200300孔容( cm3/g)≥0.350.350.400.350.400.35吸水率 /%≥——50—40—磨耗率 /%≤0.50.50.40.510.5粒径0.5 ~2mm10 粒径1~ 2.5mm35 粒径2~ 4mm50 抗压强度 /粒径3~ 5mm100 (N/ 颗)≥粒径4~ 6mm130 粒径5~ 7mm150 粒径6~ 8mm200 粒径8~ 10mm250 粒度合格率 /%≥90

活性氧化铝

活性氧化铝 公司网址:https://www.360docs.net/doc/748291320.html, 活性氧化铝 一、活性氧化铝是一种具有多孔性高分散度的固体物料,有很大的比表面积,既有良好的吸附性能,又有良好的耐压、耐磨损和耐热性能,因而,被广泛地用作高效吸附剂、干燥剂以及各种反应的催化剂载体。产品晶粒结构、分子式、分子量、晶粒结构:X-P型、分子式:AL2O3 分子量:102。 二、活性氧化铝干燥剂是用在防潮,防霉方面,起干燥作用硅胶是一种高活性吸附材料,通常是用硅酸钠和硫酸反应,并经老化、酸泡等一系列后处理过程而制得。硅胶属非晶态物质,其化学分子式为mSiO2.nH2o。不溶于水和任何溶剂,无毒无味,化学性质稳定,除强碱、氢氟酸外不与任何物质发生反应。硅胶的化学组份和物理结构,决定了它具有许多其它同类材料难以取代的特点:吸附性能高、热稳定性好、化学性质稳定、有较高的机械强度等。又称减湿剂。为能吸附或化学吸收水蒸气的固体材料。用吸附法除去水蒸气的干燥剂有硅胶、氧化铝凝胶、分子筛、活性炭、骨炭、木炭或活性白土等。用化学吸收法除去水蒸气的常用干燥剂有氯化钙、生石灰或五氧化二磷等与水蒸气的化学亲和力大的物质。活性氧化铝干燥剂是一种从大气中吸收潮气的除水剂,它的干燥原理就是通过物理方式将水分子吸附在自身的结构中或通过化学方式吸收水分子并改变其化学结构,变成另外一种物质。活性氧化铝具有吸附容量大、比表面积大、强度高、热稳定性好等特点,可广泛应用于化工、石化、天然气和化肥等工业中作吸附剂、干燥剂及催化剂。 三、活性氧化铝球具有许多毛细孔道,表面积大,可作为吸附剂、干燥剂及催化剂载体使用。同时还根据吸附物质的极性强弱来确定,对水、氧化物、醋酸、碱等具有较强的亲合力,是一种微水深度干燥剂,也是吸附极性分子的吸附剂。活性氧化铝除氟类似于阴离子交换树脂,但对氟离子的选择性阴离子树脂大,活性氧化铝吸附脱氟效果好,容量稳定,每立方米活性氧化铝吸氟6400克,本产品具有强度高,磨损低、水浸不变软、不膨胀、不粉化、不破裂。可广泛用于石油裂解气、乙烯丙气的深度干燥和制氢、空分装置、仪表风干机的干燥、双氧水中氟化物处理还可以去除废气中的硫气氢、二氧化硫、氟化氢、烃类等污染物质,特别适就含氟水的除氟处理。 常用活性氧化铝球规格φ1-3mmφ3-5mmφ4-6mmφ4-8mm。 四、活性氧化铝球具有许多毛细孔道,表面积大,可作为吸附剂、干燥剂及催化剂使用。同时还根据吸附物质的极性强弱来确定,对水、氧化物、醋酸、碱等具有较强的亲合力,是一种微水深度干燥剂,也是吸附极性分子的吸附剂。 活性氧化铝除氟类似于阴离子交换树脂,但对氟离子的选择性阴离子树脂大。 五、活性氧化铝吸附脱氟效果好,容量稳定,每立方米活性氧化铝吸氟6400克。活性氧化

