操作系统实验报告——进程调度

操作系统实验报告——进程调度
操作系统实验报告——进程调度

北京邮电大学软件学院

2019-2020学年第2学期实验报告

课程名称:操作系统

实验名称:进程调度

实验完成人:

日期: 2019 年 11 月 26 日

一、实验目的

1. 理解 Linux 管理进程所用到的数据结构。

2. 理解 Linux 的进程调度算法的处理逻辑及其实现所用到的数据结构。

二、实验内容

1. 通过查阅参考书或者上网找资料,熟悉/usr/src/linux(注意:这里最

后一级目录名可能是个含有具体内核版本号和“linux”字符串的名字)下各子目录的内容,即所含 Linux 源代码的情况。

2. 分析 Linux 进程调度有关函数的源代码,主要是 schedule()函数,并

且要对它们引用的头文件等一并分析。

3. 实现 Linux 的进程调度算法及理解其实现所用的主要数据结构。

三、实验环境

Linux下使用gcc+vscode

四、实验过程描述

第一部分:源代码分析:

所需头文件:

#include

#include

#include

#include

#include

#include

#include

#include

:内核头文件,含有一些内核常用函数的原形定义。

:软驱头文件,含有软盘控制器参数的一些定义。

:调度程序头文件,主要定义了任务结构task_struct、初始任务0的数据,以及一些有关描述符参数设置和获取的嵌入式汇编函数宏语句。

:系统调用头文件,主要是系统调用C函数处理程序。

:I/O头文件,以宏的嵌入汇编程序形式定义对I/O端口操作的函数。

:段操作头文件,定义了有关段寄存器操作的嵌入式汇编函数。

:系统头文件,定义了设置或修改描述符/中断门等的嵌入式汇编宏。

:信号头文件,定义信号符号常量,信号结构以及信号操作函数原型。

Schedule.c部分函数分析:(大多写在注释里)

show_task()函数某个进程的状态信息以及空间大小

void show_task(int nr,struct task_struct*p)//显示p指向的nr号进程的相关信息

{

int i,j = 4096-sizeof(struct task_struct);//j记录了任务结构体之后的堆栈空间大小

printk("%d: pid=%d, state=%d, ",nr,p->pid,p->state);//打印进程的各种信息

i=0;

while (i

i++;

printk("%d/%d chars free in kernel stack\n\r",i,j);//内核栈最大为j,空字节数是i,比例i/j

}

void show_stat(void) //打印所有进程的状态信息

{

int i;

for (i=0;i

if (task[i])

show_task(i,task[i]);

}

Schedule()分析:

schedule函数首先对所有的任务检查,唤醒任何一个已经得到信号的任务,

也就是针对任务数组中的每个任务,检查其警报定时值alarm。如果任务的alarm 已经超期(alarm < jiffies),则在它的信号位图中设置SIGALARM,然后清除alarm值。之后schedule()函数首先扫描任务队列,通过比较每个就绪状态任务的运行时间递减计数counter的值来确定当前哪个进程运行的时间最少,哪个counter值最大.counter越大就说明运行时间越短,于是就选中该进程,并使用任务切换宏函数到该进程运行利用switch_to函数完成任务转换。如果所有的就绪任务的该值都是0,则表示此刻所有任务的时间片都已运行完。于是就根据任务的优先权值priority,重置每个任务的运行时间counter。

void schedule(void)

{

int i, next, c;

struct task_struct**p;

/* check alarm, wake up any interruptible tasks that have got a sig nal */

for (p = &LAST_TASK; p > &FIRST_TASK; --p) //把p初始化为指向最后一个进程的地址的指针,逆向扫描所有进程

if (*p)

{ //当前进程

if ((*p)->timeout && (*p)->timeout < jiffies)

{ // jiffies是持续变的,timeout 是阈值

(*p)->timeout = 0;

//如果当前进程等待很久了,并且这个进程处于

TASK_INTERRUPTIBLE

if ((*p)->state == TASK_INTERRUPTIBLE)

(*p)->state = TASK_RUNNING; //我们就把这个进程置与TASK_RUNNING状态

}

if ((*p)->alarm && (*p)->alarm < jiffies)

{ //如果此时jiffies大于alarm信号周期,则让将SIGALRM写入进程的信号位

(*p)->signal |= (1 << (SIGALRM - 1));

(*p)->alarm = 0;

}

if (((*p)->signal & ~(_BLOCKABLE & (*p)->blocked)) &&

(*p)->state == TASK_INTERRUPTIBLE) // 除SIGKILL SIGSTOP 信号外,其他信号都是非阻塞状态的话,并且进程处于TASK_INTERRUPTIBLE

(*p)->state = TASK_RUNNING; //把这个进程置与TASK_RUNNING 状态

}

/* this is the scheduler proper: */

while (1)

{

c = -1;

next = 0;

i = NR_TASKS;

p = &task[NR_TASKS];

while (--i)

{ //把所有进程都扫一遍,counter是递减的,找出counter最大的进程,保存在next里面

if (!*--p) //当前*p指向进程为空,下一个

continue;

if ((*p)->state == TASK_RUNNING && (*p)->counter > c)

//counter是任务运行时间计数,如果当前进程是执行状态且运行时间数大于c

c = (*p)->counter, next = i;

}

if (c)

break; //c>0 就说明找到了已经运行一段时间,并且运行时间最短的进程,跳出while(1)

for (p = &LAST_TASK; p > &FIRST_TASK; --p) //如果c==0,说明所有schedule的进程都没有运行

if (*p)

(*p)->counter = ((*p)->counter >> 1) +

(*p)->priority; //重新计算

counter = counter/2 + priority

}

switch_to(next); //让进程next使用CPU

}

}

Sleep_on()函数分析:

Sleep_on()函数sleep_on()函数的主要功能是当一个进程(或任务)所请求的资源正等待资源响应或不在内存中时暂时切换出去,放在等待队列中等待一段时间,先让别的程序运行一段时间,当切换回来后再继续运行。巧妙的利用了tmp指针来作为与等待队列的联系void sleep_on(struct task_struct **p)

{

struct task_struct *tmp;

if (!p)

return;

if (current == &(init_task.task))

panic("task[0] trying to sleep");

tmp = *p; // tmp 指向原等待队列的头指针

*p = current; //*p 指向等待队列的头指针,把current放入等待队列current->state = TASK_INTERRUPTIBLE; //当前状态为不可中断

schedule(); //调度一下,

if (tmp)

tmp->state = 0; //task_running

}

Wake_up()函数分析:

Wake_up用来唤醒进程(将状态置为task_running即可)

void wake_up(struct task_struct**p)//唤醒进程

{

if (p && *p) {

if ((**p).state == TASK_STOPPED)

printk("wake_up: TASK_STOPPED");

if ((**p).state == TASK_ZOMBIE)

printk("wake_up: TASK_ZOMBIE");

(**p).state=0; //TASK_RUNNING

}

}

第二部分:实现进程调度算法

进程调度算法:

操作系统通过PCB来控制进程。PCB是进程实体的一部分,是操作系统中最重要

的记录性数据结构,用来管理和控制进程,每一个进程均有一个PCB,在创建进程时,建立PCB,伴随进程运行的全过程,直到进程撤消而撤消。

为了模拟进程调度算法,自定义了PCB:

typedef struct PCB

{

__pid_t pid;

int priority;

int round_time;

int wait_time;

int demand_time; //所需要的总时间

int cmplt_time; //完成时间

int remain_time; //还需要的时间(RR)

int suspend_time; //暂时被挂起的时刻(RR)

int arrive_time; //到达时间

int start_time; //开始执行时间

struct PCB*next;

