《化工原理》第3章 机械分离 复习题

《化工原理》第3章 机械分离 复习题
《化工原理》第3章 机械分离 复习题

《化工原理》第三章“机械分离”复习题

一、填空题

1.(2分)悬浮液属液态非均相物系,其中分散相是指______;分散介质是指__________。

***答案*** 固体微粒,包围在微粒周围的液体

2.(3分)悬浮在静止流体中的固体微粒在重力作用下,沿重力方向作自由沿降时,会受到_____________三个力的作用。当此三个力的______________时,微粒即作匀速沉降运动。此时微粒相对于流体的运动速度,称为____________ 。

***答案*** 重力、阻力、浮力;代数和为零;沉降速度

3.(2分)沉降操作是使悬浮在流体中的固体微粒,在_________力或__________力的作用下,沿受力方向发生运动而___________ ,从而与流体分离的过程。

***答案*** 重;离心;沉积

4.(3分)气体的净制按操作原理可分为________,_______,______.旋风分离器属_____________ 。***答案*** 重力沉降、离心沉降、过滤;离心沉降。

5.(2分)过滤是一种分离悬浮在____________________的操作。

***答案*** 液体或气体中固体微粒

6.(2分)悬浮液中加入助滤剂进行过滤的目的是__________________ __________________。

***答案*** 在滤饼中形成骨架,使滤渣疏松,孔隙率加大,滤液得以畅流

7.(2分)过滤阻力由两方面因素决定:一方面是滤液本身的性质,即其_________;另一方面是滤渣层本身的性质,即_______ 。***答案*** μ;γL

8.(3分)某板框压滤机的框的尺寸为:长×宽×厚=810×810×25 mm,若该机有10块框,其过滤面积约为_______________ m2。***答案*** 13.12。

9.(3分)转鼓真空过滤机,转鼓每旋转一周,过滤面积,的任一部分都顺次经历___________________________________等五个阶段。

***答案*** 过滤、吸干、洗涤、吹松、卸渣

10.(3分)离心分离因数是指_________________________________。为了提高离心机的分离效率,通常使离心机的___________增高,而将它的________减少。

***答案***物料在离心力场中所受的离心力与重力之比; 转速;直径适当。

二、选择题

1.(2分)欲提高降尘宝的生产能力,主要的措施是()。***答案*** C

A. 提高降尘宝的高度;

B. 延长沉降时间;

C. 增大沉降面积

2.(2分)为使离心机有较大的分离因数和保证转鼓有关足够的机械强度,应采用()的转鼓。***答案*** B

A. 高转速、大直径;

B. 高转速、小直径;

C. 低转速、大直径;

D. 低转速,小直径;

3.(2分)旋风分离器的临界粒径是指能完全分离出来的()粒径。*答案* A

A. 最小;

B. 最大;

C. 平均;

4.(2分)要使微粒从气流中除去的条件,必须使微粒在降尘室内的停留时间()微粒的沉降时间。***

A. ≥;

B. ≤;

C. <;

D. >答案*** A

5.(2分)板框过滤机采用横穿法洗涤滤渣时,若洗涤压差等于最终过滤压差,洗涤液粘度等于滤液粘度,则其洗涤速率为过滤终了速率的()倍。***答案*** C

A. 1;

B. 0.5;

C. 0.25

三、问答题

1.(8分)为什么旋风分离器的直径D不宜太大?当处理的含尘气体量大时,采用旋风分高器除尘,要达到工业要求的分离效果,应采取什么措施?

答案旋风分离器的临界直径d=(9μB/πN u0ρ)0.5,可见D↑时,B也↑(B=D/4),此时d也↑,则分离效率

η↑,为提高分离效率,不宜采用D太大的分离器。为果气体处理大时,可采用几个小直径的旋风分离器并联操作,这样则可达到要求的分离效果。

2.(8分)为什么板框压滤机洗涤速率近似等于过滤终了时过滤速率的四分之一倍?

***答案***

由于洗涤液通过两层过滤介质和整层滤渣层的厚度,而过滤终了时滤液只通过一层过滤介质和滤渣层厚度的一半,即洗涤液流动距离比滤液长1倍,其阻力也就大1倍,故(dv/dq)w就慢了0.5倍;又因洗涤液的流通面积此滤液的流通面积少1倍,这样(dv/dq)w又慢了0.5。基于上述两个原因,故当洗涤压差与过滤终了时压差相同时,且洗涤液的粘度与滤液粘度相近时,则(dV/dθ)w≈(1/4)(d V/dθ)

四、计算题

1.(16分)某厂准备建一个降尘室来净化常压,温度为40℃的含尘空气流,气体进入降尘室的流速保持在0.15m/s,而微粒在室内的沉降速度为0.025m/s,现依厂房面积分配,降尘室只允许做成宽为3m,高为2m。问:(1)降尘室的最小长度应为多少m?(2)降尘室的最大生产能力为多少标准m3/h ?(3)若因厂房面积有限,降尘室的长度仅允许为你计算的最小长度的一半,你认为应采取计什么措施来完成此净制任务?

答案(1)求最小长度L ∵(L/u t)≥(H/u0 )∴L≥(u t H/u0)=0.15×2/0.025=12m

(2)最大生产能力V标V实=A0u0=Lbu0=12×3×0.025=0.9m3/s=3240m3/h

V标=V实T标/T实=3240×273/(40+273)=2826m3/h

(3)若L只能为原来的0.5时,为完成同样的生产任务,可在降尘室中间加一隔板。

2.(16分)用一板框压滤机在147.1kN/m2(表压)下恒压过滤某悬浮液,要求在1.5小时内获得4m3的滤液,若过滤介质阻力忽略,滤渣为不可压缩,并测得过滤常数K=1.6×10-5m2/s,问:(1)需要过滤面积多少m2?(2)若选用滤框尺寸:长×宽×厚=635×635×25mm,需滤框多少块?(3)过滤完毕,用清水在与过滤压力相同的情况下洗涤30分钟,洗水的消耗量为多少m3?(4)若把压力加倍,其它情况不变过滤1.5小时,可得滤液多少m3?

***答案*** (1)求过滤面积∵V2=KA2θ ∴A=V(1/Kθ)0.5 =4×[1/(1.6×10-5×1.5×3600)]0.5=13.6m2

(2)求框数;13.6/(0.635×0.635×2)=17块

(3)求洗水量;(dV/dθ)W=V/8θ=4/(8×1.5)=0.33m3/h ∴V W=(dV/dθ)W×θW=0.33×30/60=0.17m3

(4)求滤液量

(K2)/(K1)=(△P2)/(△P1)=2;V2=V1 × (2)1.5=4( 2) 1.5=5.66 m3

3.(16分)用一板框压滤机在147.1kN/m2(表压)下恒压过滤某悬浮液,要求在2小时内得滤液8m3,若过滤介质阻力可忽略,滤渣不可压缩,过滤常数K=1.65×10-5m2/s,问:(1)现有一板框压滤机,滤框的规格为长×宽×厚=810×810×25mm,共框18块,是否合用?(忽略角孔占去面积)。(2)过滤完毕,用清水0.25m3在与过滤相同压力下进行洗涤,问洗涤用了多少时间?

