《原子物理学》杨福家第四版课后答案

《原子物理学》杨福家第四版课后答案
《原子物理学》杨福家第四版课后答案

n = fm

E

2

E 1

大学物理(第四版)课后习题及答案质点

大学物理(第四版)课 后习题及答案质点 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

题1.1:已知质点沿x 轴作直线运动,其运动方程为 3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小; (2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--= t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有

2002 1at t v x x + += 由此,可计算在0~2和4~6 s 时间间隔内各时刻的位置分别为 t /s 0 0.5 1 1.5 2 4 4.5 5 5.5 6 x /m 5.7- 10- 5.7- 0 40 48.7 55 58.7 60 用描数据点的作图方法,由表中数据可作0~2 s 和4~6 s 时间内的x -t 图。在2~4 s 时间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少? 题1.3解1:取如图所示的直角坐标系,船的运动方程为 ()()()j i r h t x t -+= 船的运动速度为 ()i i i r v t r r h h r t t t x t d d 1d d d d d d 2 /12 2 2 2 -??? ? ? ?-=-= ==' 而收绳的速率t r v d d - =,且因vt l r -=0,故 ()i v 2 /12 021-??? ? ? ?-- -='vt l h v 题1.3解2:取图所示的极坐标(r ,θ),则 θr r r d d d d d d d d d d e e e e r v t r t r t r t r t θ+=+== ' r d d e t r 是船的径向速度,θd d e t r θ是船的横向速度,而 t r d d 是收绳的速率。由于船速v '与径向速度之间夹角位θ ,所以

大学物理学第三版课后习题答案

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度与加速度的大小. 图1-4 解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 2 22s h l += 将上式对时间t 求导,得 t s s t l l d d 2d d 2= 题1-4图 根据速度的定义,并注意到l ,s 就是随t 减少的, ∴ t s v v t l v d d ,d d 0-==-=船绳 即 θ cos d d d d 00v v s l t l s l t s v ==-=-=船 或 s v s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度 1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -?,开始运动时,x =5 m,v =0,

求该质点在t =10s 时的速度与位置. 解:∵ t t v a 34d d +== 分离变量,得 t t v d )34(d += 积分,得 122 34c t t v ++= 由题知,0=t ,00=v ,∴01=c 故 22 34t t v += 又因为 22 34d d t t t x v +== 分离变量, t t t x d )2 34(d 2+= 积分得 2322 12c t t x ++= 由题知 0=t ,50=x ,∴52=c 故 52 1232++=t t x 所以s 10=t 时 m 7055102 1102s m 190102310432101 210=+?+?=?=?+?=-x v 1-10 以初速度0v =201s m -?抛出一小球,抛出方向与水平面成幔 60°的夹角, 求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R .

大学物理(第四版)课后习题及答案 质点

题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t = 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--=t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有 2002 1at t v x x + += 间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?

《大学物理(上册)》课后习题答案

第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2-+++=m ⑵ 1=t s,2=t s 时,j i r 5.081-= m ;2114r i j =+m ∴ 213 4.5r r r i j ?=-=+m ⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404 r r r i j i j t --?+= ===+??-v ⑷ 1d 3(3)m s d r i t j t -==++?v ,则:437i j =+v 1s m -? (5) 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44 j a j t --?= ===??v v v (6) 2d 1 m s d a j t -==?v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x =+,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x ===v v v v 得:2 d d (26)d a x x x ==+v v 两边积分 210 d (26)d x x x =+? ?v v v 得:2322 250x x =++v ∴ 1m s -=?v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2==== ωβθω ⑴ s 2=t 时,2 s m 362181-?=??==βτR a 2 222s m 1296)29(1-?=??==ωR a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ?== 即:βωR R =2 ,亦即t t 18)9(2 2=,解得:9 23= t 则角位移为:32 2323 2.67rad 9 t θ=+=+? = 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2=t 时,4.022.0=?== t αω 1s rad -? 则0.40.40.16R ω==?=v 1s m -? 064.0)4.0(4.022=?==ωR a n 2 s m -? 0.4 0.20.0a R τα==?=2s m -? 22222 s m 102.0)08.0()064.0(-?=+=+= τa a a n 与切向夹角arctan()0.06443n a a τ?==≈?