}*p_pcb,PCB;

然后实现FCFS,SJF,RR算法:

FCFS算法:

先给进程队列排序,按时间的先后顺序来排,先来的排前面。排好序后可以计算出每个进程的开始执行时间和结束时间

void FCFS(p_pcb head)

{

insertionSortList(head, fcfs); //按到达时间排序

p_pcb p = head;

head->cmplt_time = head->demand_time;

head->round_time = head->demand_time;

head->wait_time = 0; //初始化头节点

while (p->next)

{

if (p->next->arrive_time < p->cmplt_time) //当前到达时间在上一个作业结束时间之前

{

p->next->start_time = p->cmplt_time; //上一个任务完成时下一个任务开始

}

else//当前到达时间在上一个作业结束时间之后

{

p->next->start_time = p->next->arrive_time; //开始时间及到达时间

}

p->next->wait_time = p->next->start_time - p->next->arrive_time ; //等待时间=开始时间-到达时间

p->next->cmplt_time = p->next->start_time + p->next->demand_tim e; //完成时间=开始时间+服务时间

p->next->round_time = p->next->wait_time + p->next->demand_time ; //周转时间=等待时间+执行时间

p = p->next;

}

visit(head); //打印结果

}

SJF算法:

假设所有进程在时间0时到达,则先给所有程序按所需执行时间排序,然后依次执行,计算出开始时间和结束时间。

void SJF(p_pcb head) //假设所有进程在同一时刻到达

{

insertionSortList(head, sjf);

p_pcb p = head;

head->arrive_time = 0;

head->cmplt_time = head->demand_time;

head->round_time = head->demand_time;

head->wait_time = 0; //初始化头节点

while (p->next)

{

p->next->arrive_time = 0;

p->next->start_time = p->cmplt_time; //上一个任务完成时下一个任务开始

p->next->wait_time = p->next->start_time - p->next->arrive_time ; //等待时间=开始时间-到达时间

p->next->cmplt_time = p->next->start_time + p->next->demand_tim e; //完成时间=上一个完成时间+服务时间

p->next->round_time = p->next->wait_time + p->next->demand_time ; //周转时间=完成时间-到达时间

p = p->next;

}

visit(head);

}

RR:

时间片轮转。假设所有程序在时间0时到达,然后每个程序轮流用时间片来执行。利用循环链表来操作,轮到该程序(该pcb的节点)执行时给该节点的剩余时间remain-time减时间片时间,如果剩余时间为0就将其移除循环链表,然后指向下一个节点。最后依次轮回,直到循环链表中只剩下一个节点。

void RR(p_pcb head)

{

float quantum = 5.0;

p_pcb p = head;

while (p->next) //预处理,初始化remain-time

{

p->start_time = 0;

p->remain_time = p->demand_time;

p = p->next;

}

p->start_time = 0; //处理最后一个节点

p->remain_time = p->demand_time;

printf("pid %d,star at %d,remain %d\n", p->pid, p->start_time, p->r emain_time);

p->next = head; //初始化为循环链表,方便后续操作

//从头开始

p = head;

int i = 0; //记录经过了多少时间片

while (p->next != p)

{

if (p->next->remain_time > quantum) //还需要的时间大于时间片时间

{

p->next->start_time = i * quantum; //开始时间为时间片开始时间

p->next->suspend_time = p->next->start_time + quantum; //暂停时间为开始时间+时间片时间

p->next->remain_time -= quantum; //还需要的时间自减

printf("process %d start at time %d with time quantum %.2f, and %d left\n", p->next->pid, p->next->start_time, quantum, p->next->re main_time);

}

else//在改时间片内可以完成此任务 {

p->next->cmplt_time = p->next->start_time + p->next->remain _time; //开始时间+所需时间

printf("process %d start at %d\n", p->next->pid, p->next->s tart_time);

printf("process %d complete at %d\n", p->next->pid, p->next ->cmplt_time);

delete (p); //删除p->next

}

i++;

p = p->next;

}

还用到的算法:插入排序

void insertionSortList(p_pcb head, Type type) //插入排序

{

if (head == NULL || head->next == NULL)

return;

p_pcb p = head->next, pstart = (p_pcb)malloc(sizeof(PCB)), pend = h ead;

pstart->next = head; //为了操作方便,添加一个头结点

while (p)

{

p_pcb tmp = pstart->next, pre = pstart;

if (type == fcfs)

{

while (tmp != p && p->arrive_time >= tmp->arrive_time) //找到插入位置

{

tmp = tmp->next;

pre = pre->next;

}

}

else if (type == sjf)

{

while (tmp != p && p->demand_time >= tmp->demand_time) //找到插入位置

{

tmp = tmp->next;

pre = pre->next;

}

}

if (tmp == p)

pend = p;

else

{

pend->next = p->next;

p->next = tmp;

pre->next = p;

}

p = pend->next;

}

head = pstart->next;

free(pstart);

}

五、实验结果

模拟了FCFS算法,SJF算法以及RR算法(代码见后面)。

FCFS算法:先来先执行,根据到达时间对执行顺序行排序:

SJF:短任务执行:

时间片为2时的RR:

时间片为5时的RR:

六、附件

6.1 附件1:源代码

Pcb.h

#include"unistd.h"

typedef enum Type{

fcfs=1,sjf=2

}Type;

typedef struct PCB

{

__pid_t pid;

int priority;

int round_time;

int wait_time;

int demand_time; //所需要的总时间

int cmplt_time; //完成时间

int remain_time; //还需要的时间(RR)

int suspend_time; //暂时被挂起的时刻(RR)

int arrive_time; //到达时间

int start_time; //开始执行时间

struct PCB*next;

}*p_pcb,PCB;

void visit(p_pcb);

void FCFS(p_pcb);

void SJF(p_pcb);

void RR(p_pcb);

void initial(p_pcb);

void destroy(p_pcb);

void insertionSortList(p_pcb head,Type type); scheduling.c

#include"pcb.h"

#include"stdlib.h"

#include

#include

void initial(p_pcb queue) //初始化节点

{

queue->arrive_time = 0;

queue->demand_time = 0;

queue->next = NULL;

}

void destroy(p_pcb head) //销毁链表

{

p_pcb p = head;

while (p)

{

p_pcb temp = p;

p = p->next;

free(temp);

}

}

void add(p_pcb head, p_pcb new) //添加节点

{

p_pcb p = head;

while (p->next)

p = p->next;

p->next = new;

new->next = NULL;

}

void delete (p_pcb p) //删除p之后的节点

{

p_pcb temp = p->next;

p->next = p->next->next;

free(temp);

}

void insertionSortList(p_pcb head, Type type) //插入排序

{

if (head == NULL || head->next == NULL)

return;

p_pcb p = head->next, pstart = (p_pcb)malloc(sizeof(PCB)), pend = h ead;

pstart->next = head; //为了操作方便,添加一个头结点

while (p)

{

p_pcb tmp = pstart->next, pre = pstart;

if (type == fcfs)

{

while (tmp != p && p->arrive_time >= tmp->arrive_time) //找到插入位置

{

tmp = tmp->next;

pre = pre->next;

}

}

else if (type == sjf)

{

while (tmp != p && p->demand_time >= tmp->demand_time) //找到插入位置

{

tmp = tmp->next;

pre = pre->next;