答案(1)现有板框压滤机面积是否够用?

V实=0.81×0.81×18×2=23.62m3

V2=KA2θ;A计=V(1/Kθ)0.5=8[1/(1.65×10-5×2×3600)]0.5 =23.2 m3

A实>A计,可满足要求

(2)求θW(dV/dθ)W=(1/4)(dV/dq)=V/8θ =8/(8×2)=0.5m3/h

θW=V W/(dV/dθ)W =0.25/0.5=0.5h

4.(18分)某厂用一台规格为635×635×25mm板框压滤机(共25个框)来恒压过滤某悬浮液,经过滤52min 后,再用清水洗涤滤渣,洗水温度,压力与过滤时相同,而其体积为滤液体积的8%,又已知卸渣,清理和装合等辅助时间为30min,过滤常数K=1.7×10-5 m2/s,试求不考滤过滤介质阻力时,该机的生产能力为多少滤液(m3/h)?

答案(1)过滤52min时的滤液量A=0.635×0.635×25×2=20.16m2

V2=KA2θ=1.7×10-5×(20.16)2×52×60=215.57;V=14.68m3

(2)(dV/dθ)W=(1/4)(dV/dθ)=V/8q=14.68/(8×52) =0.0353m3/min

θW=V W/(dV/dθ)W =0.08×14.68/0.0353 =33.27min

(3)过滤机的生产能力θ总=52+33.27+30=115.27min;生产能力=14.68/(115.27/60)=7.64m3/h

5.(20分)在实验室用一片过滤面积为0.1m2的滤叶对某种颗粒在水中悬浮液进行试验,过滤压强差为67kN/m2。过滤5分钟后得滤液1升,又过滤5分钟得滤液0.6升。若再过滤5分钟,可再得滤液若干升?答案为要了解滤液量随过滤时间而变化的关系,需先求出恒压下的过滤常数K及qe。恒压过滤方程式亦可写成如下形式,即: q2+2q e q=Kθ

将已测得的两组数据代入上式,即(1×10-3/0.1)2+2q e(1×10-3/0.1)=K(5×60)

及(1.6×10-3/0.1)2+2q e((1.6×10-3/0.1)=K(10×60)

解此方程组得: q e=7×10-3m; K=8×10 m2/s;

则△p=67KN/m2时的过滤方程式为: q2+2×7×10 q=8×10-7 将θ=(5+5+5)×60=900s代入上式,即q2+2×7×10-3q=8×10-6×(900); 解得q=2.1×10-2m V=(2.1×10-2)×0.1=2.1×10-3m3=2.1升

由此可知,若再过滤5分钟,可再得滤液量为:[2.1-(1+0.6)]=0.5升

(完整版)化工原理概念汇总

化工原理知识 绪论 1、单元操作:(Unit Operations): 用来为化学反应过程创造适宜的条件或将反应物分离制成纯净品,在化工生产中共有的过程称为单元操作(12)。 单元操作特点: ①所有的单元操作都是物理性操作,不改变化学性质。②单元操作是化工生产过程中共有的操作。③单元操作作用于不同的化工过程时,基本原理相同,所用设备也是通用的。单元操作理论基础:(11、12) 质量守恒定律:输入=输出+积存 能量守恒定律:对于稳定的过,程输入=输出 动量守恒定律:动量的输入=动量的输出+动量的积存 2、研究方法: 实验研究方法(经验法):用量纲分析和相似论为指导,依靠实验来确定过程变量之间的关系,通常用无量纲数群(或称准数)构成的关系来表达。 数学模型法(半经验半理论方法):通过分析,在抓住过程本质的前提下,对过程做出合理的简化,得出能基本反映过程机理的物理模型。(04) 3、因次分析法与数学模型法的区别:(08B) 数学模型法(半经验半理论)因次论指导下的实验研究法 实验:寻找函数形式,决定参数

第二章:流体输送机械 一、概念题 1、离心泵的压头(或扬程): 离心泵的压头(或扬程):泵向单位重量的液体提供的机械能。以H 表示,单位为m 。 2、离心泵的理论压头: 理论压头:离心泵的叶轮叶片无限多,液体完全沿着叶片弯曲的表面流动而无任何其他的流动,液体为粘性等于零的理想流体,泵在这种理想状态下产生的压头称为理论压头。 实际压头:离心泵的实际压头与理论压头有较大的差异,原因在于流体在通过泵的过程中存在着压头损失,它主要包括:1)叶片间的环流,2)流体的阻力损失,3)冲击损失。 3、气缚现象及其防止: 气缚现象:离心泵开动时如果泵壳内和吸入管内没有充满液体,它便没有抽吸液体的能力,这是因为气体的密度比液体的密度小的多,随叶轮旋转产生的离心力不足以造成吸上液体所需要的真空度。像这种泵壳内因为存在气体而导致吸不上液的现象称为气缚。 防止:在吸入管底部装上止逆阀,使启动前泵内充满液体。 4、轴功率、有效功率、效率 有效功率:排送到管道的液体从叶轮获得的功率,用Ne 表示。 效率: 轴功率:电机输入离心泵的功率,用N 表示,单位为J/S,W 或kW 。 二、简述题 1、离心泵的工作点的确定及流量调节 工作点:管路特性曲线与离心泵的特性曲线的交点,就是将液体送过管路所需的压头与泵对液体所提供的压头正好相对等时的流量,该交点称为泵在管路上的工作点。 流量调节: 1)改变出口阀开度——改变管路特性曲线; 2)改变泵的转速——改变泵的特性曲线。 2、离心泵的工作原理、过程: 开泵前,先在泵内灌满要输送的液体。 开泵后,泵轴带动叶轮一起高速旋转产生离心力。液体在此作用下,从叶轮中心被抛向 g QH N e ρ=η/e N N =η ρ/g QH N =