原子物理学 杨福家 第四版(完整版)课后答案

原子物理学杨福家第四版(完整版)课后答案 原子物理习题库及解答 第一章 111,222,,mvmvmv,,,,,,,ee222,1-1 由能量、动量守恒 ,,,mvmvmv,,,,,,ee, (这样得出的是电子所能得到的最大动量,严格求解应用矢量式子) Δp θ mv2,,,得碰撞后电子的速度 p v,em,m,e ,故 v,2ve, 2m,p1,mv2mv4,e,eee由 tg,~,~~,~,2.5,10(rad)mvmv,,,,pm400, a79,2,1.44,1-2 (1) b,ctg,,22.8(fm)222,5 236.02,102,132,5dN(2) ,,bnt,3.14,[22.8,10],19.3,,9.63,10N197 24Ze4,79,1.441-3 Au核: r,,,50.6(fm)m22,4.5mv,, 24Ze4,3,1.44Li核: r,,,1.92(fm)m22,4.5mv,, 2ZZe1,79,1.4412E,,,16.3(Mev)1-4 (1) pr7m 2ZZe1,13,1.4412E,,,4.68(Mev)(2) pr4m 22NZZeZZeds,,242401212dN1-5 ()ntd/sin()t/sin,,,,,2N4E24EAr2pp 1323,79,1.44,106.02,101.5123,,(),,1.5,10,, 24419710(0.5) ,822,610 ,6.02,1.5,79,1.44,1.5,,8.90,10197 3aa,,1-6 时, b,ctg,,,,6012222 aa,,时, b,ctg,,1,,902222 32()2,dNb112 ?,,,32dN1,b222()2 ,32,324,101-7 由,得 b,bnt,4,10,,nt

大学物理学(课后答案)第1章

第1章 质点运动学 习 题 一 选择题 1-1 对质点的运动,有以下几种表述,正确的是[ ] (A)在直线运动中,质点的加速度和速度的方向相同 (B)在某一过程中平均加速度不为零,则平均速度也不可能为零 (C)若某质点加速度的大小和方向不变,其速度的大小和方向可不断变化 (D)在直线运动中,加速度不断减小,则速度也不断减小 解析:速度是描述质点运动的方向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C 。 1-2 某质点的运动方程为)(12323m t t x +-=,则该质点作[ ] (A)匀加速直线运动,加速度沿ox 轴正向 (B)匀加速直线运动,加速度沿ox 轴负向 (C)变加速直线运动,加速度沿ox 轴正向 (D)变加速直线运动,加速度沿ox 轴负向 解析:229dx v t dt = =-,18dv a t dt ==-,故答案选D 。 1-3 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速率为v ,平均速度为v ,他们之间的关系必定有[ ] (A)v =v ,v =v (B)v ≠v ,v =v (C)v ≠v ,v ≠v (D)v =v ,v ≠v 解析:瞬时速度的大小即瞬时速率,故v =v ;平均速率s v t ?=?,而平均速度t ??r v = ,故v ≠v 。答案选D 。 1-4 质点作圆周运动时,下列表述中正确的是[ ]

(A)速度方向一定指向切向,所以法向加速度也一定为零 (B)法向分速度为零,所以法向加速度也一定为零 (C)必有加速度,但法向加速度可以为零 (D)法向加速度一定不为零 解析:质点作圆周运动时,2 n t v dv a a dt ρ =+=+ n t n t a e e e e ,所以法向加速度一定不为零,答案选D 。 1-5 某物体的运动规律为 2dv kv t dt =-,式中,k 为大于零的常量。当0t =时,初速为0v ,则速率v 与时间t 的函数关系为[ ] (A)2012v kt v =+ (B)2011 2kt v v =+ (C)2012v kt v =-+ (D)2011 2kt v v =-+ 解析:由于2dv kv t dt =-,所以 02 0()v t v dv kv t dt =-? ? ,得到20 11 2kt v v =+,故答案选B 。 二 填空题 1-6 已知质点位置矢量随时间变化的函数关系为2=4t +( 2t+3)r i j ,则从0t =到1t s =时的位移为 ,1t s =时的加速度为 。 解析:45342=-=+-=+1010r r r i j j i j ,228d d dt dt = ==111v r a i 1-7 一质点以初速0v 和抛射角0θ作斜抛运动,则到达最高处的速度大小为 ,切向加速度大小为 ,法向加速度大小为 ,合加速度大小为 。 解析:以初速0v 、抛射角0θ作斜抛的运动方程:

大学物理(第四版)课后习题及答案 磁场

习 题 题10.1:如图所示,两根长直导线互相平行地放置,导线内电流大小相等,均为I = 10 A ,方向 相同,如图所示,求图中M 、N 两点的磁感强度B 的大小和方向(图中r 0 = 0.020 m )。 题10.2:已知地球北极地磁场磁感强度B 的大小为6.0?10-5 T 。如设想此地磁场是由地球赤道上 一圆电流所激发的(如图所示),此电流有多大?流向如何? 题10.3:如图所示,载流导线在平面内分布,电流为I ,它在点O 的磁感强度为多少? 题10.4:如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈 覆盖住半个球面,设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的磁感强度。 题10.5:实验中常用所谓的亥姆霍兹线圈在局 部区域内获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R ,通过的电流均为I ,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d 等于线圈的半径R 时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。(提示:如以两线圈中心为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可 看成是均匀磁场的条件为x B d d = 0;0d d 22=x B )

题10.6:如图所示,载流长直导线的电流为I,试求通过矩形面积的磁通量。 题10.7:如图所示,在磁感强度为B的均匀磁场中,有一半径为R的半球面,B与半球面轴线的夹角为 ,求通过该半球面的磁通量。 题10.8:已知10 mm2裸铜线允许通过50 A电流而不会使导线过热。电流在导线横截面上均匀分布。求:(1)导线内、外磁感强度的分布;(2)导线表面的磁感强度。 题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I,但电流的流向相反,导体的磁性可不考虑。试计算以下各处的磁感强度:(1)rR3。画出B-r图线。 题10.10:如图所示。N匝线圈均匀密绕在截面为长方形的中空骨架上。求通入电流I后,环内外磁场的分布。 题10.11:设有两无限大平行载流平面,它们的电流密度均为j,电流流向相反,如图所示,求:(1)两载流平面之间的磁感强度;(2)两面之外空间的磁感强度。 题10.12:测定离子质量的质谱仪如图所示,离子源S产生质量为m,电荷为q的离子,离子的初速很小,可看作是静止的,经电势差U加速后离子进入磁感强度为B的均匀磁场,并沿一半

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案 习 题1 1-1. 已知质点位矢随时间变化的函数形式为 )ωt sin ωt (cos j i +=R r 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。 解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω= 消去t 可得轨道方程 222R y x =+ 2) j r v t Rcos sin ωωt ωR ωdt d +-== i R ωt ωR ωt ωR ωv =+-=2 122 ])cos ()sin [( 1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求: (1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。 解:1)由j i r )t 23(t 42++=可知 2t 4x = t 23y += 消去t 得轨道方程为:2)3y (x -= 2)j i r v 2t 8dt d +== j i j i v r 24)dt 2t 8(dt 1 1 +=+==??Δ 3) j v 2(0)= j i v 28(1)+= 1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单

位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。 解:1)j i r v 2t 2dt d +== i v a 2dt d == 2)21 22 12)1t (2] 4)t 2[(v +=+= 1 t t 2dt dv a 2 t +== n a == 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。 解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为 2012 1 at t v y += (1) 图 1-4 2022 1 gt t v h y -+= (2) 21y y = (3) 解之 t = 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 2 1 h y -= 式(2) j i r )gt 2 1 -h (t v (t)20+= (2)联立式(1)、式(2)得 2 02 v 2gx h y -= (3) j i r gt -v t d d 0= 而 落地所用时间 g h 2t =

原子物理学 杨福家第二章习题答案

第二章习题 2-1 铯的逸出功为1.9eV ,试求: (1)铯的光电效应阈频率及阈值波长; (2)如果要得到能量为1.5eV 的光电子,必须使用多少波长的光照射? 解:(1) ∵ E =hν-W 当hν=W 时,ν为光电效应的最低频率(阈频率),即 ν =W /h =1.9×1.6×10-19/6.626×10-34 =4.59×1014 ∵ hc /λ=w λ=hc /w =6.54×10-7(m) (2) ∵ mv 2/2=h ν-W ∴ 1.5= h ν-1.9 ν=3.4/h λ=c /ν=hc /3.4(m)=3.65×10-7m 2-2 对于氢原子、一次电离的氦离子He +和两次电离的锂离子Li ++,分别计算它们的: (1)第一、第二玻尔轨道半径及电子在这些轨道上的速度; (2)电子在基态的结合能; (3)由基态到第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长. n e e πε Z n a ∴H: r 1H =0.053×12/1nm=0.053nm r 2 H =0.053×22/1=0.212nm V 1H =2.19 ×106×1/1=2.19 ×106(m/s) V 2H =2.19 ×106×1/2=1.095 ×106(m/s) ∴He+: r 1He+=0.053×12/2nm=0.0265nm r 2He+=0.053×22/2=0.106nm