活性氧化铝的制备及除氟性能研究

活性氧化铝的制备及除氟性能研究 时海平1,王东田1,2,田美玲1 (1.苏州科技学院环境科学与工程学院,江苏苏州215011;2.苏州科技学院化学与生物学院,江苏苏州215009) 摘要:采用溶胶-凝胶法制备出多孔活性氧化铝,采用XRD 表征手段对其和参比成品活性氧化铝的晶相进行分析。XRD 测定表明实验条件下制得的活性氧化铝为非晶态的γ-Al 2O 3,成品活性氧化铝为结晶完整的γ-Al 2O 3。用静态吸附法比较了制备的活性氧化铝、成品氧化铝对氟离子的吸附性能,结果表明:实验制得的活性氧化铝对氟离子的吸附性能较好。 关键词:溶胶-凝胶法;活性氧化铝;晶相;吸附 中图分类号:O643文献标识码:A 文章编号:1672-0679(2010)03-0023-04 氟是人体必需的微量元素,适量的氟能增加骨骼的坚固性,有一定的防治龋齿病的功效[1]。但过量摄入会引起慢性氟中毒,引发氟斑牙与氟骨症等[1,2]。目前去除水体中的氟主要有两种方法[3~6]:化学沉淀法与吸附法。吸附法是除氟的重要方法,除氟效果十分显著。白色颗粒状活性氧化铝是目前广泛应用的除氟吸附剂,其孔隙结构发达、比表面积较大、吸附容量大且化学稳定性好。 溶胶-凝胶技术能够通过低温化学手段在微观层次上裁剪和控制材料的显微结构,使材料的均匀性达到亚微米级、纳米级甚至分子级的水平[7],因此近年来在合成陶瓷、氧化物涂层、高温超导材料、复杂氧化物材料等方面取得了广泛的应用。目前国内外主要以醇铝水解制备大孔体积、低密度γ-Al 2O 3,该法环境污染小,产品纯度高,物化性能好,但成本较高;且通过溶胶-凝胶法所制取的活性氧化铝以薄膜及纳米级的分体为主,应用于催化剂及载体上较多,对于通过溶胶-凝胶法制取中孔的氧化铝颗粒适用于除氟方面的较为少见。本文以分析纯AlCl 3·6H 2O 为原料,通过溶胶-凝胶法制备了勃姆石(γ-AlOOH )的铝凝胶,通过干燥、煅烧制备了γ-Al 2O 3的粉体;通过浸渍法制备了γ-Al 2O 3的薄膜;并应用XRD 现代分析技术对所制得的粉体的晶相进行表征;同时对制备出来的活性氧化铝进行除氟性能研究。 1实验材料与方法 1.1材料与仪器 分析纯氯化铝(AlCl 3·6H 2O )、分析纯氨水(NH 3·H 2O )、分析纯盐酸(HCl ),实验所用水为去离子水。参比活性氧化铝为苏州宏鹏吸附剂厂生产的球形活性氧化铝,其各项物理指标如表1所示(厂家提供)。D8-FO -CUS XRD 衍射仪(德国BRUCKER 公司) 1.2勃姆石γ-AlOOH 凝胶的配制 以AlCl 3·6H 2O 为原料,在高速搅拌下将一定量的NH 3·H 2O 逐步滴加到不同浓度的AlCl 3·6H 2O 溶液中,形成γ-AlOOH 沉 淀凝胶,将一部分沉淀凝胶在一定温度下再加入一定浓度的 HCl 作为胶溶剂在高速搅拌作用下回溶,使之形成透明、稳定的 勃姆石γ-AlOOH 水溶胶。 1.3γ-Al 2O 3粉末的制备 将制得的γ-AlOOH 沉淀凝胶和γ-AlOOH 水溶胶置于烘 —————————————————— —[收稿日期]2010-03-25 [作者简介]时海平(1983-),女,江苏连云港人,硕士研究生。 第23卷 第3期苏州科技学院学报(工程技术版)Vol.23No.32010年9月Journal of Suzhou University of Science and Technology (Engineering and Technology ) Sep .20 10