三相离心机的工作原理

三相离心机的工作原理 三相分离机是餐厨垃圾预处理中的关键设备,它是将垃圾中的固体和液体(油和水)要分别分开,尤其是要将油和水分开,回收的油有一定的经济价值,可以直接出售,另外残留油对后续的厌氧处理生产沼气也有抑制作用,因此要求设备要尽可能的将油分离干净。 离心机有两个转子组成,一个叫转鼓,另一个转子是螺旋卸料器(简称螺旋),转鼓高速旋转时,转鼓浆料随转鼓一同旋转,并受离心力作用,此离心力比重力大许多倍,这样固体颗粒就会从液体中分离出来,并从离心机转鼓轴心,沉降到转鼓壁上,位于转鼓的螺旋卸料器以低于转鼓的转速转动并将沉积的固体颗粒推出到出渣口,外转鼓与螺旋卸料器的差转速取决于差速器的传动比及其转速。二相密度不同的清液形成同心圆柱,较轻的液相(油)处于层,较重的液相(水)处于外层,分别通过轻重相出口排出。 原理图 转鼓

螺旋 固液分离的原理不难理解,关键是两个液相的分离,即油和水的分离。趁离心机噪声过大解体大修之际,将离心机部构造彻底了解清楚。这也就给我一个难得了解离心机部实际构造的一个机会。 螺旋大端端板相当于油水两相的相位转换器,它把螺旋部外圈的水转换到了圈,把在螺旋部位于圈的油转换到了外圈,油直接流到转鼓外侧,通过离心机下端的出油口排到油箱。

向心泵的出水原理: 水被排到大端盖外的泵腔中,如上图所示,泵腔即螺旋大端盖和大后盖的空腔,它在高速旋转,通过端盖上的筋板,相当于叶轮将水拨动旋转,旋转起的水带有压力进入向心泵。

离心机开动时,通过调节向心泵的手柄来调节进入向心泵的水量,如下图所示,旋转向心泵的入水口与水的转向角度,右下图所示进水量最大,左下图所示进水量最小。通过调节出水量,控制离心机水层的深度,将油层压缩到出油孔位置,以达到油和水的分离目的。

XGC-800型旋转式固液分离机()

编号:2010-05-235 发放号:2010-05-235 XGC型旋转式固液分离机 安装、操作、维护 说 明 书 江苏一环集团有限公司

目录 一、概述 二、型号说明 三、设备结构及工作原理 四、规格及主要技术参数 五、安装与操作 六、注意事项及维护

一、概述: XGC型旋转式固液分离机是给排水预处理成套设备主要产品之一,该设备是目前最先进的一种可以连续自动清除液体中各种形状的杂物,以固液分离为目的的分离装置,广泛应用于城填及规划小区的雨、污水的预处理;自来水厂、电厂、钢厂等地表取水口飘浮物的去除;屠宰、医药、造纸、化纤、纺织、印染等工业废水的杂物分离。二、 设备宽度(mm) 旋转式固液分离机 三、设备结构及工作原理: XGC型旋转式固液分离机主要由机架、动力传动装置、耙齿及传动链等组成。 由尼龙或不锈钢制成的特殊形耙齿,按一定次序装配在耙齿轴上,形成封闭式耙齿链,其下部安装在进水渠中,在传动系统的带动下,整个耙齿链(迎水工作面)便自下而上运动,并携带固体杂物从液体中分离出来,液体则从耙齿的栅隙中流过,整个工作过程连续进行。 由于耙齿结构设计合理,使耙齿链携带杂物到达上端反向运动时,前后相连的两排耙齿之间产生相对自清理运动,促使杂物依靠重力脱落;同时设备后部设置一对与耙齿链运动方向相反的胶板刷,以保证每排耙齿运动到该位置时都能得到彻底的刷净。 四、规格及主要技术参数: 型号XGC-800 格栅宽度(mm)800 渠宽(mm)1500 渠深(mm)5000 栅隙(mm) 5 格栅倾角(°)70 电机功率(Kw) 1.1 五、安装与操作(详见出厂图) 1.旋转式固液分离机安装时参照DL/T5018-94《水利水电工程钢闸门制造安装及验收》中拦污栅制造和安装及CJ/T3048-1995《平面格栅除污机》中有关规定进行,首先检查基础螺栓开档尺寸是否与机座孔尺寸相符,核对沟渠宽度、深度是否符合设计图纸要求,待核对正确后,方可将设备吊装于基础中去。 2.设备在安装时应注意平面位置偏差不得超过20mm,标高偏差不大于30mm。水平度小于1/1000mm,调整位置正确后将支架与预埋钢板焊牢并拧紧固定螺栓。

第三章机械分离和固体流态化

第三章机械分离和固体流态化 具有不同物理性质(如密度差别)的分散物质和连续介质所组成的物系称为非均相混合物或非均相物系。 颗粒相对于流体(静止或运动)运动的过程称为沉降分离。流体相对于固体颗粒床层运动而实现固液分离的过程称为过滤。 工业上分离非均相混合物的目的是:1、回收有价值的分散物质。2、净化分散介质以满足后继生产工业的要求。3、环境保护和安全生产。 第一节颗粒及颗粒床层的特性 ;表 单一的颗粒:1、球形颗粒体积: 面积:;比表面积: 2、非球形颗粒:体积当量直径 形状系数(又称球形度): ,任何非球形颗粒 的形状系数皆小于1。 不同粒径范围内所含粒子的个数或质量,即粒径分

布。 当使用某一号筛子时,通过筛孔的颗粒量称为筛过量,截留于筛面上的颗粒量则称为筛余量。称取各号筛面上的颗粒筛余量即得筛分分析的基础数据。 颗粒的平均直径:最常用的是平均比表面积直径: 由颗粒群堆积成的床层疏密程度可用空隙率来表示: 床层的比表面积: 壁面附近床层的空隙率总是大于床层内部的,较多的流体必然趋向近壁处流过,使床层截面上流体分布不均匀,这种现象称为壁效应。 第二节沉降过程 沉降操作是指在某种力场中利用分散相和连续相 之间的密度差异,使之发生相对运动而实现分离的操作过程。实现沉降操作的作用力可以是重力,也可以是惯性离心力。因此,沉降过程有重力沉降和离心沉降两种方式。静止流体中颗粒的沉降过程可分为两个