V 1 He+=2.19 ×106×2/1=4.38 ×106(m/s) V 2 He+=2.19 ×106×2/2=2.19 ×106(m/s) Li ++: r 1 Li++=0.053×12/3nm=0.0181nm r 2 Li++=0.053×22/3=0.071nm V 1 Li++=2.19 ×106×3/1=6.57 ×106(m/s) V 2 Li++=2.19 ×106×3/2=3.28 ×106(m/s) (2) 结合能:自由电子和原子核结合成基态时所放出来的能量,它 ∵ 基态时n =1 H: E 1H =-13.6eV He+: E 1He+=-13.6×Z 2=-13.6×22=-54.4eV Li ++: E 1Li+=-13.6×Z 2 2(3) 由里德伯公式 =Z 2×13.6× 3/4=10.2Z 2 注意H 、He+、Li++的里德伯常数的近似相等就可以算出如下数值。 2-3 欲使电子与处于基态的锂离子Li ++发生非弹性散射,试问电子至少具有多大的动能? 要点分析:电子与锂质量差别较小, 可不考虑碰撞的能量损失.可以近似认为电子的能量全部传给锂,使锂激发. 解:要产生非弹性碰撞,即电子能量最小必须达到使锂离子从基态达第一激发态,分析电子至少要使Li ++从基态n =1激发到第一激发态n =2. 因为Z n ++ ⊿E =E 2-E 1=Z 2R Li ++hc (1/12-1/22)≈32×13.6×3/4eV=91.8eV 讨论:锂离子激发需要极大的能量

(完整版)大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+-r r r 由d /d v r t =r r 则速度: 28v i tj =+r r r 由d /d a v t =r r 则加速度: 8a j =r r 则当t=1s 时,有 24,28,8r i j v i j a j =-=+=r r r r r r r r 当t=2s 时,有 48,216,8r i j v i j a j =+=+=r r r r r r r r 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t v ,d d v t v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201()(h -)2 r t v t i gt j =+v v v (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3)0d -gt d r v i j t =v v v 而落地所用时间 g h 2t = 所以 0d d r v i j t =v v d d v g j t =-v v 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

原子物理学杨福家第二章习题答案

第二章习题 2-1 铯的逸出功为,试求: (1)铯的光电效应阈频率及阈值波长; (2)如果要得到能量为的光电子,必须使用多少波长的光照射 解:(1) ∵ E =hν-W 当hν=W 时,ν为光电效应的最低频率(阈频率),即 ν =W /h =××10-19/×10-34 =×1014 ∵ hc /λ=w λ=hc /w =×10-7(m) (2) ∵ mv 2/2=h ν-W ∴ = h ν ν=h λ=c /ν=hc /(m)=×10-7m 2-2 对于氢原子、一次电离的氦离子He +和两次电离的锂离子Li ++,分别计算它们的: (1)第一、第二玻尔轨道半径及电子在这些轨道上的速度; (2)电子在基态的结合能; (3)由基态到第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长. n e e Z n a ∴H: r 1H =×12/1nm= r 2 H =×22/1= V 1H = ×106×1/1= ×106(m/s) V 2H = ×106×1/2= ×106(m/s) ∴He+: r 1He+=×12/2nm= r 2He+=×22/2= V 1 He+= ×106×2/1= ×106(m/s) V 2 He+= ×106×2/2= ×106(m/s) Li ++: r 1 Li++=×12/3nm= r 2 Li++=×22/3=

