第一章 测量误差 数据处理 不确定度的评定..

第一章 测量误差 数据处理 不确定度的评定..
第一章 测量误差 数据处理 不确定度的评定..

第一章实验数据处理的基本方法

我们每做一个物理实验,都是先对这个实验中的物理现象进行观察,然后通过相应的测量获得一些实验数据,最后经过对这些数据的处理得到最终的实验结果。除了通过正确的原理和方法进行实验外,用正确的方法对实验数据进行处理,是获得合理的实验结果的关键。本章主要介绍实验数据处理的基本方法。其内容由两部分组成。

第一部的主要内容是有效数字及其运算、实验误差的特点及克服方法、不确定度概念及其初步评定方法等。

第二部的主要内容是列表法、作图法、逐差法等常用的实验数据处理方法。

§1 有效数字及其运算

一、直接测量和间接测量

我们知道,量度物质的属性或描述物质的运动状态所用的各种量值叫做物理量,如长度、速度、热量、功、电流强度等。测量是用实验方法获得物理量量值(测量值)的过程。按照测量值获得方法的不同,测量分为直接测量和间接测量两种。

1.直接测量:

是指不需要对被测量与其它实测量进行函数关系的辅助计算,直接从仪器或量具上得到被测量值的测量。例如:用直尺测量长度;以秒表计时间;用天平称质量;用电流表测电流等。这些用直接测量得到量值的物理量叫做直接测得量。

2.间接测量

是指从一个或几个直接测量结果按一定的函数关系计算出来的的过程。而用间接测量得到量值的物理量叫做间接测得量。例如:在伏安法测电阻的实验中,用电流表直接测量流过待测电阻的电流I,用电压表直接测量待测电阻两端的电压U,然后欧姆定律R=U/I计算电阻的阻值R的过程,就是间接测量。在这里,电流I和电压U是直接测得量,而电阻R是间接间接测得量。

二、有效数字的定义

由于种种原因,用任何实验仪器直接测量的数值都不可避免地含有一定的误差,因此,测得的数据都只能是近似数。由这些近似数通过计算而得到的间接测量值也一定是近似数。显然,几个近似数的运算不可能使运算结果更加准确,而只会使其误差增大。因此近似数的表示和计算都必须遵循一些规则,以便确切地表示和记录运算结果的近似性。这些规则就是有效数字及其运算规则。

从仪器上读出的数字,通常都要尽可能估计到仪器最小刻度的下一位。以如图1-1所示的用米尺测量钢棒的长度为例,我们可以读出4.26cm,4.27cm或4.28cm,前二位“4.2”可以从米

尺上直接读出来,是准确数字,而第三位数“6”,“7”或“8”是测量者估读出来的,估读的结果因

人而异,因此这一位是有疑问的,叫做存疑数字(又叫做不可靠数字)。由于第三位已经存疑,因此已没有必要估计它以后的各位数了。

我们把仪器上直接读出的数字和最后一位估读的存疑数字,全部记录下来,叫做有效数字。也就是说,有效数字包括从仪器上直接读出的准确数字和最后一位存疑数字,即

有效数字 = 准确数字 + 存疑数字

而且也只有最后一位数字是存疑数字。结果用并且只用它的有效数字表示。

上面所说的钢棒长度的测量值4.26 cm ,4.27 cm 或4.28 cm 包含三位有效数字。也就是说,有效数字的位数等于准确数字的位数加上存疑数字的位数(存疑数字的位数只能为1)。在以下的表述中,存疑数字下面标上下滑线。

例:2.365(四位);0.21008(五位);0.0024(二位);0.260(三位);0.01230(四位)。

三、有效数字的特点

1. 有效数字前面的“0”不是有效数字,而中间和后面的“0”都是有效数字。

例:0.0003576 ,3.005 ,3.000 都是四位有效数字。在上例中的0.01230 和本例中的3.000最右边的“0”是有效位数,不可以省略不写。

注意:实验中的数字与数学上的数字是不一样的。

数学的8.35 = 8.350 = 8.3500 ,

实验的8.35 ≠ 8.350 ≠ 8.3500(小数点后面的0是有意义的)。

2. 单位换算时,有效数字的位数不变。即有效数字的位数与小数点的位置无关。 例:2

3.56 cm = 0.2356 m = 0.0002356 km

为了避免混淆,并使记录和计算方便,在写有效数字时,通常在小数点前一律取一位有效

数字,然后乘上10的幂来表示,即

图1-1

0 cm

2 4

3 1 5

n a A 10?=,且1≤ a <10

这样写有效数字的方法,叫做科学记数法。

例:在上例中,我们可以这样写:

23.56 cm = 2.356 × 101 cm = 2.356 × 10-1 m = 2.356 × 10-4

km

例:光速c = 30 km/s 。

不正确的写法:c = 300000 km/s ;c = 30 km/s

正确的写法:c = 3.0×105 km/s = 3.0×108 m/s

3. 有效数字的位数与被测物的大小和测量仪器的精密度有关。

例如在图1-1中测得物体的长度为4.27 cm ,如果改用千分尺来测,其有效数字的位

数有五位。

四、直接测得量有效数字的读取

直接测得量的有效数字来源于测量时所用的仪器。

1. 刻度式仪表(米尺、千分尺、读数显微镜、常用的电流表、电压表等),一般读数应读到最小分度,然后再估读一位,如图1-2所示。

2. 有时读数的估计位,就取在最小分度位。例如,仪器的最小分度值为0.5 ,则0.1 ~ 0.4 ,0.6 ~ 0.9 都是估计的,不必估到下一位,如图1-3所示。

读数:4.7 cm

图1-3

0 cm

2 4

3 1 5

读数:15.84 mm

6 5 3

7

8

9 0.02mm

4 2 1

0 6 5 3 7

4 2 1 0

图1-2

读数:18.907 mm

3. 游标类量具(游标卡尺、分光计度盘、大气压计等),读到游标分度值的整数倍。多数情况下不估读,特殊情况估读到游标分度值的一半。如图1-4所示

4. 数字式仪表及步进读数仪器(电阻箱、电桥、电位差计、数字电压表等),不需估读。直接读取仪表的示值,如图1-5所示。

5. 若测量值恰为整数,必须补零,直接补到存疑位,如图1-6所示。

6. 特殊情况,直读数据的有效数字由仪器的灵敏阈决定。例如在“电表的改装”中,表头串联一个大电阻,改装成电压表时,由于线路灵敏度低,在确定串联电阻时,调节电阻箱上“×1Ω”挡时,表头上的反映已经不太灵敏,尽管最小步进值为“×0.1Ω”,电阻值只记录到“×1Ω”。

五、间接测得量有效数字尾数的舍入规则

如上所述,在对直接测得量进行测量时,必须用有效数字表示其量值。而要通过对有效数字进行运算得到间接得测量时,不可避免地会遇到间接得测量有效数字尾数的舍入问题。根据国家的相关标准,将运算结果中多余的存疑数字舍去时,本课程采用“4舍6入5凑偶”的方法则。

根据这个法则,当要保留n 位有效数字时,如果 1. 第n+1位数字≤4 ,就把它舍掉;

2. 第n+1位数字≥6时,则要向第n 位数字进1 ;

3. 第n+1位数字=5,并且后面的数字都为0,则第n 位数字若为偶数时就把这个5舍掉;第n 位数字为奇数时就向前进1 ;若第n+1位数字=5且后面还有不为0的任何数字时,无论第n 位数字是奇数或偶数都进1 。

例:保留3位有效位数,则

9.82462 = 9.82(∵ 0.004 < 0.005 。) 7.62671 = 7.63(∵ 0.006 > 0.005 。)

9.82500 = 9.82(5后面的数字都为0,并且它前面的2是偶数。) 3.13500 = 3.14(5后面的数字都为0,并且它前面的3是奇数。) 6.32502 = 6.33(5后面有不为0的数字)

图1-

5

读数:4.20 cm

图1-6

0 cm

2 4

3 1 5

六、有效数字的运算

1. 总的原则:

① 准确数字与准确数字进行四则运算时,其结果仍为准确数字。

② 准确数字与存疑数字以及存疑数字与存疑数字进行四则运算时,其结果均为存疑数字。 ③ 在最后的结果中只保留一位存疑数字,其后多余的存疑数字数字是无意义的,应按有效数字舍入规则截去。