阶段,起初为加速段而后为等速段。 滞流区或斯托克斯定律区(10-4

第三章 机械分离与固体流态化练习题

化工原理单元练习(三) (第三章机械分离与固体流态化) 班级学号姓名 一、填空题 1、描述单个非球形颗粒的形状和大小的主要参数为、。 2、固体颗粒在气体中自由沉降时所受的力有力、力和 力。固体颗粒的自由沉降分为阶段和阶段。 3、沉降速度是指,此速度亦称为速度。 4、在斯托克斯定律区,颗粒的沉降速度与流体黏度的次方成反比,在牛顿定律区,颗粒的沉降速度与流体黏度的次方成反比。 5、降尘室的设计原则是时间大于等于时间。 6、理论上降尘室的生产能力与和有关,而与无关。 7、分离因数的定义式为。如果颗粒在离心力场内作圆周运动,其旋转半径为0.2m,切线速度为20m/s,则其分离因数为。 8、选用旋风分离器时主要依据是、、。 9、旋风分离器的分割粒径d50是。 10、描述固体颗粒床层特性的主要参数有、、 和。 11、过滤方式主要有、和。 12、板框过滤机由810m m×810m m×25mm的20个框组成,则其过滤面积为。 13、板框过滤机处理某悬浮液,已知过滤终了时的过滤速率 E d dV ? ? ? ? ? θ 为0.04m3/s,现采用横穿洗涤法洗涤10min,洗涤时操作压力差与过滤时相同,洗水和滤液为相同温度的水,则洗涤速率 W d dV ? ? ? ? ? θ 为,所消耗的洗水体积为。 14、用38个635m m×635m m×25mm的框构成的板框过滤机过滤某悬浮液,操作条件下的恒压过滤方程为:θ4 210 3 06 .0- ? = +q q,式中q的单位为m3/m2,θ的单位为s。则过滤常数K= ,V e= 。 15、用叶滤机过滤固含量10%(体积分数)的某悬浮液,已知形成的滤饼的空隙率为50%,则滤饼体积与滤液体积之比υ= 。 16、根据分离因数可将离心机分为、和。 17、流体通过固体颗粒床层时,当气速大于速度、小于速度时,固体颗粒床层为流化床。 18、流化床的两种流化形式为和。 19、流化床的不正常现象有和。 20、气力输送按气流压力分类,可分为和。按气流中固相浓度分类,可分为和。 二、选择题 1、颗粒的球形度越(),说明颗粒越接近于球形。 A.接近0 B.接近1 C.大D.小 2、在重力场中,微小颗粒沉降速度与()无关。 A.颗粒几何形状B.粒子几何尺寸 C.流体与粒子的密度D.流体流速 3、一球形固体颗粒在空气中作自由沉降,若沉降在斯托克斯定律区,空气的温度提高时,颗粒的沉降速度将()。若沉降在牛顿定律区,空气的温度提高时,颗粒的沉降速度将()。忽略温度变化对空气密度的影响。 A.不变B.增加C.减小D.不确定 4、在斯托克斯定律区,颗粒的沉降速度与其直径的()次方成正比。

旋风分离器工作原理

旋风分离器的作用 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。 工作原理 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 性能指标 分离精度旋风分离器的分离效果:在设计压力和气量条件下,均可除去≥10μm的固体颗粒。在工况点,分离效率为99%,在工况点±15%范围内,分离效率为97%。压力降正常工作条件下,单台旋风分离器在工况点压降不大于0.05MPa。设计使用寿命旋风分离器的设计使用寿命不少于20年。 结构设计 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。通常,气体入口设计分三种形式:a) 上部进气b) 中部进气c) 下部进气对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm 的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点

《化工原理》第3章 机械分离 复习题

《化工原理》第三章“机械分离”复习题 一、填空题 1.(2分)悬浮液属液态非均相物系,其中分散相是指______;分散介质是指__________。 ***答案*** 固体微粒,包围在微粒周围的液体 2.(3分)悬浮在静止流体中的固体微粒在重力作用下,沿重力方向作自由沿降时,会受到_____________三个力的作用。当此三个力的______________时,微粒即作匀速沉降运动。此时微粒相对于流体的运动速度,称为____________ 。 ***答案*** 重力、阻力、浮力;代数和为零;沉降速度 3.(2分)沉降操作是使悬浮在流体中的固体微粒,在_________力或__________力的作用下,沿受力方向发生运动而___________ ,从而与流体分离的过程。 ***答案*** 重;离心;沉积 4.(3分)气体的净制按操作原理可分为________,_______,______.旋风分离器属_____________ 。***答案*** 重力沉降、离心沉降、过滤;离心沉降。 5.(2分)过滤是一种分离悬浮在____________________的操作。 ***答案*** 液体或气体中固体微粒 6.(2分)悬浮液中加入助滤剂进行过滤的目的是__________________ __________________。 ***答案*** 在滤饼中形成骨架,使滤渣疏松,孔隙率加大,滤液得以畅流 7.(2分)过滤阻力由两方面因素决定:一方面是滤液本身的性质,即其_________;另一方面是滤渣层本身的性质,即_______ 。***答案*** μ;γL 8.(3分)某板框压滤机的框的尺寸为:长×宽×厚=810×810×25 mm,若该机有10块框,其过滤面积约为_______________ m2。***答案*** 13.12。 9.(3分)转鼓真空过滤机,转鼓每旋转一周,过滤面积,的任一部分都顺次经历___________________________________等五个阶段。 ***答案*** 过滤、吸干、洗涤、吹松、卸渣 10.(3分)离心分离因数是指_________________________________。为了提高离心机的分离效率,通常使离心机的___________增高,而将它的________减少。 ***答案***物料在离心力场中所受的离心力与重力之比; 转速;直径适当。 二、选择题 1.(2分)欲提高降尘宝的生产能力,主要的措施是()。***答案*** C A. 提高降尘宝的高度; B. 延长沉降时间; C. 增大沉降面积 2.(2分)为使离心机有较大的分离因数和保证转鼓有关足够的机械强度,应采用()的转鼓。***答案*** B A. 高转速、大直径; B. 高转速、小直径; C. 低转速、大直径; D. 低转速,小直径; 3.(2分)旋风分离器的临界粒径是指能完全分离出来的()粒径。*答案* A A. 最小; B. 最大; C. 平均; 4.(2分)要使微粒从气流中除去的条件,必须使微粒在降尘室内的停留时间()微粒的沉降时间。*** A. ≥; B. ≤; C. <; D. >答案*** A 5.(2分)板框过滤机采用横穿法洗涤滤渣时,若洗涤压差等于最终过滤压差,洗涤液粘度等于滤液粘度,则其洗涤速率为过滤终了速率的()倍。***答案*** C A. 1; B. 0.5; C. 0.25 三、问答题 1.(8分)为什么旋风分离器的直径D不宜太大?当处理的含尘气体量大时,采用旋风分高器除尘,要达到工业要求的分离效果,应采取什么措施? 答案旋风分离器的临界直径d=(9μB/πN u0ρ)0.5,可见D↑时,B也↑(B=D/4),此时d也↑,则分离效率