催化剂载体-活性氧化铝的制备实验

催化剂载体-活性氧化铝的制备实验 一、实验目的 1、通过铝盐与碱性沉淀剂的沉淀反应,掌握氧化铝催化剂和催化剂载体的制备过程。 2、了解制备氧化铝水合物的技术和原理。 3、掌握活性氧化铝的成型方法。 二、实验内容 1、通过铝盐与碱性沉淀剂反应,制备氧化铝催化剂。 三、实验原理 催化剂或催化剂载体用的氧化铝,在物性和结构方面都有一定要求。最基本的是比表面积、孔结构、晶体结构等。例如,重整催化剂是将贵重金属铂、 铼载在γ—Al 2O 3 或η—Al 2 O 3 上。氧化铝的结构对反应活性影响极大,载于其 他形态的氧化铝上,其活性是很低的,如烃类脱氢催化剂,若将Cr—K载在γ—Al2O3或η—Al2O3上,活性较好,而载在其他形态氧化铝上,活性很差。这说明它不仅起载体作用,而且也起到了活性组分的作用,因此,也称这种 氧化铝为活性氧化铝。α—Al 2O 3 在反应中是惰性物质,只能作载体使用。制 备活性氧化铝的方法不同,得到的产品结构亦不相同,其活性的差异颇大,因此制备中应严格掌握每一步骤的条件,不应混入杂质,尽管制备方法和路线很多,但无论哪种路线都必须制成氧化铝水合物(氢氧化铝),再经高温脱水生成氧化铝。自然界存在的氧化铝或氢氧化铝脱水生成的氧化铝,不能作载体或催化剂使用,这不仅因杂质多,主要是难以得到所要求的结构和催化 活性。为此,必须经过重新处理,可见制备氧化铝水合物是制活性Al 2O 3 的基 础。 氧化铝水合物经X射线分析,可知有多种形态,通常分为结晶态和非结晶态。结晶态中有一水和三水化物两类形体;非结晶态则含有无定形和结晶度很低的水化物两种形体,它们都是凝胶态。可总括为下述表达形式:

活性氧化铝化学品安全技术说明书

活性氧化铝化学品安全技术说明书 说明书目录 第一部分化学品名称第九部分理化特性 第二部分成分/组成信息第十部分稳定性和反应活性 第三部分危险性概述第十一部分毒理学资料 第四部分急救措施第十二部分生态学资料 第五部分消防措施第十三部分废弃处置 第六部分泄漏应急处理第十四部分运输信息 第七部分操作处置与储存第十五部分法规信息 第八部分接触控制/个体防护第十六部分其他信息 第一部分:化学品名称 化学品中文名称:活性氧化铝 化学品英文名称:Active Alumina 技术说明书编码:1342 GASA No.:1344-28-1 分子式:A1203 分子量:101.96 第二部分:成分/组成信息 有害物成分含量GASA No. 氧化铝1334-28-1 第三部分:危险性概述 危险性类别: 侵入途径: 健康危害:对机体一般不易引起毒害,对粘膜和上呼吸道有刺激作用。经呼吸道吸入其粉尘可引起。 第四部分:急救措施 皮肤接触:脱去污染的衣着,用流动清水冲洗。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:脱离现场至空气新鲜处。 食入:饮足量温水,催吐。就医。

危险特性:未有特殊的燃烧爆炸特性。 有害燃烧产物:自然分解产物水。 灭火方法:消防人员必须穿全身防火防毒服,在上风向灭火。灭火时尽可能将 容器从火场移至空旷处。 第六部分:泄漏应急处理 应急处理:隔离泄漏污染区,限制出入。建议应急处理人员戴防尘面具(全面 罩),穿防毒服。避免扬尘,小心扫起,置于袋中转移至安全场所。 若大量泄漏,用塑料布、帆布覆盖。收集回收或运至废物处理场所 处置。 第七部分:操作处置与储存 操作注意事项:密闭操作,局部排风。操作人员必须经过专门培训,严格遵守操作 规程。建议操作人员配戴自吸过滤式防尘口罩,戴化学安全防护眼 镜,穿防毒物渗透工作服,戴橡胶手套。避免产生粉尘。避免与氧 化剂接触。搬运时轻装轻卸,防止包装破损。配备泄漏应急处理设 备。倒空的容器可能残留有害物。 储存注意事项:储存于阴凉、干燥、通风良好的库房。远离火种、热源。保持容器 密封。应与氧化剂分开存放,切忌混储。储区应备有合适的材料收 容汇漏物。 第八部分:接触控制/个体防护 职业接触限值 中国MAC(mg/m3): 6 前苏联MAC(mg/m3): 2-6 TLVTN:ACGIH 10mg/m3(按铝计) TLVMN:未制定标准 监测方法: 工程控制:密闭操作,局部排风。 呼吸系统防护:空气中粉尘浓度超标时,必须佩戴自吸过滤式防尘口罩。紧急 事态抢救或撤离时,应该配戴空气呼吸器。 眼睛防护:戴化学安全防护眼镜。 身体防护:穿防毒物渗透工作服。 手防护:戴橡胶手套。 其他防护:注意个人清洁卫生。