}

}

if (tmp == p)

pend = p;

else

{

pend->next = p->next;

p->next = tmp;

pre->next = p;

}

p = pend->next;

head = pstart->next;

free(pstart);

}

void FCFS(p_pcb head)

{

insertionSortList(head, fcfs); //按到达时间排序

p_pcb p = head;

head->cmplt_time = head->demand_time;

head->round_time = head->demand_time;

head->wait_time = 0; //初始化头节点

while (p->next)

{

if (p->next->arrive_time < p->cmplt_time) //当前到达时间在上一个作业结束时间之前

{

p->next->start_time = p->cmplt_time; //上一个任务完成时下一个任务开始

}

else//当前到达时间在上一个作业结束时间之后

{

p->next->start_time = p->next->arrive_time; //开始时间及到达时间

}

p->next->wait_time = p->next->start_time - p->next->arrive_time ; //等待时间=开始时间-到达时间

p->next->cmplt_time = p->next->start_time + p->next->demand_tim e; //完成时间=开始时间+服务时间

p->next->round_time = p->next->wait_time + p->next->demand_time ; //周转时间=等待时间+执行时间

p = p->next;

}

visit(head); //打印结果

}

void SJF(p_pcb head) //假设所有进程在同一时刻到达

{

insertionSortList(head, sjf);

p_pcb p = head;

head->arrive_time = 0;

head->cmplt_time = head->demand_time;

head->round_time = head->demand_time;

head->wait_time = 0; //初始化头节点

while (p->next)

p->next->arrive_time = 0;

p->next->start_time = p->cmplt_time; //上一个任务完成时下一个任务开始

p->next->wait_time = p->next->start_time - p->next->arrive_time ; //等待时间=开始时间-到达时间

p->next->cmplt_time = p->next->start_time + p->next->demand_tim e; //完成时间=上一个完成时间+服务时间

p->next->round_time = p->next->wait_time + p->next->demand_time ; //周转时间=完成时间-到达时间

p = p->next;

}

visit(head);

}

void RR(p_pcb head)

{

float quantum = 5.0;

p_pcb p = head;

while (p->next) //预处理,初始化remain-time

{

p->start_time = 0;

p->remain_time = p->demand_time;

p = p->next;

}

p->start_time = 0; //处理最后一个节点

p->remain_time = p->demand_time;

printf("pid %d,star at %d,remain %d\n", p->pid, p->start_time, p->r emain_time);

p->next = head; //初始化为循环链表,方便后续操作

//从头开始

p = head;

int i = 0; //记录经过了多少时间片

while (p->next != p)

{

if (p->next->remain_time > quantum) //还需要的时间大于时间片时间

{

p->next->start_time = i * quantum; //开始时间为时间片开始时间

p->next->suspend_time = p->next->start_time + quantum; //暂停时间为开始时间+时间片时间

p->next->remain_time -= quantum; //还需要的时间自减

printf("process %d start at time %d with time quantum %.2f, and %d left\n", p->next->pid, p->next->start_time, quantum, p->next->re main_time);

}

else//在改时间片内可以完成此任务 {

p->next->cmplt_time = p->next->start_time + p->next->remain _time; //开始时间+所需时间

printf("process %d start at %d\n", p->next->pid, p->next->s tart_time);

printf("process %d complete at %d\n", p->next->pid, p->next ->cmplt_time);

delete (p); //删除p->next

}

i++;

p = p->next;

}

}

void visit(p_pcb head)

{

p_pcb p = head;

while (p)

{

printf("pid=%d arrive time=%d,demand time=%d,start time =%d,com plete time=%d,waiting time=%d,round time=%d\n", p->pid, p->arrive_time, p->demand_time,p->start_time, p->cmplt_time,p->wait_time,p->round_time );

p = p->next;

}

}

int main()

{

srand((unsigned)time(NULL));

p_pcb Queue = (p_pcb)malloc(sizeof(PCB));

initial(Queue); //第一个任务

p_pcb a[10];

for (int i = 0; i < 10; i++)

{

a[i] = (p_pcb)malloc(sizeof(PCB));

a[i]->pid = i + 1;

a[i]->arrive_time = rand() % 30;

a[i]->demand_time = rand() % 20;

add(Queue, a[i]);

}

printf("在fcfs下:\n");

FCFS(Queue);

printf("在sjf下:\n");

SJF(Queue);

printf("在rr下\n");

RR(Queue);

}

网页设计实验报告

实验报告 课程名称网络技术基础实验项目TCP/IP协议配置实验仪器计算机 系别 专业 班级/学号 学生姓名 实验日期 成绩 指导教师

实验一 TCP/IP协议配置 一、实验目的(标题黑体小四) 1.熟练掌握模板的用法。 2.掌握CSS的用法。 3.掌握网站发布的方法。 二、实验内容 1. 创建和使用模板。 2. css的创建和使用。 3. 发布网站。 三、实验课时 4课时 四、实验步骤 创建网站 1、创建一个站点,并创建 images 文件夹存放图片。将示例图片拷贝至images 目录下 2、创建 CSS 文件,名称为 style.css,将其保存至 style文件夹。 3、创建模板文件 tpl.dwt,并保存。结果如下: (1) 给 tpl.dwt 附加样式表 style.css。 在 tpl.dwt 的空白处点击鼠标右键,选择“附加样式表”: 选择 style.css 文件: 完成后,在 tpl.dwt 的 head标签里有如下的代码: (2) 设置模板的背景颜色。打开 CSS 面板,为 style.css 新建一条 css 规则。过程如 下:

将背景颜色设为#ff1e70: 在 style.css 生成如下的代码: body { background-color: #ff1e70? } 3) 制作布局。插入一 2 行 2 列的表格。表格的宽度=316+634=950,其他的设置:让表格居中对齐。 (4) 消除表格两边的空隙。展开 CSS 样式表,双击 body: 双击 body后,打开“body的 CSS 规则定义”对话框,按照下面的方式设置:Style.css 的代码变为: body { background-color: #ff1e70? margin: 0px? }

操作系统实验报告--实验一--进程管理

实验一进程管理 一、目的 进程调度是处理机管理的核心内容。本实验要求编写和调试一个简单的进程调度程序。通过本实验加深理解有关进程控制块、进程队列的概念,并体会和了解进程调度算法的具体实施办法。 二、实验内容及要求 1、设计进程控制块PCB的结构(PCB结构通常包括以下信息:进程名(进程ID)、进程优先数、轮转时间片、进程所占用的CPU时间、进程的状态、当前队列指针等。可根据实验的不同,PCB结构的内容可以作适当的增删)。为了便于处理,程序中的某进程运行时间以时间片为单位计算。各进程的轮转时间数以及进程需运行的时间片数的初始值均由用户给定。 2、系统资源(r1…r w),共有w类,每类数目为r1…r w。随机产生n进程P i(id,s(j,k),t),0<=i<=n,0<=j<=m,0<=k<=dt为总运行时间,在运行过程中,会随机申请新的资源。 3、每个进程可有三个状态(即就绪状态W、运行状态R、等待或阻塞状态B),并假设初始状态为就绪状态。建立进程就绪队列。 4、编制进程调度算法:时间片轮转调度算法 本程序用该算法对n个进程进行调度,进程每执行一次,CPU时间片数加1,进程还需要的时间片数减1。在调度算法中,采用固定时间片(即:每执行一次进程,该进程的执行时间片数为已执行了1个单位),这时,CPU时间片数加1,进程还需要的时间片数减1,并排列到就绪队列的尾上。 三、实验环境 操作系统环境:Windows系统。 编程语言:C#。 四、实验思路和设计 1、程序流程图