化工原理分离工程知识点

说明分离过程与分离工程的区别? 答:分离过程:是生产过程中将混合物转变组成不同的两种或多种相对纯净的物质的操作;分离工程:是研究化工及其它相关过程中物质的分离和纯化方法的一门技术科学,研究分离过程中分离设备的共性规律,是化学工程学科的重要组成部分。 实际分离因子与固有分离因子的主要不同点是什么? 答:前者是根据实际产品组成而计算,后者是根据平衡组成而计算。两者之间的差别用级效率来表示。错误:固有分离因子与分离操作过程无关 怎样用分离因子判断分离过程进行的难易程度? 答:分离因子的大小与1相差越远,越容易分离;反之越难分离。 按所依据的物理化学原理不同,传质分离过程可分为哪两类? 答:平衡分离过程:采用平衡级(理论板)作为处理手段,利用两相平衡组成不相等的原理,即达到相平衡时,原料中各组分在两个相中的不同分配,并将其它影响参数均归纳于级效率之中,如蒸发、结晶、精馏和萃取过程等。大多数扩散分离过程是不互溶的两相趋于平衡的过程。速率分离过程:通过某种介质,在压力、温度、组成、电势或其它梯度所造成的强制力的推动下,依靠传递速率的差别来操作,而把其它影响参数都归纳于阻力之中。如超滤、反渗透和电渗析等。通常,速率控制过程所得到的产品,如果令其互相混合,就会完全互溶。 分离过程常借助分离剂将均相混合物变成两相系统,举例说明分离剂的类型。 答:分离过程的原料可以是一股或几股物料,至少必须有两股不同组成的产品,这是由分离过程的基本性质决定的。分离作用是由于加入(媒介)而引起的,分离剂可以是能量(ESA)或物质(MSA),分离剂有时也可两种同时应用。例如,要把糖水分为纯净的糖和水需要供给热量,使水分蒸发,水蒸气冷凝为纯水,糖在变浓的溶液中结晶成纯糖。或供给?令量,使纯水凝固出来,然后在较高剃温度下使其隔出化;这里所加入的分离剂为ESA。也可将糖水加压,通过特殊的固体膜将水与糖分离。这里所加入的分NEW口e录制小视频离剂为MSA。此外,ESA还可以是输入或输出的功,以驱动泵、压缩机;在吸收、萃取、吸附、离子交换、液膜固膜分离中,均须加入相应的MSA。

耐克斯固液分离器依据离心分离原理

简介 耐克斯固液分离器依据离心分离原理,用于分离液体中可沉淀固体物。独特的 内部加速运动产生高速旋转的涡流,进而高效率地分离出液体中的固体杂质。 耐克斯以先进的设计和独特的性能著称,综合指标均超出同类过滤设备。 耐克斯可分离出3μm至9mm比重大于液体的固体颗料。在非循环系统中, 对74μm 等级的固体物,能达到98%以上的分离效果;在循环系统中,对40μm 等级的固体物,也可达到98%的分离效果。 耐克斯JPL(JPX)系列单机处理能力为1~2,895m3/hr,能处理悬浮物含量高达 25,000mg/1 的污水,可满足各种恶劣环境下的水处理要求。 优缺点 分离器没有可活动元件,在运行过程中无备件更换,不需维修。一劳永逸,同时无需反冲冼,可以做到免维护运行。 耐克斯有先进的排污及污物最终处理方式,排出污物的含水率小于80%,并能实现零液体损失排放。 可以并联使用,也可串联使用,能满足不同的水质要求和流量。 占地面积小,可取代沉淀池及其他环节的水处理设备,解决场地受限制等问题,安装方式有立式、斜式两种。 应用范围 ◆原水处理地表河水、海水、湖水、水库水、地下水。 ◆市政设施给水处理、污水处理。 ◆钢铁企业炼铁、焦化、炼钢、轧钢等生产过程中循环冷却水处理、喷嘴及结晶器保护等。 ◆矿山水循环利用、矿物回收、泵体保护。 ◆机械加工冷却剂、清洗剂循环再用。 ◆化工生产预过滤、循环剂循环再用。 ◆石油工业油井注水、近海平台、工艺循环水。 ◆造纸厂原水、黑液、工艺循环水。 ◆空调冷却系统减少系统结垢,提高热效率;减少化学药剂用量。 ◆洗车系统水循环利用。 ◆其它应用农业灌溉、电力系统、食品加工、园林绿化。 主要参数 1、流量范围:1-2,895m3/hr 2、能处理最大悬浮物含量:25,000mg/L 3、最大工作压力:10.3bar(可选择最大工作压力到16bar) 4、压力损失:0.2-0.8bar 5、进口压力要求:不小于分离器压力损失加上1bar,再加上出口所需压力。 6、能处理的最大颗粒粒径:JPX-0016及更小流量型为6mm;其它型号为9mm。 7、材质:标准材质为碳钢,还可选用不锈钢、铜镍合金等其它材质。

(完整版)化工原理各章节知识点总结

第一章流体流动 质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程 却要大得多。 连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。 拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。 欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。定态流动流场中各点流体的速度u 、压强p不随时间而变化。 轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。系统与控制体系统是采用拉格朗日法考察流体的。控制体是采用欧拉法考察流体的。 理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。粘性的物理本质分子间的引力和分子的热运动。通常液体的粘度随温度增 加而减小,因为液体分子间距离较小,以分子间的引力为主。气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。 总势能流体的压强能与位能之和。 可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。有关的称为可压缩流体,无关的称为不可压缩流体。 伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。平均流速流体的平均流速是以体积流量相同为原则的。 动能校正因子实际动能之平均值与平均速度之动能的比值。 均匀分布同一横截面上流体速度相同。 均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上

的流体没有加速度, 故沿该截面势能分布应服从静力学原理。 层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。 稳定性与定态性稳定性是指系统对外界扰动的反应。定态性是指有关运动参数随时间的变化情况。 边界层流动流体受固体壁面阻滞而造成速度梯度的区域。 边界层分离现象在逆压强梯度下,因外层流体的动量来不及传给边界层,而形成边界层脱体的现象。 雷诺数的物理意义雷诺数是惯性力与粘性力之比。 量纲分析实验研究方法的主要步骤: ①经初步实验列出影响过程的主要因素; ②无量纲化减少变量数并规划实验; ③通过实验数据回归确定参数及变量适用范围,确定函数形式。 摩擦系数 层流区,λ与Re成反比,λ与相对粗糙度无关; 一般湍流区,λ随Re增加而递减,同时λ随相对粗糙度增大而增大; 充分湍流区,λ与Re无关,λ随相对粗糙度增大而增大。 完全湍流粗糙管当壁面凸出物低于层流内层厚度,体现不出粗糙度过对阻 力损失的影响时,称为水力光滑管。Re很大,λ与Re无关的区域,称为完全湍流粗糙管。同一根实际管子在不同的Re下,既可以是水力光滑管,又可以是完全湍流粗糙管。 局部阻力当量长度把局部阻力损失看作相当于某个长度的直管,该长度即为局部阻力当量长度。 毕托管特点毕托管测量的是流速,通过换算才能获得流量。 驻点压强在驻点处,动能转化成压强(称为动压强),所以驻点压强是静压强与动压强之和。 孔板流量计的特点恒截面,变压差。结构简单,使用方便,阻力损失较大。转子流量计的特点恒流速,恒压差,变截面。 非牛顿流体的特性 塑性:只有当施加的剪应力大于屈服应力之后流体才开始流动。