活性氧化铝

活性氧化铝 技术指标 活性氧化铝外观:活性氧化铝为白色球状多孔性颗粒,粒度均匀,表面光滑,比表面积5-120(比表面积测试是由3H-2000系列比表面仪进行测试的,测试精度高,重复性好,国内知名品牌,远销海外.),机械强度大,吸湿性强,吸水后不胀不裂保持原状,无毒、无臭、不溶于水、乙醇,对氟有很强的吸附性,主要用于高氟地区饮用水的除氟。 活性氧化铝对气体、水蒸气和某些液体的水分有选择吸附本领。吸附饱和后可在约175-315℃加热除去水而复活。吸附和复活可进行多次。除用作干燥剂外,还可从污染的氧、氢、二氧化碳、天然气等中吸附润滑油的蒸气。并可用作催化剂和催化剂载体和色层分析载体。 活性氧化铝在一定的操作条件和再生条件下,该产品的干燥深度高达露点温度-70度以下。 主要用途 本产品可用作高氟饮水的除氟剂(除氟容量大)、烷基苯生产中循环烷烃的脱氟剂、变压器油的脱酸再生剂、用作制氧工业、纺织工业、电子行业气体干燥,自动化仪表风的干燥以及在化肥、石油化工干燥等行业作干燥剂、净化剂(露点可达-40度)、在空分行业变压吸附露点可达-55度。是一种微量水深度干燥的高效干燥剂。非常适用于无热再生装置。 活性氧化铝比表面积是很重要的参数。比表面积是每克固体材料所具有的表面积,单位为m2/g;比表面积测试仪的国家标准是基于BET理论的低温氮吸附BET多点法(GB/T 19587-2004)。由氮吸附BET多点法测定比表面积的要点是:在5-30%氮气分压范围内,在不同氮气分压点下测定吸附剂(待测粉体)对氮气的吸附量,做出吸附等温线,通过BET 公式求出相应于吸附剂表面被氮气分子覆盖满单分子层时的单分子层饱和吸附量,即可计算出吸附剂的比表面积。3H-2000BET-A比表面积测定仪是依据国家比表面测试标准的高精度分析仪器,拥有7项国内唯一的领先技术;如国内唯一的一体化原位吹扫处理功能,针对色谱法比表面测试的不同氮气分压点之间需要吹扫处理的问题,使不同氮气分压点之间的吹扫处理更方便高效,减少了连续测试对准确度的影响;国内唯一的程控风热助脱装置,使在实现全自动化后,保证得到尖锐快速的脱附峰,减少背景误差;国内唯一的色谱浓度检测系统,使氮气分压检测精度相对流量法提高10倍;六通阀进样器程序控制,国内唯一的定量管程控切换功能;国内唯一的粒度报告等功能;仪器参数软件显示的同时,在仪器上大屏幕液晶硬件显示,使仪器工作状态参数一目了然,运行更可靠;以及液氮温度监测、检测器断气保护、检测器恒温装置、重要环节声音提示,使3H-2000BET-M比表面仪在测试精度、稳定安全性、操作便捷性等方面达到并部分超越了国外同类仪器性能,3H-2000系列比表面仪在国内拥有大量客户,为比表面仪知名品牌

相关文档
最新文档