V 1 Li++= ×106×3/1= ×106(m/s) V 2 Li++= ×106×3/2= ×106(m/s) (2) 结合能:自由电子和原子核结合成基态时所放出来的能量,它等于把电子从基态电离掉所需要的能量。 ∵ 基态时n =1 H: E 1H = He+: E 1He+=×Z 2=×22= Li ++: E 1Li+=×Z 2=×32= (3) 由里德伯公式 Z 2××3/4= 注意H 、He+、Li++的里德伯常数的近似相等就可以算出如下数值。 2-3 欲使电子与处于基态的锂离子Li ++发生非弹性散射,试问电子至少具有多大的动能 要点分析:电子与锂质量差别较小, 可不考虑碰撞的能量损失.可以近似认为电子的能量全部传给锂,使锂激发. 解:要产生非弹性碰撞,即电子能量最小必须达到使锂离子从基态达第一激发态,分析电子至少要使Li ++从基态n =1激发到第一激发态n =2. 因为 Z n ⊿E =E 2-E 1=Z 2R Li ++hc (1/12-1/22)≈32××3/4eV= 讨论:锂离子激发需要极大的能量 2-4 运动质子与一个处于静止的基态氢原子作完全非弹性的对心碰撞,欲使氢原子发射出光子,质子至少应以多大的速度运动 要点分析:质子与氢原子质量相近,要考虑完全非弹性碰撞的能量损失.计算氢原子获得的实际能量使其能激发到最低的第一激发态. 解: 由动量守恒定律得 m p V =(m p +m H )V ' ∵ m p =m H V’=V /2 由能量守恒定律,传递给氢原子使其激发的能量为:

大学物理第四版下册课后题答案

习题11 11-1.直角三角形ABC的A点上,有电荷C 10 8.19 1 - ? = q,B点上有电荷 C 10 8.49 2 - ? - = q,试求C点的电场强度(设0.04m BC=,0.03m AC=)。 解:1q在C点产生的场强: 1 12 4 AC q E i r πε = , 2 q在C点产生的场强: 2 22 4 BC q E j r πε = , ∴C点的电场强度:44 12 2.710 1.810 E E E i j =+=?+?; C点的合场强:224 12 3.2410V E E E m =+=?, 方向如图: 1.8 arctan33.73342' 2.7 α=== 。 11-2.用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电 量为C 10 12 .39- ?的正电荷均匀分布在棒上,求圆心处电场强度的大小 和方向。 解:∵棒长为2 3.12 l r d m π =-=, ∴电荷线密度:91 1.010 q C m l λ-- ==?? 可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为 0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d02 .0 = 长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷 的塑料棒在O点产生的场强。 解法1:利用微元积分: 2 1 cos 4 O x Rd dE R λθ θ πε =? , ∴2 000 cos2sin2 444 O d E d R R R α α λλλ θθαα πεπεπε - ==?≈?= ?1 0.72V m- =?; 解法2:直接利用点电荷场强公式: 由于d r <<,该小段可看成点电荷:11 2.010 q d C λ- '==?, 则圆心处场强: 11 91 22 2.010 9.0100.72 4(0.5) O q E V m R πε - - '? ==??=? 。 方向由圆心指向缝隙处。 11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电 荷线密度为λ,四分之一圆弧AB的半径为R,试求圆 α j i 2cm O R x α α

大学物理学 第三版 课后习题答案

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以 0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小. 图1-4 解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l += 将上式对时间t 求导,得 t s s t l l d d 2d d 2= 题1-4图 根据速度的定义,并注意到l ,s 是随t 减少的, ∴ t s v v t l v d d ,d d 0-==- =船绳 即 θ cos d d d d 00v v s l t l s l t s v ==-=- =船 或 s v s h s lv v 0 2/1220)(+==船 将船v 再对t 求导,即得船的加速度 1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -?,开始运动时,x =5 m , v =0, 求该质点在t =10s 时的速度和位置. 解:∵ t t v a 34d d +==

分离变量,得 t t v d )34(d += 积分,得 122 34c t t v ++= 由题知,0=t ,00=v ,∴01=c 故 22 34t t v += 又因为 22 34d d t t t x v +== 分离变量, t t t x d )2 3 4(d 2+= 积分得 2322 12c t t x ++= 由题知 0=t ,50=x ,∴52=c 故 52 1232++=t t x 所以s 10=t 时 1-10 以初速度0v =201s m -?抛出一小球,抛出方向与水平面成幔60°的夹角, 求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R . (提示:利用曲率半径与法向加速度之间的关系) 解:设小球所作抛物线轨道如题1-10图所示. 题1-10图 (1)在最高点, 又∵ 1 2 11 ρv a n =