2、主要程序代码 //PCB结构体 struct pcb { public int id; //进程ID public int ra; //所需资源A的数量 public int rb; //所需资源B的数量 public int rc; //所需资源C的数量 public int ntime; //所需的时间片个数 public int rtime; //已经运行的时间片个数 public char state; //进程状态,W(等待)、R(运行)、B(阻塞) //public int next; } ArrayList hready = new ArrayList(); ArrayList hblock = new ArrayList(); Random random = new Random(); //ArrayList p = new ArrayList(); int m, n, r, a,a1, b,b1, c,c1, h = 0, i = 1, time1Inteval;//m为要模拟的进程个数,n为初始化进程个数 //r为可随机产生的进程数(r=m-n) //a,b,c分别为A,B,C三类资源的总量 //i为进城计数,i=1…n //h为运行的时间片次数,time1Inteval为时间片大小(毫秒) //对进程进行初始化,建立就绪数组、阻塞数组。 public void input()//对进程进行初始化,建立就绪队列、阻塞队列 { m = int.Parse(textBox4.Text); n = int.Parse(textBox5.Text); a = int.Parse(textBox6.Text); b = int.Parse(textBox7.Text); c = int.Parse(textBox8.Text); a1 = a; b1 = b; c1 = c; r = m - n; time1Inteval = int.Parse(textBox9.Text); timer1.Interval = time1Inteval; for (i = 1; i <= n; i++) { pcb jincheng = new pcb(); jincheng.id = i; jincheng.ra = (random.Next(a) + 1); jincheng.rb = (random.Next(b) + 1); jincheng.rc = (random.Next(c) + 1); jincheng.ntime = (random.Next(1, 5)); jincheng.rtime = 0;

操作系统进程同步实验报告

实验三:进程同步实验 一、实验任务: (1)掌握操作系统的进程同步原理; (2)熟悉linux的进程同步原语; (3 )设计程序,实现经典进程同步问题。 二、实验原理: (1)P、V操作 PV操作由P操作原语和V操作原语组成(原语是不可中断的过程) ,对信号量进行操作,具体定义如下: P( S):①将信- 号量S的值减1,即S=S-1; ②如果S30,则该进程继续执行;否则该进程置为等待状态,排入等待队列。 V( S):①将信号量S的值加1,即S=S+1 ; ②如果S>0,则该进程继续执行;否则释放队列中第一个等待信号量的进程。 (2)信号量 信号量(semaphore )的数据结构为一个值和一个指针,指针指向等待该信号量的下一个进程。信号量的值与相应资源的使用情况有关。当它的值大于0时,表示当前可用资源的数量;当它的值小于0时,其绝对值表示等待使用该资源的进程个数。注意,信号量的 值仅能由PV操作来改变。 一般来说,信号量S30时,S表示可用资源的数量。执行一次P操作意味着请求分配一 个单位资源,因此S的值减1;当S<0时,表示已经没有可用资源,请求者必须等待别的进程释放该类资源,它才能运行下去。而执行一个V操作意味着释放一个单位资源,因此S 的值加1;若S均,表示有某些进程正在等待该资源,因此要唤醒一个等待状态的进程,使之运行下去。 (3)linux的进程同步原语 ①wait();阻塞父进程,子进程执行; ②#in clude #in clude key_t ftok (char*path name, char proj) ;它返回与路径path name 相对应的一个键值。 ③int semget(key_t key, int n sems, int semflg) 参数key是一个键值,由ftok获得,唯一标识一个信号灯集,用法与msgget()中的key 相同;参数nsems指定打开或者新创建的信号灯集中将包含信号灯的数目;semflg参数是一些标志位。参数key和semflg的取值,以及何时打开已有信号灯集或者创建一个新的信号灯集与msgget()中的对应部分相同。该调用返回与健值key相对应的信号灯集描述字。调用返回:成功返回信号灯集描述字,否则返回-1。 ④int semop(i nt semid, struct sembuf *sops, un sig ned n sops); semid是信号灯集ID , sops指向数组的每一个sembuf结构都刻画一个在特定信号灯上的操作。nsops为sops指向数组的大小。 ⑤int semctl(int semid , int semnum , int cmd , union semun arg) 该系统调用实现对信号灯的各种控制操作,参数semid指定信号灯集,参数cmd指定 具体的操作类型;参数semnum指定对哪个信号灯操作,只对几个特殊的cmd操作有意义;

Web网页设计实验报告

WEB系统开发 综合实验报告 题目红尘客栈网上订房页面 专业计算机科学与技术(信息技术及应用) 班级计信2班 学生蒋波涛 重庆交通大学 2013年

目录 一、设计目的 (3) 二、设计题目 (3) 三、结构设计 (3) 四、技术分析 (4) 五、设计过程 (7) 六、实验心得 (10) 七、实验总结 (11)

一、设计目的 在Internet飞速发展的今天,互联网成为人们快速获取、发布和传递信息的重要渠道,它在人们政治、经济、生活等各个方面发挥着重要的作用。因此网站建设在Internet 应用上的地位显而易见,它已成为政府、企事业单位信息化建设中的重要组成部分,从而倍受人们的重视。我们当代大学生更是离不开网络给我们带来的好处与便利.但是,我们成天浏览的网站网页到底是如何制作的呢?我想这一点很多同学都没有去深究过.所以,这学期我选择了”web网页设计”这门课, 本课程的设计目的是通过实践使同学们经历网页制作的全过程. 通过设计达到掌握网页设计、制作的技巧。 了解和熟悉网页设计的基础知识和实现技巧。根据题目的要求,给出网页设计方案,可以按要求,利用合适图文素材设计制作符合要求的网页设计作品。 熟练掌握Photoshop cs3、Dreamweaver cs等软件的的操作和应用。增强动手实践能力,进一步加强自身综合素质。学会和团队配合,逐渐培养做一个完整项目的能力。 二、设计题目 《红尘客栈》 三、结构设计 选定主题,确定题目之后,在做整个网站之前对网站进行需求分析。首先,做好需求调研。调研方式主要是上网查阅资料,在图书馆里翻阅相关书籍。 然后,调研结束之后对整个网站进行功能描述,并对网站进行总体规划,接着逐步细化。 我们选做的主题是个人主页,并且选定题目为“红尘客栈”,其目的是做一个简单的网站,介绍酒店概况,提供一定的资讯信息。 四、技术分析 (一)建立布局 在这次的网页设计中用到大量的布局,所以怎么样建立布局是关键。Dreamweaver cs3是大多数人设计网页的称手兵器,也是众多入门者的捷径。特别是其在布局方面的出色表现,更受青睐。大家都知道,没有表格的帮助,很难组织出一个协调合理的页面。 1.点击“ALT+F6”键,进入布局模式,插入布局表格。建立一个大概的布局。 2.使用背景图片:选中该项,按浏览可以插入一幅准备好的图片作为表格的背景,因为图片是以平铺的形式作为表格背景,所以表格大小和图片尺寸都要控制好。 (二)网页中的图像