化工原理课程设计(乙醇和水的分离)

化工原理课程设计 课题名称乙醇-水分离过程筛板精馏塔设计 院系可再生能源学院 班级应用化学0901班 学号 1091100128 学生姓名蔡文震 指导老师覃吴 设计周数 1

目录 一、化工原理课程设计任务书 (4) 1.1设计题目 (4) 1.2原始数据及条件: (4) 二、塔板工艺设计 (4) 2.1精馏塔全塔物料衡算 (4) 2.2乙醇和水的物性参数计算 (5) 2.2.1 温度 (5) 2.2.2 密度 (6) 2.2.3相对挥发度 (9) 2.2.4混合物的黏度 (9) 2.2.5混合液体的表面张力 (9) 2.3塔板的计算 (10) 2.3.1 q、精馏段、提留段方程计算 (10) 2.3.2理论塔板计算 (12) 2.3.3实际塔板计算 (12) 2.4操作压力的计算 (13) 三、塔体的工艺尺寸计算 (13) 3.1塔径的初步计算 (13) 3.1.1气液相体积流量计算 (13) 3.1.2塔径计算 (13) 3.2塔体有效高度的计算 (15) 3.3精馏塔的塔高计算 (16) 3.4溢流装置 (16) 3.4.1堰长 (16) 3.4.2溢流堰高度 (16) 3.4.3弓形降液管宽度和截面积 (17) 3.5塔板布置 (17) 3.5.1塔板的分块 (17) 3.5.2边缘区宽度的确定 (18) 3.5.3开孔区面积计算 (18) 3.5.4筛孔计算及其排列 (18) 四、筛板的流体力学验算 (19) 4.1塔板压降 (19) 4.1.1干板阻力 (19) 4.1.2气体通过液层的阻力 (19) 4.1.3液体表面张力的阻力(很小可以忽略不计) (20) 4.1.4气体通过每层板的压降 (20) 4.2液沫夹带 (20) 4.3漏液 (21) 4.4液泛 (21) 五、塔板负荷性能图 (22)

第三章-颗粒流体力学与机械分离习题Word版

1)有两种固体颗粒,一种是边长为a 的正立方体,另一种是正圆柱体,其高度为h ,圆柱直径为d 。试分别写出其等体积当量直径 和形状系数 的计算式。 d h dh dh d d h d h d d h d d b a a a d a d a d a v e v e v e v e v e +=?+==∴==?= ?= ?=∴=2)18()/(2])2/3[(] )2/3[()4/)6/()() 6/(6/6(6) /6()6/()(][3 1 22 32 23 1 2,23,3 1 2 2 32 2 2,3 1 ,3 3,πππψππππππψππ()解 2)某内径为0.10m 的圆筒形容器堆积着某固体颗粒,颗粒是高度h=5mm ,直径d=3mm 的正圆柱,床层高度为0.80m ,床层空隙率 、若以1atm ,25℃的空气以0.25 空速通过 床层,试估算气体压降。 [解] 圆柱体:Pa d u d u L P s Pa m kg C atm mm d h dh d d h dh h d d v e v e m v e v e 7.177]10 46.325.0185.152.052.0175.1)1046.3(25.010835.152.0)52.01(150[80.0] )1(75.1)(1(150[10835.1,/185.1:)25,146.3)352/(533)2/(3) 2() 18(,])2/3[(3 2 323532,2 22,32 530,3 231 2 ,=???-?+????-?=???-?+??-?=???===+???=+=?∴+==----ψρεεψεμεμρψψ)按欧根公式计算压降: 空气( 3)拟用分子筛固体床吸附氯气中微量水份。现以常压下20℃空气测定床层水力特性,得两组数据如下: 空塔气速 0.2 , 床层压降 14.28mmH 2O 0.6 93.94mmH 2O 试估计25℃、绝对压强1.35atm 的氯气以空塔气速0.40 通过此床层的压降。(含微量水 份氯气的物性按纯氯气计)氯气 , [解]常压下, ,/20.1203 0m Kg C =ρ空气:.018.0cP =μ 欧根公式可化简为

粪便固液分离机工作原理

粪便固液分离机介绍 粪便分离机让养殖粪便变废为宝,我公司以中国高科技产品产业化为目标发展制造高新环保设备。 粪便分离机处理性和先进性表现为: 1、处理能力强。设计为振动分离方式,固液分离速度快,处理能力大。可以根据各养殖场的污液含渣量条件、用水条件等不同,根据使用环境及用户上网不同需求选择筛网间隙,当选择0.8mm)的筛网时,分离污水中的悬浮物,去渣超过85%。

2、耐腐蚀。在振动筛及其支撑柱的设计与选材方面具有独到之处,适应了腐蚀性强、湿度大的恶劣环境使用,而且使用噪音小。

3、二次分离。采用螺旋送渣挤压系统,对分离出的粪渣进行二次挤压作用,减少粪渣含水量,并且在出渣前设有挤压污水排放口,可以保证分离出的粪渣含水率低于60%,同时根据用户养殖清污模式,干湿可调。使粪渣的包装、运输、使用过程中不产生渗漏污水,无二次环境污染,性能优于国内外其他同类产品;粪渣出口处的粪渣含水率调节架,可以调节粪渣的含水率,使粪渣达到最佳的发酵 湿度。

4、自动清洗。设计自动清理系统,解决了停机后粪渣堵塞筛网及设备内部污渣冲洗的问题,确保机器正常连续运行。 5、所占空间小。整体外壳使用不锈钢板,造型简洁、美观,设备占地少,工作环境整洁。 6、效率高。总装机容量仅为3.2kw,设备自动化程度高,耗费人工少,只需一

人即可完成粪渣的分离与收集任务,与同类产品相比,能大大降低粪便污液固液分离处理的日常成本。 7、便于维护。整体耗材少,外形尺寸:高:1.53米、长:1.6米、宽:1.22米。整机重量在450Kg以内,不但降低制造成本,还便于包装、使用与维护。 8.分离率高。经分离的固体粪渣含水量小于60%,对污水悬浮物、有机物的去除率大于90%,其综合技术性能达到畜禽粪便固液分离国内同类产品的领先水平。 畜牧粪便固液分离机是规模化集中养殖场必配的环保循环经济设备,机型设计机构科学,运行效率高,还广泛做为鸡、牛、马、鸭及各类集约化养殖场对动物粪便、酒糟、药渣、豆渣、啤酒糟、木薯渣、果渣淀粉渣、酱渣、屠宰厂等高浓度有机污水的渣液分离。大型沼气工程配套使用,对其沼气液渣进行固液分离。山东猪八戒养殖设备为养殖客户提供称心如意的好设备。

化工原理分离技术.