【精品】物理化学第四版课后答案

物理化学第四版课后 答案

第一章气体的pVT性质 1.1 物质的体膨胀系数与等温压缩率的定义如下 试推出理想气体的,与压力、温度的关系。 解:根据理想气体方程 1.5 两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。若将其中的一个球加热到 100 C,另一个球则维持 0 C,忽略连接细管中气体体积,试求该容器内空气的压力。 解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。 标准状态:

因此, 1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。 (1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试 求两种气体混合后的压力。 (2)隔板抽取前后,H2及N2的摩尔体积是否相同?

(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干? 解:(1)等温混合后 即在上述条件下混合,系统的压力认为。 (2)混合气体中某组分的摩尔体积怎样定义? (3)根据分体积的定义 对于分压 1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。重复三次。求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。

解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。 设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则, 。重复上面的过程,第n 次充氮气后,系统的摩尔分数为 , 因此 。 1.13 今有0 C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals方程计算其摩尔体积。实验值为。 解:用理想气体状态方程计算 用van der Waals计算,查表得知,对于N2气(附录七)

原子物理学杨福家第六章习题答案

练习六习题1-2解 6-1 某一X 射线管发出的连续X 光谱的最短波长为0.0124nm ,试 问它的工作电压是多少?解:依据公式 答:它的工作电压是100kV . 6-2莫塞莱的实验是历史上首次精确测量原子序数的方法.如测得某元素的K α )(10Z ;将值代入上式, 10 246.0101010 )??= = =1780 Z =43 即该元素为43号元素锝(Te). 第六章习题3,4 6-3 钕原子(Z=60)的L 吸收限为0.19nm ,试问从钕原子中电离一个K 电子需作多少功? 6-4 证明:对大多数元素K α1射线的强度为K α2射线的两倍. 第六章习题5,6参考答案 6-5 已知铅的K 吸收限为0.014 1nm,K 线系各谱线的波长分别为:0.016 7nm(K α);0.0146nm(K β);0.0142nm(K γ),现请: (1) 根据这些数据绘出有关铅的X 射线能级简图; (2) 计算激发L 线系所需的最小能量与L α线的波长. 分析要点:弄清K 吸收限的含义. K 吸收限指在K 层产生一个空穴需要能量. 即K 层电子的结合能或电离能.

解: (1)由已知的条件可画出X 射线能级简图. K K α L α K β K γ (2) 激发L 线系所需的能量: K 在L 壳层产生一个空穴所需的能量 E LK = φK -φL φL =φK - E LK =87.94 keV -84.93keV=3.01 keV φ为结合能. 或

即有 m 即L α线的波长为0.116nm. 6-6 一束波长为0.54 nm 的单色光入射到一组晶面上,在与入射束偏离为120?的方向上产生一级衍射极大,试问该晶面的间距为多大? ?的方向上产生一级衍射极大sin θ n =1 解得 d =0.312 nm 第六章习题8参考答案 6-7 在康普顿散射中,若入射光子的能量等于电子的静止能,试求散射光子的最小能量及电子的最大动量. 6-8 在康普顿散射中,若一个光子能传递给一个静止电子的最大能量为10 keV ,试求入射光子的能量. (1)其中c m 光子去的能量为电子获得的能量 k E h h ='-νν 依题意,如果电子获得最大能量,则出射光子的能量为最小,(1)式E 由此可算出: ν γγh E E 22=+

大学物理学第三版下册课后答案

习题八 8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 2 220)3 3(π4130cos π412a q q a q '=?εε 解得 q q 3 3- =' (2)与三角形边长无 关. 题8-1图 题8-2图 8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计, 求每个小球所带的 解: 如题8-2图示 ?? ? ?? ===220)sin 2(π41 sin cos θεθθl q F T mg T e 解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式2 04r q E πε= ,当被考察的场点距源点电荷很近(r →0)时,则场强 →∞,这是没有物理意义的,对此应如何理解 ?