嵌入式操作系统实验报告

中南大学信息科学与工程学院实验报告 姓名:安磊 班级:计科0901 学号: 0909090310

指导老师:宋虹

目录 课程设计内容 ----------------------------------- 3 uC/OS操作系统简介 ------------------------------------ 3 uC/OS操作系统的组成 ------------------------------ 3 uC/OS操作系统功能作用 ---------------------------- 4 uC/OS文件系统的建立 ---------------------------- 6 文件系统设计的原则 ------------------------------6 文件系统的层次结构和功能模块 ---------------------6 文件系统的详细设计 -------------------------------- 8 文件系统核心代码 --------------------------------- 9 课程设计感想 ------------------------------------- 11 附录-------------------------------------------------- 12

课程设计内容 在uC/OS操作系统中增加一个简单的文件系统。 要求如下: (1)熟悉并分析uc/os操作系统 (2)设计并实现一个简单的文件系统 (3)可以是存放在内存的虚拟文件系统,也可以是存放在磁盘的实际文件系统 (4)编写测试代码,测试对文件的相关操作:建立,读写等 课程设计目的 操作系统课程主要讲述的内容是多道操作系统的原理与技术,与其它计算机原理、编译原理、汇编语言、计算机网络、程序设计等专业课程关系十分密切。 本课程设计的目的综合应用学生所学知识,建立系统和完整的计算机系统概念,理解和巩固操作系统基本理论、原理和方法,掌握操作系统开发的基本技能。 I.uC/OS操作系统简介 μC/OS-II是一种可移植的,可植入ROM的,可裁剪的,抢占式的,实时多任务操作系统内核。它被广泛应用于微处理器、微控制器和数字信号处理器。 μC/OS 和μC/OS-II 是专门为计算机的嵌入式应用设计的,绝大部分代码是用C语言编写的。CPU 硬件相关部分是用汇编语言编写的、总量约200行的汇编语言部分被压缩到最低限度,为的是便于移植到任何一种其它的CPU 上。用户只要有标准的ANSI 的C交叉编译器,有汇编器、连接器等软件工具,就可以将μC/OS-II嵌入到开发的产品中。μC/OS-II 具有执行效率高、占用空间小、实时性能优良和可扩展性强等特点,最小内核可编译至2KB 。μC/OS-II 已经移植到了几乎所有知名的CPU 上。 严格地说uC/OS-II只是一个实时操作系统内核,它仅仅包含了任务调度,任务管理,时间管理,内存管理和任务间的通信和同步等基本功能。没有提供输入输出管理,文件系统,网络等额外的服务。但由于uC/OS-II良好的可扩展性和源码开放,这些非必须的功能完全 可以由用户自己根据需要分别实现。 uC/OS-II目标是实现一个基于优先级调度的抢占式的实时内核,并在这个内核之上提供最基本的系统服务,如信号量,邮箱,消息队列,内存管理,中断管理等。 uC/OS操作系统的组成 μC/OS-II可以大致分成核心、任务处理、时间处理、任务同步与通信,CPU的移植等5个部分。如下图:

操作系统的进程调度 实验报告

《计算机操作系统2》实验报告 实验一题目:操作系统的进程调度 姓名:学号:12125807 实验日期:2014.12 实验要求: 1.设计一个有n个进程工行的进程调度程序。每个进程由一个进程控制块(PCB)表示。 进程控制块通常应包含下述信息:进程名、进程优先数、进程需要运行的时间、占用CPU的时间以及进程的状态等,且可按调度算法的不同而增删。 2.调度程序应包含2~3种不同的调度算法,运行时可任意选一种,以利于各种算法的分 析比较。 3.系统应能显示或打印各进程状态和参数的变化情况,便于观察诸进程的调度过程 实验目的: 1.进程是操作系统最重要的概念之一,进程调度又是操作系统核心的主要内容。本实习要 求学生独立地用高级语言编写和调试一个简单的进程调度程序。调度算法可任意选择或自行设计。例如,简单轮转法和优先数法等。本实习可加深对于进程调度和各种调度算法的理解。 实验内容: 1.编制和调试示例给出的进程调度程序,并使其投入运行。 2.自行设计或改写一个进程调度程序,在相应机器上调试和运行该程序,其功能应该不亚 于示例。 3.直观地评测各种调度算法的性能。 示例: 1.题目 本程序可选用优先数法或简单轮转法对五个进程进行调度。每个进程处于运行R(run)、就绪W(wait)和完成F(finish)三种状态之一,并假设起始状态都是就绪状态W。为了便于处理,程序进程的运行时间以时间片为单位计算。各进程的优先数或轮转时间片数、以及进程需要运行的时间片数,均由伪随机数发生器产生。 进程控制块结构如下:

PCB 进程标识数 链指针 优先数/轮转时间片数 占用CPU时间片数 进程所需时间片数 进程状态 进程控制块链结构如下: 其中:RUN—当前运行进程指针; HEAD—进程就绪链链首指针; TAID—进程就绪链链尾指针。 2.算法与框图 (1) 优先数法。 进程就绪链按优先数大小从高到低排列,链首进程首先投入运行。每过一个时间片,运行进程所需运行的时间片数减1,说明它已运行了一个时间片,优先数也减3,理由是该进程如果在一个时间片中完成不了,优先级应该降低一级。接着比较现行进程和就绪链链首进程的优先数,如果仍是现行进程高或者相同,就让现行进程继续进行,否则,调度就绪链链首进程投入运行。原运行进程再按其优先数大小插入就绪链,且改变它们对应的进程状态,直至所有进程都运行完各自的时间片数。 (2) 简单轮转法。 进程就绪链按各进程进入的先后次序排列,进程每次占用处理机的轮转时间按其重要程度登入进程控制块中的轮转时间片数记录项(相当于优先数法的优先数记录项位置)。每过一个时间片,运行进程占用处理机的时间片数加1,然后比较占用处理机的时间片数是否与该进程的轮转时间片数相等,若相等说明已到达轮转时间,应将现运行进程排到就绪链末尾,调度链首进程占用处理机,且改变它们的进程状态,直至所有进程完成各自的时间片。(3) 程序框图如下图所示。

简单网页制作实验总结报告

《大学计算机基础》 实验报告 专业名称: 电子商务2班 学号: xxxxxxxxxxx 姓名: x x 指导教师: x x 2011年12月24日

目录 第一章网站主题设计说明 (1) 1.1 主题内容 (1) 1.2 设计思路 (1) 第二章网站内容设计 (2) 1.1 链接1标题 (2) 1.2 链接2标题 (2) 1.3 flash制作说明 (2) 第三章网站技术难点 (3) 第四章心得体会..................................... ..... ......................... (4)

第一章网站主题设计说明 1.1 主题内容 (1) 网站主题为“四季の花”,包括春夏秋冬四个季节的比较典型的花朵及有关花的诗句,色彩缤纷,十分艳丽夺目。 1.2 设计思路 (2) 大多网站都设计的关于音乐,影视,购物等非常热门的东西,本站设计的主题是花,能让人们在闲下来的时候看看花,品品诗歌,所以做有关花的网页是个不错的选择。同时,让人们分清楚春夏秋冬都各有什么典型的花。

第二章网站内容设计 1.1链接1标题:春の花 春天是生命的季节,在这个季节里,万物复苏。所以就找了虞美人,桃花,牡丹,以及海棠花来作为春天的代表。同时配有与这些花有关的诗句。 1.2 链接2标题:夏の花 夏天充满了激情与阳光,我找了兰花,荷花,百合花等来代表这个季节,色彩艳丽,十分醒目夺人。 1.3 链接3标题:秋の花 大丽花,菊花,月季和牡丹花都竞相出现在本网页,色彩缤纷,赏心悦目。 1.4 链接4标题:冬の花 蝴蝶兰,水仙,迎春花,梅花是冬季的代表,他们刻画了一副傲立冬天的坚强的姿态。