其 他 传 质 分 离 的 方 法 学院:化学与化工学院 专业:化学工程与工艺 班级: 学号: 姓名: 结晶分离技术 结晶(沉淀分离技术是化工生产中从溶液中分离化学固体物质的一种单元操作,在湿法冶金过程占有十分重要地位。从湿法冶金溶液中以固体形式分离、回收有价组分常采用结晶、沉淀等操作过程,而又以反应结晶过程居多。 世界上有数百家铀水冶厂,用离子交换法或萃取法从庞大的矿石浸出液中浓集提取铀,得到了浓度较高的含铀的纯化溶液—合格淋洗液或反萃取液。从这种纯化

溶液中沉淀(结晶铀的浓缩物送纯化工厂进一步精炼,得到核能纯的铀产品。沉淀铀浓缩物的过程就是一个化 学结晶(沉淀过程。当向纯化溶液(硫酸铀酰、硝酸铀酰等中添加沉淀 剂:NaOH、NH 3H 2 O、 MgO 等的溶液时,立即沉淀(结晶出重铀酸盐浓缩物(131,黄饼等中间产品。铀由水溶液中转化成了固态形式,品位和纯度大大的提高,体积大大减少,给下一步工序的加工带来许多方便,生产设备、规模大大减少。 反应沉淀(结晶过程一般分为三个步骤:(1溶液形成过饱和溶液,(2晶核生成和晶粒生长,(3沉淀(结晶的生成和陈化。图1示出了结晶的三个步骤。 在一定的条件下,沉淀(结晶能否生成或生成的沉淀是否溶解,取决于该沉淀的溶度积。当沉淀剂加入溶液中时,mA n++nB m-=AmB n (固↓,形成的离子浓度的乘积Q=[A n+]m[B m-]n 大于沉淀物的溶度积(Ksp,即Q>Ksp时,形成了过饱和溶液, 离子通过互相碰撞形成微小的晶核——成核过程;晶核形成后溶液中的构晶离子向晶核表面扩散,并沉积在晶核上——晶核生长;晶核就逐渐长大成晶粒;晶粒进一步聚集、定向排列成晶体,如果来不及定向排列则成为非晶粒沉淀。 工业生产中一般情况下希望生成粗大的结晶产品,有利于下一步的固液分离操作。影响结晶的因素很多,如过饱和度、浓度、PH值、同离子效应、络合效应、搅拌强度、沉淀剂的加入速度,甚至两种溶液加入先后顺序都有影响。

高效浓密机的结构及工作原理汇总

高效浓密机的结构及工作原理(图文) 浓密机在选矿厂应用广泛,主要用于浸出液浓缩和废水处理等需要固液分离的工艺。与普通浓密机相比,高效浓密机具有明显的优势,它占地面积小,消耗动力和易损零部件少,处理能力大,浓缩效率高,其增大的高径比使细粒矿浆在机内有必要的停留时间,深入沉积层中进料更保证了细粒被沉积层捕捉,高分子絮凝剂的应用强化了矿浆凝聚效果,从而产出了更清的溢流水和更浓的底流。上世纪70年代,美国开始使用下加料式高效浓密机,其处理能力是普通浓密机的2倍;80年代又开发了中心加料筒型高效浓密机,处理能力提高到普通浓密机的3倍;到90年代,出现了计算机智能工艺控制系统,实现了对高效浓密机运行状态的自动调节。 一、高效浓密机的结构 高效浓缩机的槽体、耙架乳浊剂传动部佞的结构与普通浓密机大致相同。其浓缩效率高的主要原因在于一个特殊的给矿筒。国外常用的高效浓密机主要有三种:即艾姆科(Einco-BSP)型、道尔-奥利弗(Dorr-Oliver)型和恩维罗 (Enviro-Cldar)型。艾姆科高效浓密机的给矿筒结构如图1所示。给矿筒被分隔成三段竖直的机械搅拌室,并与浓密机的中心竖轴同心。矿浆给入排气系统,带入的空气被排出,然后通过给矿管进入混合室,与絮凝剂充分混合后,再经混合室下部呈放射状分布的给矿管直接给到沉砂层的中、上部。液体经沉砂层的过滤以后上升成为溢流,絮团则留在沉砂层中进入底流。 道尔-奥利弗高效浓密机的结构如图2(a)所示。该设备有一特殊结构的给矿筒,如图2(b)所示。送进浓密机的矿浆被分成两股,分别给到给矿筒的上部和下部的环形板上,两者流向相反,使得由给矿造成剪切力最小。当一定浓度的絮凝剂从给矿筒中部给入后可与矿浆均匀混合,形成的絮团便从剪切力最小的区域较平缓地流到浓密机内沉降。 恩维罗型高效浓密机的结构图3所示。其中心有一个倒锥形的反应筒,矿浆沿给矿管从反应筒中心的循环筒之下部往上,经循环筒的上部进入反应筒,受旋转叶轮搅拌,与絮凝剂充分地混合后,再从反应筒底部进入沉砂层中。溶液穿过沉砂层的上部,向上运动形成溢流,进入溢流堰。该机具有放射状的或周边式的溢流槽。

化工原理第三章 机械分离与固体流态化

本文由m o o n l i g h t023贡献 ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 西安交大化工原理电子课件 第三章机械分离与固体流态化 过滤 ? 沉降 ? 固体流态化 前页 后页 返回主题 西安交大化工原理电子课件 过滤 ? ? ? ? 概述过滤基本方程过滤常数的测定滤饼洗涤过滤设备及过滤计算 前页 后页 返回主题 西安交 ? 滤饼过滤其基本原理是在外力(重力、压力、离心力)作用下,使悬浮液中的液体通过多孔性介质,而大固体颗粒被截留,从而使液、固两相得以分离,如图化 3-1所示。工原滤浆理滤饼电过滤介质子滤液课 (a) 滤饼过滤 (b) 架桥现象件 图 3-1 过滤操作示意图 概述

图 3-2 滤饼过滤 前页 后页 返回主题 西安交大化工原理电子课件 概述 1.过滤介质. 过滤过程所用的多孔性介质称为过滤介质,过滤介质应具有下列特性:多孔性、孔径大小适宜、耐腐蚀、耐热并具有足够的机械强度。工业用过滤介质主要有织物介质(如棉、麻、丝、毛、合成纤维、金属丝等编织成的滤布)、多孔性固体介质(如素瓷板或管、烧结金属等)。固体颗粒被过滤介质截留后,逐渐累积成饼(称为滤饼),如前图3-2所示。 前页后页 返回主题 西安交大化工原理电子课件 概述 2.过滤推动力.在过滤过程中,滤液通过过滤介质和滤饼层流动时需克服流动阻力,因此,过滤过程必须施加外力。外力可以是重力、压力差,也可以是离心力,其中以压力差和离心力为推动力的过滤过程在工业生产中应用较为广泛。 前页后页