解: 02 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求 场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f = 2 024d q πε,又有人说,因为f =qE ,S q E 0ε= ,所以f =S q 02 ε.试问这两种说法对吗?为什么? f 到底应等于多少 ? 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε=,另一板受它的作用力S q S q q f 02 022εε= =,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为 θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为 r E = 302cos r p πεθ, θE =3 04sin r p πεθ 证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量θsin p . ∵ l r >> ∴ 场点P 在r 方向场强分量 3 0π2cos r p E r εθ = 垂直于r 方向,即θ方向场强分量 3 00π4sin r p E εθ =

大学物理(第四版)课后习题及答案刚体

题4.1:一汽车发动机曲轴的转速在s 12内由13min r 102.1-??均匀的增加到13min r 107.2-??。 (1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转? 题 4.1解:(1)由于角速度2n (n 为单位时间内的转数),根据角加速度的定义t d d ωα=,在匀变速转动中角加速度为 ()200 s rad 1.132-?=-=-=t n n t πωωα (2)发动机曲轴转过的角度为 ()t n n t t t 00 20221 +=+=+=πωωαωθ 在12 s 内曲轴转过的圈数为 圈3902 20=+==t n n N πθ 题4.2:某种电动机启动后转速随时间变化的关系为)1(0τωωt e --=,式中10s rad 0.9-?=ω, s 0.2=τ。求:(1)s 0.6=t 时的转速;(2)角加速度随时间变化的规律;(3)启动后s 0.6内转过的圈数。 题4.2解:(1)根据题意中转速随时间的变化关系,将t 6.0 s 代入,即得 100s 6.895.01--==??? ? ??-=ωωωτt e (2)角加速度随时间变化的规律为 220s 5.4d d ---===t t e e t ττωωα (3)t = 6.0 s 时转过的角度为 rad 9.36d 1d 60060=??? ? ??-==??-s t s t e t τωωθ 则t = 6.0 s 时电动机转过的圈数 圈87.52== π θN 题4.3:如图所示,一通风机的转动部分以初角速度0ω绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转? 题4.3解:(1)通风机叶片所受的阻力矩为ωM C -=,由转动定律αM J =,可得叶片的角加速度为 J C t ωωα-==d d (1) 根据初始条件对式(1)积分,有

大学物理学课后答案(湖南大学出版社)

12.12 真空中有两块相互平行的无限大均匀带电平面A 和B .A 平面的电荷面密度为2σ,B 平面的电荷面密度为σ,两面间的距离为d .当点电荷q 从A 面移到B 面时,电场力做的功为多少? [解答]两平面产生的电场强度大小分别为 E A = 2σ/2ε0 = σ/ε0,E B = σ/2ε0, 两平面在它们之间产生的场强方向相反,因此,总场强大小为 E = E A - E B = σ/2ε0, 方向由A 平面指向B 平面. 两平面间的电势差为 U = Ed = σd /2ε0, 当点电荷q 从A 面移到B 面时,电场力做的功为 W = qU = qσd /2ε0. 13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一 点电荷q , 球心o 的电势为多少? [解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心 都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电 势叠加,大小为 000 111444o q q Q q U r a b πεπεπε-+=++ 13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能;(3)极板上的自由电荷面密度. [解答](1)如前所述,两电容器并联的电容为 C = (1 + εr )ε0S /2d . (2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U . 当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为 W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d . (3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ;介质中的一半的电容为 C 2 = ε0εr S /2d .设两半的所带自由电荷分别为Q 1和Q 2,则 Q 1 + Q 2 = Q . ① 由于C = Q/U ,所以 U = Q 1/C 1 = Q 2/C 2. ② 解联立方程得 0111221 1/C U C Q Q C C C C = = ++, 真空中一半电容器的自由电荷面密度为 001 12122/2(1/)(1)r C U U Q S C C S d εσε= == ++. 同理,介质中一半电容器的自由电荷面密度为 14.1通有电流I 的导线形状如图所示,图中ACDO 是边长为b 的正方形.求圆心O 处的磁感应强度B = ? [解答]电流在O 点的产生的磁场的方向都是垂直纸面向里的.根据毕-萨定 律:002 d d 4I r μπ? =l r B , 圆弧上的电流元与到O 点的矢径垂直,在O 点产生的磁场大小为 012d d 4I l B a μπ=, 由于 d l = a d φ, 积分得 11d L B B =?3/2 00 d 4I a πμ?π=?038I a μ= . OA 和OD 方向的直线在O 点产生的磁场为零.在AC 段,电流元在O 点产生的磁场为 图13.3

相关文档
最新文档