实时操作系统报告

实时操作系统课程实验报告 专业:通信1001 学号:3100601025 姓名:陈治州 完成时间:2013年6月11日

实验简易电饭煲的模拟 一.实验目的: 掌握在基于嵌入式实时操作系统μC/OS-II的应用中,基于多任务的模式的编程方法。锻炼综合应用多任务机制,任务间的通信机制,内存管理等的能力。 二.实验要求: 1.按“S”开机,系统进入待机状态,时间区域显示当前北京时间,默认模式“煮饭”; 2.按“C”选择模式,即在“煮饭”、“煮粥”和“煮面”模式中循环选择; 3.按“B”开始执行模式命令,“开始”状态选中,时间区域开始倒计时,倒计时完成后进入“保温”状态,同时该状态显示选中,时间区域显示保温时间; 4.按“Q”取消当前工作状态,系统进入待机状态,时间区域显示北京时间,模式为当前模式; 5.按“X”退出系统,时间区域不显示。 6.煮饭时长为30,煮粥时长为50,煮面时长为40. 三.实验设计: 1.设计思路: 以老师所给的五个程序为基础,看懂每个实验之后,对borlandc的操作有了大概的认识,重点以第五个实验Task_EX为框架,利用其中界面显示与按键扫描以及做出相应的响应,对应实现此次实验所需要的功能。 本次实验分为界面显示、按键查询与响应、切换功能、时钟显示与倒计时模块,综合在一起实验所需功能。 2.模块划分图: (1)界面显示: Main() Taskstart() Taskstartdispinit() 在TaskStartDispInit()函数中,使用PC_DispStr()函数画出界面。

(2)按键查询与响应: Main() Taskstart() 在TaskStart()函数中,用if (PC_GetKey(&key) == TRUE)判断是否有按键输入。然后根据key 的值,判断输入的按键是哪一个;在响应中用switch语句来执行对应按键的响应。 (3)切换功能: l计数“C”按 键的次数 M=l%3 Switch(m) M=0,1,2对应于煮饭,煮粥,煮面,然后使用PC_DispStr()函数在选择的选项前画上“@”指示,同时,在其余两项钱画上“”以“擦出”之前画下的“@”,注意l自增。 四.主要代码: #include "stdio.h" #include "includes.h" #include "time.h" #include "dos.h" #include "sys/types.h" #include "stdlib.h" #define TASK_STK_SIZE 512 #define N_TASKS 2 OS_STK TaskStk[N_TASKS][TASK_STK_SIZE]; OS_STK TaskStartStk[TASK_STK_SIZE]; INT8U TaskData[N_TASKS];

操作系统实验报告(进程调度算法)

操作系统实验报告(进程调度算法)

实验1 进程调度算法 一、实验内容 按优先数调度算法实现处理器调度。 二、实验目的 在采用多道程序设计的系统中,往往有若干个进程同时处于就绪状态。当就绪进程个数大于处理器数时,就必须依照某种策略来决定哪些进程优先占用处理器。本实验模拟在单处理器情况下的处理器调度,帮助学生加深了解处理器调度的工作。 三、实验原理 设计一个按优先数调度算法实现处理器调度的程序。 (1) 假定系统有五个进程,每一个进程用一个进程控制块PCB来代表,进程控制块的格式为: 进程名 指针 要求运行时 间 优先数

状态 其中,进程名——作为进程的标识,假设五个进程的进程名分别为P1,P2,P3,P4,P5。 指针——按优先数的大小把五个进程连成队列,用指针指出下一个进程的进程控制块的首地址,最后一个进程中的指针为“0”。 要求运行时间——假设进程需要运行的单位时间数。 优先数——赋予进程的优先数,调度时总是选取优先数大的进程先执行。 状态——可假设有两种状态,“就绪”状态和“结束”状态。五个进程的初始状态都为“就绪”,用“R”表示,当一个进程运行结束后,它的状态为“结束”,用“E”表示。 (2) 在每次运行你所设计的处理器调度程序之前,为每个进程任意确定它的“优先数”和“要求运行时间”。 (3) 为了调度方便,把五个进程按给定的优先数从大到小连成队列。用一单元指出队首进程,用指针指出队列的连接情况。例: 队首标志 K2

1P1 K 2 P2 K 3 P3 K 4 P4 K 5 P5 0 K4K5K3K1 2 3 1 2 4 1 5 3 4 2 R R R R R PC B1 PC B2 PC B3 PC B4 PC B5 (4) 处理器调度总是选队首进程运行。采用动态改变优先数的办法,进程每运行一次优先数就减“1”。由于本实验是模拟处理器调度,所以,对被选中的进程并不实际的启动运行,而是执行: 优先数-1 要求运行时间-1 来模拟进程的一次运行。 提醒注意的是:在实际的系统中,当一个进程被选中运行时,必须恢复进程的现场,让它占有处理器运行,直到出现等待事件或运行结束。在这里省去了这些工作。

操作系统实验报告(进程的创建)(DOC)

实验题目进程的创建小组合作否姓名班级学号 一、实验目的 1、了解进程的创建。 2、了解进程间的调用以及实现。 3、分析进程竞争资源的现象,学习解决互斥的方法。 4、加深对进程概念的理解,认识并发执行的本质。 二.实验环境 Windows 系统的计算机一台,安装了Linux虚拟机 三、实验内容与步骤 1、fork()系统调用的使用例子 程序代码: #include #include #include int glob=3; int main(void) { pid_t pid;int loc=3; printf("before fork();glod=%d,loc=%d.\n",glob,loc); if((pid=fork())<0) { printf("fork() error. \n"); exit(0); } else if(pid==0) { glob++; loc--; printf("child process changes glob and loc: \n"); } else

wait(0); printf("parent process doesn't change the glob and loc:\n"); printf("glob=%d,loc=%d\n",glob,loc); exit(0); } 运行结果: 2、理解vofork()调用: 程序代码: #include #include #include int glob=3; int main(void) { pid_t pid; int loc=3; if((pid=vfork())<0) { printf("vfork() error\n"); exit(0); } else if(pid==0) { glob++; loc--; printf("child process changes the glob and loc\n"); exit(0); } else printf ("parent process doesn't change the glob and loc\n"); printf("glob=%d,val=%d\n",glob,loc);