返回主题 西安交大化工原理电子课件 概述 3.滤饼的压缩性和助滤剂.(1)压缩性若形成的滤饼刚性不足,则其内部空隙结构将随着滤饼的增厚或压差的增大而变形,空隙率减小,称这种滤饼为可压缩滤饼,反之,若滤饼内部空隙结构不变形,则称为不可压缩滤饼。 返回主题 前页 后页 西安交大化工原理电子课件 概述 3.滤饼的压缩性和助滤剂.(2)助滤剂 若滤浆中所含固体颗粒很小,或者所形成的滤饼孔道很小,又若滤饼可压缩,随着过滤进行,滤饼受压变形,都使过滤阻力很大而导致过滤困难。可采用助滤剂以改善滤饼的结构,增强其刚性。助滤剂通常是一些不可压缩的粉状或纤维状固体,能形成结构疏松的固体层。常用的助滤剂有:硅藻土、纤维粉末、活性炭、石棉等。 前页后页 返回主题 西安交大化工原理电子课件 过滤基本方程

化工原理课程设计(苯甲苯的分离)

化工原理课程设计题目: 姓名: 班级: 学号: 指导老师: 设计时间:

序言 化工原理课程设计是综合运用《化工原理》课程和有关先修课程(《物理化学》,《化工制图》等)所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用。通过课程设计,要求更加熟悉工程设计的基本内容,掌握化工单元操作设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力,问题分析能力,思考问题能力,计算能力等。 精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用。精馏过程在能量剂驱动下(有时加质量剂),使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离。本设计的题目是苯-甲苯连续精馏筛板塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔将其分离。 目录

一、化工原理课程设计任书 (3) 二、设计计算 (3) 1.设计方案的确定 (3) 2.精馏塔的物料衡算 (3) 3.塔板数的确定 (4) 4.精馏塔的工艺条件及有关物性数据的计算 (8) 5.精馏塔的塔体工艺尺寸计算 (10) 6.塔板主要工艺尺寸的计算 (11) 7.筛板的流体力学验算 (13) 8.塔板负荷性能图 (15) 9.接管尺寸确定 (30) 二、个人总结 (32) 三、参考书目 (33)

如何提高牛粪固液分离机工作效率

如何提高牛粪固液分离机工作效率 什么是牛粪固液分离机?牛粪固液分离机是在一些肉牛养殖厂家比较常见的设备,它的主要作用就是用来处理牛制造出来的粪便,通过将这些粪便进行分离工作,从而实现粪便的再次利用,由此可见,牛粪固液分离机是一种环保效益、资源效益都比较好的设备,在使用的过程中就要求厂家做好操作工作,提高它的工作效率,接下来我们就来说说如何提高牛粪固液分离机的工作效率。 【如何提高牛粪固液分离机工作效率】 一、选择风量大的除尘器 除尘器通风效果直接影响到牛粪固液分离机的台时产量,要想高产选择处理风量大的除尘器,保证牛粪固液分离机有一定的负压,及时将沸腾炉产生的高温气体吸人牛粪固液分离机,使之与烘干物料迅

速发生热交换并及时排除,尽可能降低牛粪固液分离机内废气温度,达到快速烘干的目的。牛粪固液分离机袋式除尘器的废气处理风量大小的选择要根据牛粪固液分离机的规格、烘干物料的种类、水分的大小,详细计算后合理选型。除尘器通风量一般要达到常规牛粪固液分离机处理风量的2倍。 二、从系统的观点来看待烘干问题 把牛粪固液分离机作为一个系统来设计,按牛粪固液分离机的高通过能力来配套,严格要求相关设备达到性能指标。确保牛粪固液分离机产量高时,热工状态依然佳。 三、注重风、料的平衡 牛粪固液分离机高产的关键是做到“风、料”的平衡。首先确定除尘器的通风量和牛粪固液分离机的规格型号,再确定高温沸腾炉的供热大小是否合适;其次,要加强操作,加料要均匀,水分波动不能太大,热源温度调整要及时,炉温及废气温度保持稳定,通风除尘要保证风量、风压正常。只有做到这几点,才能做到大风、大料、大火,实现高产低耗。

化工原理第章吸附分离

第九章吸附分离 第一节概述 9.1.1、吸附现象及其工业应用: 1、吸附分离应用背景: 吸附操作在化工、轻工、炼油、冶金和环保等领域都有着广泛的应用。如气体中水分的脱除,溶剂的回收,水溶液或有机溶液的脱色、脱臭,有机烷烃的分离,芳烃的精制等。 2、吸附的定义及概念: 固体物质表面对气体或液体分子的吸着现象称为吸附。其中被吸附的物质称为吸附质,固体物质称为吸附剂。 3、吸附机理的分类: 根据吸附质和吸附剂之间吸附力的不同,吸附操作分为物理吸附与化学吸附两大类。 ⑴、物理吸附或称范德华吸附:它是吸附剂分子与吸附质分子间吸引力作用的结果,因其分子间结合力较弱,故容易脱附,如固体和气体之间的分子引力大于气体内部分子之间的引力,气体就会凝结在固体表面上,吸附过程达到平衡时,吸附在吸附剂上的吸附质的蒸汽压应等于其在气相中的分压。 ⑵、化学吸附:是由吸附质与吸附剂分子间化学健的作用所引起,其间结合力比物理吸附大得多,放出的热量也大得多,与化学反应热数量级相当,过程往往不可逆。化学吸附在催化反应中起重要作用。本章主要讨论物理吸附。 4、吸附机理的判断依据: ⑴、化学吸附热与化学反应热相近,比物理吸附热大得多。如二氧化碳和氢在各种吸附剂上的化学吸附热为83740J/mol和62800J/mol,而这两种气体的物理吸附热约为25120J/mol 和8374J/mol。 ⑵、化学吸附有较高的选择性。如氯可以被钨或镍化学吸附。物理吸附则没有很高的选择性,它主要取决于气体或液体的物理性质及吸附剂的特性。 ⑶、化学吸附时,温度对吸附速率的影响较显著,温度升高则吸附速率加快,因其是一个活化过程,故又称活化吸附。而物理吸附即使在低温下,吸附速率也可能较大,因它不属于活化吸附。 ⑷、化学吸附总是单分子层或单原子层,而物理吸附则不同,低压时,一般是单分子层,但随着吸附质分压增大,吸附层可能转变成多分子层。

相关文档
最新文档