网页制作实验报告

网页制作实验报告 页制作实验报告 实验一:站点设置 一、实验目的及要求 本实例是经过“站点定义为”对话框中的“高级”选项卡创建一具新站点。 二、仪器用具 1、生均一台多媒体电脑,组建内部局域,同时接入国际互联。 2、安装windows xp操作系统;建立iis服务器环境,支持asp。 3、安装页三剑客(dreamweaver mx;flash mx;fireworks mx)等页设计软件; 三、实验原理 经过“站点定义为”对话框中的“高级”选项卡创建一具新站点。 四、实验办法与步骤 1)执行“站点\治理站点”命令,在弹出的“治理站点”对话框中单击“新建”按钮,在弹出的快捷菜单中挑选“站点”命令。 2)在弹出的“站点定义为”对话框中单击“高级”选项卡。 3)在“站点名称”文本框中输入站点名称,在“默认文件夹”文本框中挑选所创建的站点文件夹。在“默认图象文件夹”文本框中挑选存放图象的文件夹,完成后单击“确定”按钮,返回“治理站点”对话框。 4)在“治理站点”对话框中单击“完成”按钮,站点创建完毕。 五、实验结果 六、讨论与结论 实验开始之前要先建立一具根文件夹,在实验的过程中把站点存在自己建的文件夹里,如此才干使实验条理化,别至于在实验后寻别到自己的站点。在实验过程中会浮现一些选项,计算机普通会有默认的挑选,最后别要去更改,假如要更改要先充分了解清晰该选项的含义,以及它会造成的效果,否则会使实验的结果失真。实验前先熟悉好操作软件是做好该实验的关键。 实验二:页面图像设置 一、实验目的及要求: 本实例的目的是设置页面的背景图像,并创建鼠标经过图像。 二、仪器用具 1、生均一台多媒体电脑,组建内部局域,同时接入国际互联。 2、安装windows xp操作系统;建立iis服务器环境,支持asp。 3、安装页三剑客(dreamweaver mx;flash mx;fireworks mx)等页设计软件; 4、安装acdsee、photoshop等图形处理与制作软件; 5、其他一些动画与图形处理或制作软件。 三、实验原理 设置页面的背景图像,并创建鼠标经过图像。 四、实验办法与步骤 1) 在“页面属性”对话框中设置页面的背景图像。 2) 在页面文档中单击“”插入鼠标经过图像。 五、实验结果

山东大学操作系统实验报告4进程同步实验

山东大学操作系统实验报告4进程同步实验

计算机科学与技术学院实验报告 实验题目:实验四、进程同步实验学号: 日期:20120409 班级:计基地12 姓名: 实验目的: 加深对并发协作进程同步与互斥概念的理解,观察和体验并发进程同步与互斥 操作的效果,分析与研究经典进程同步与互斥问题的实际解决方案。了解 Linux 系统中 IPC 进程同步工具的用法,练习并发协作进程的同步与互斥操作的编程与调试技术。 实验内容: 抽烟者问题。假设一个系统中有三个抽烟者进程,每个抽烟者不断地卷烟并抽烟。抽烟者卷起并抽掉一颗烟需要有三种材料:烟草、纸和胶水。一个抽烟者有烟草,一个有纸,另一个有胶水。系统中还有两个供应者进程,它们无限地供应所有三种材料,但每次仅轮流提供三种材料中的两种。得到缺失的两种材料的抽烟者在卷起并抽掉一颗烟后会发信号通知供应者,让它继续提供另外的两种材料。这一过程重复进行。请用以上介绍的 IPC 同步机制编程,实现该问题要求的功能。 硬件环境: 处理器:Intel? Core?i3-2350M CPU @ 2.30GHz ×4 图形:Intel? Sandybridge Mobile x86/MMX/SSE2 内存:4G 操作系统:32位 磁盘:20.1 GB 软件环境: ubuntu13.04 实验步骤: (1)新建定义了producer和consumer共用的IPC函数原型和变量的ipc.h文件。

(2)新建ipc.c文件,编写producer和consumer 共用的IPC的具体相应函数。 (3)新建Producer文件,首先定义producer 的一些行为,利用系统调用,建立共享内存区域,设定其长度并获取共享内存的首地址。然后设定生产者互斥与同步的信号灯,并为他们设置相应的初值。当有生产者进程在运行而其他生产者请求时,相应的信号灯就会阻止他,当共享内存区域已满时,信号等也会提示生产者不能再往共享内存中放入内容。 (4)新建Consumer文件,定义consumer的一些行为,利用系统调用来创建共享内存区域,并设定他的长度并获取共享内存的首地址。然后设定消费者互斥与同步的信号灯,并为他们设置相应的初值。当有消费进程在运行而其他消费者请求时,相应的信号灯就会阻止它,当共享内存区域已空时,信号等也会提示生产者不能再从共享内存中取出相应的内容。 运行的消费者应该与相应的生产者对应起来,只有这样运行结果才会正确。

网页制作实验报告

北京理工大学珠海学院课程设计说明书 _2013_—_2014_学年第_1_学期 题目: 《Web应用开发课程设计》 学院:计算机学院 专业班级: 11级软件工程3班 学号: 110202031031 学生姓名:蒋征 指导教师:魏志军 成绩: 时间: 2014/1/5 2014年 1 月 5 日

摘要 本次作品是一个IT技术交流论坛,实现论坛的基本功能,注册、登录、发帖、浏览和回帖。 论坛分三个分板块,网页、C#和JA V A,纵向层次也是三层,主页、板块页和帖子页。网站使用JavaScript实现动态页面。 关键词:计算机技术交流社区JavaScript 网页 I

目录 摘要 ............................................. I 目录 ............................................. II 1 网站结构和布局 (1) 1.1 网站结构 (1) 1.1.1 总体结构 (1) 1.1.2 横向链接结构 (2) 1.2 页面布局 (3) 1.2.1 主页 (3) 1.2.2 分版页面 (6) 1.2.3 帖子页面 (6) 2 技术应用 (8) 2.1 逻辑设计 (8) 2.1.1 HTML和CSS设计 (8) 2.1.2 JavaScript设计 (10) 参考文献 (13) 心得体会 (14) I

教师评语 (15) 成绩评定表 (16) 课程设计答辩记录表 (17) II

1 网站结构 1.1主体结构 1.1.1总结构 网站是以技术交流社区为主题的论坛型网站。 这个网站是按树形结构设计如图1-1-1,页面种类共分三层,分别是主页,分主题页还有就是内容页。 主页连向三个分主题分区页面,分别是MTHL板块,C#板块还有就是JAVA 板块。 主题分区页面下面是内容帖子。 图1-1-1网页关系 1

嵌入式实时操作系统实验报告

嵌入式实时操作系统实验报告 任务间通信机制的建立 系别计算机与电子系 专业班级***** 学生姓名****** 指导教师 ****** 提交日期 2012 年 4 月 1 日

一、实验目的 掌握在基于嵌入式实时操作系统μC/OS-II的应用中,任务使用信号量的一般原理。掌握在基于优先级的可抢占嵌入式实时操作系统的应用中,出现优先级反转现象的原理及解决优先级反转的策略——优先级继承的原理。 二、实验内容 1.建立并熟悉Borland C 编译及调试环境。 2.使用课本配套光盘中第五章的例程运行(例5-4,例5-5,例5-6),观察运行结果,掌握信号量的基本原理及使用方法,理解出现优先级反转现象的根本原因并提出解决方案。 3.试编写一个应用程序,采用计数器型信号量(初值为2),有3个用户任务需要此信号量,它们轮流使用此信号量,在同一时刻只有两个任务能使用信号量,当其中一个任务获得信号量时向屏幕打印“TASK N get the signal”。观察程序运行结果并记录。 4. 试编写一个应用程序实现例5-7的内容,即用优先级继承的方法解决优先级反转的问题,观察程序运行结果并记录。 5.在例5-8基础上修改程序增加一个任务HerTask,它和YouTask一样从邮箱Str_Box里取消息并打印出来,打印信息中增加任务标识,即由哪个任务打印的;MyTask发送消息改为当Times为5的倍数时才发送,HerTask接收消息采用无等待方式,如果邮箱为空,则输出“The mailbox is empty”, 观察程序运行结果并记录。 三、实验原理 1. 信号量 μC/OS-II中的信号量由两部分组成:一个是信号量的计数值,它是一个16位的无符号整数(0 到65,535之间);另一个是由等待该信号量的任务组成的等待任务表。用户要在OS_CFG.H中将OS_SEM_EN开关量常数置成1,这样μC/OS-II 才能支持信号量。

操作系统原理-进程调度实验报告

一、实验目的 通过对进程调度算法的设计,深入理解进程调度的原理。 进程是程序在一个数据集合上运行的过程,它是系统进行资源分配和调度的一个独立单位。 进程调度分配处理机,是控制协调进程对CPU的竞争,即按一定的调度算法从就绪队列中选中一个进程,把CPU的使用权交给被选中的进程。 进程通过定义一个进程控制块的数据结构(PCB)来表示;每个进程需要赋予进程ID、进程到达时间、进程需要运行的总时间的属性;在RR中,以1为时间片单位;运行时,输入若干个进程序列,按照时间片输出其执行序列。 二、实验环境 VC++6.0 三、实验内容 实现短进程优先调度算法(SPF)和时间片轮转调度算法(RR) [提示]: (1) 先来先服务(FCFS)调度算法 原理:每次调度是从就绪队列中,选择一个最先进入就绪队列的进程,把处理器分配给该进程,使之得到执行。该进程一旦占有了处理器,它就一直运行下去,直到该进程完成或因发生事件而阻塞,才退出处理器。 将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理,是一种最普遍和最简单的方法。它优先考虑在系统中等待时间最长的作业,而不管要求运行时间的长短。 按照就绪进程进入就绪队列的先后次序进行调度,简单易实现,利于长进程,CPU繁忙型作业,不利于短进程,排队时间相对过长。 (2) 时间片轮转调度算法RR

原理:时间片轮转法主要用于进程调度。采用此算法的系统,其程序就绪队列往往按进程到达的时间来排序。进程调度按一定时间片(q)轮番运行各个进程. 进程按到达时间在就绪队列中排队,调度程序每次把CPU分配给就绪队列首进程使用一个时间片,运行完一个时间片释放CPU,排到就绪队列末尾参加下一轮调度,CPU分配给就绪队列的首进程。 固定时间片轮转法: 1 所有就绪进程按 FCFS 规则排队。 2 处理机总是分配给就绪队列的队首进程。 3 如果运行的进程用完时间片,则系统就把该进程送回就绪队列的队尾,重新排队。 4 因等待某事件而阻塞的进程送到阻塞队列。 5 系统把被唤醒的进程送到就绪队列的队尾。 可变时间片轮转法: 1 进程状态的转换方法同固定时间片轮转法。 2 响应时间固定,时间片的长短依据进程数量的多少由T = N × ( q + t )给出的关系调整。 3 根据进程优先级的高低进一步调整时间片,优先级越高的进程,分配的时间片越长。 多就绪队列轮转法: (3) 算法类型 (4)模拟程序可由两部分组成,先来先服务(FCFS)调度算法,时间片轮转。流程图如下:

操作系统实验_实验1

广州大学学生实验报告 开课学院及实验室:计算机科学与工程实验室 2015年11月11日 实验课 操作系统成绩 程名称 实验项 进程管理与进程通信指导老师陈康民目名称 (***报告只能为文字和图片,老师评语将添加到此处,学生请勿作答***) 进程管理 (一)进程的创建实验 一、实验目的 1、掌握进程的概念,明确进程的含义 2、认识并了解并发执行的实质 二、实验内容 1、编写一段程序,使用系统调用fork( )创建两个子进程。当此程序运行时,在系统中有一 个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示'a',子进程分别显示字符'b'和字符'c'。试观察记录屏幕上的显示结果,并分析原因。 2、修改上述程序,每一个进程循环显示一句话。子进程显示'daughter …'及'son ……', 父进程显示'parent ……',观察结果,分析原因。 三、实验步骤 1、编写一段程序,使用系统调用fork( )创建两个子进程。 代码: #include main( ) { int p1,p2; while((p1=fork( ))= = -1); /*创建子进程p1*/ if (p1= =0) putchar('b'); else { while((p2=fork( ))= = -1); /*创建子进程p2*/ if(p2= =0) putchar('c'); else putchar('a'); } } 运行结果:

bca,bac, abc ,……都有可能。 2、修改上述程序,每一个进程循环显示一句话。子进程显示'daughter …'及'son ……',父进程显示'parent ……',观察结果,分析原因。 代码:#include main( ) { int p1,p2,i; while((p1=fork( ))= = -1); /*创建子进程p1*/ if (p1= =0) for(i=0;i<10;i++) printf("daughter %d\n",i); else { while((p2=fork( ))= = -1); /*创建子进程p2*/ if(p2= =0) for(i=0;i<10;i++) printf("son %d\n",i); else for(i=0;i<10;i++) printf("parent %d\n",i); } } 结果:

Dreamweaver网页制作实训报告

广西科技大学鹿山学院 课程设计报告 课程名称:网页制作课程设计 课题名称:我的梦幻网 指导教师:韦灵 班级:计软141班 姓名:邓康言 学号: 20141409 成绩评定:

指导教师签字: 2015 年 07 月 07 日 目录 一. 网页制作课程设计目的 (3) 二. 1.实训意义: (3) 2.实训目的: (3) 二、课程设计内容 (5) 1.网站主题《我的梦幻网》 (5) 2.网站材料 (5) 3.网站规划 (5) 三、课程设计步骤 (6) 四、网站各模块实现 (7) 1.我的梦幻网模块功能: (7) 2.背景故事模块功能: (8) 3.宠物介绍模块功能: (9) 4.门派介绍模块功能 (10) 5.装备模块功能介绍: (11) 6.人物模块功能介绍: (12)

7.地图介绍模块功能: (14) 7.我的梦幻模块功能: (15) 五、总结及心得体会 (17) 一.网页制作课程设计目的 1.实训意义: 本次网页设计与制作实训是网页教学过程中重要的实践性教学环节.它是根据网页教学计划的要求.在教师的指导下进行网页制作专业技能的训练,培养学生综合运用理论知识分析和解决实际问题的能力,实现由理论知识向操作技能的培养过程.因此加强实践教学环节,搞好实训教学,对实现本专业的培养目标,提高学生的综合素质有着重要的作用. 2.实训目的: 通过综合实训进一步巩固,深化和加强我的理论知识 (1) 掌握规划网站的内容结构,目录结构,链接结构的方法。 (2) 熟练掌握网页制作软件Dreamweaver8和基本操作和使

用。 (3) 掌握页面的整体控制和头部内容设置的方法。 (4) 熟练掌握网页页面布局的各种方法。 (5) 熟练掌握在网页中输入,设置标题和正文文字的方法。 (6) 熟练掌握在网页中插入图像,Flash动画和背景音乐的方法。 (7) 熟练建立各种形式的超级链接的方法。 (8) 掌握表单网页制作方法。 (9) 掌握网页特效制作方法。 (10) 掌握网站测试的方法。 2. 训练和培养我获取信息和处理信息的能力,充分培养和提高动手能力,学会通过网站、书籍、素材等方式收集所需的文字资料、图像资料、Flash动画和网页特效等。 3. 培养我运用所学的理论知识和技能解决网站开发过程中所遇到的实际问题的能力及基本工作素质。 4. 培养我的理论联系实际的工作作风,严肃认真的科学态度以及独立工作的能力,树立自信心。

相关文档
最新文档