2. 具体规则:

① 两数相加、减时,其结果的有效位数的最后(即最右)一位的位置与两数中最后一位位数高者的相同。例如:

7.481266.481246.32.478≈=+ 9.4578.454.372.49≈=-

② 两数相乘、除时,其结果的有运算结果的有效位数与两数中有效位数少者相同。例如

41099.155.449199.235.834?≈=? 2131467.1135.194.2569≈=÷

③ 乘方、开方运算最后结果的有效数字位数一般取与底数的有效数字位数相同。例如:

66.53)532.7(2≈

37.58.32≈

④ 指数、对数、三角等函数运算结果的有效数字位数由其改变量对应的数位决定。

例如:

在 841567.023.2ln =中2.32的存疑数字为0.02,

那么我们将它的末位数改变1(即 845868.033.2ln =)后比较,看出发生改变的位置在小数点后的第三位(千分位)上,就能得知284.023.2ln ≈。

⑤ 常数π、e 、1/3、2等常数的有效数字位数可以认为是无限的,应取足够的有效位数参与运算,直接根据计算器上的计算结果取用。

⑥ 有效数字位数不能由数学或物理常数来确定。

例如:在公式as 2=υ中,υ的计算结果不能由于“2”的存在而只取一位存疑数字,而要根据a 和s 来决定。

以上这些结论,在一般情况下是成立的,有时会有一位的出入。为了防止数字截尾后运算引入新误差,在中间过程中,参与运算的数据可多取1至2有效数字。

在当今计算机时代,对参与运算的数和中间运算结果都可不作修约,也可比传统方法估计的位数适当多取几位,只在最后结果表示前再作修约,这样可能更有利于实验效率的提高。

§2 测量误差和测量不确定度

一、测量误差的基本概念

物理实验是以测量为基础的,但是测量结果都可能存在误差。可以说任何测量都不可能无限准确。

测量误差的主要来源

(1)仪器、装置引入的误差;操作读数时的视差影响

(2)原理、方法引入的误差;

(3)环境、条件引入的误差;

(4)实验者引入的误差;

误差的定义、分类及简要处理方法

测量误差的定义

测量结果y和被测量真值Yt之差称误差,记作

dy

误差dy=测量值y-真值Y t

误差被定义为“测量结果与被测量真值之差。一个

量的真值,是在被观测时本身所具有的真实大小,

只有完善(由理想测量得到的值)的测量才能得到

真值,而实际上任何测量都有缺陷,因此真值是一

个理想化的概念。由于其值无法确切地知道,所以

误差也无法准确地知道。

由于真值的不可知,误差实际上很难计算。有时可以用准确度较高的结果作为约定真值来计算误差。

被测值的真值是一个理想的概念,一般说来真值是不知道的。在实际测量中常用准确度高的实际值来作为约定真值,才能计算误差。

误差特性

普遍性, 小量

误差的普遍性要求必须重视对测量结果的误差分析和不确定度评定,完整地表示测量结果。

完整的测量结果应表示为

测量对象,测量对象的量值,测量的不确定度,测量值的单位。(测量的四个要素:1)测量对

象;2)测量方法;3)测量单位;4)测量不确定度)

表示被测对象的真值落在(y - ?, y + ? )范

围内的概率很大, ?的取值与一定的概率相联。 误差主要分为两类:

a)随机误差(可以由统计方法评定); b)系统误差(则要具体问题具体讨论)

另一类因为读数错误、操作失当等原因造成的明显超出规定条件下预期值的误差,称为粗大误差。测量应避免出现粗大误差. 已被谨慎地确定为含有粗大误差的个别数据要剔除。 随机误差 定义:

重复测量中以不可预知方式变化的测量误差分量。 例如:

电表轴承的摩擦力变动;

螺旋测微计测力在一定范围内随机变化; 操作读数时的视差影响;

数字仪表末位取整数时的随机舍入过程等等, 都会产生一定的随机误差分量。 如何处理随机误差分量?

随机误差分量是测量误差的一部分,其绝对值大小和符号虽然不知道,但在相同条件下对同一量的多次重复测量中,它们的分布常常满足一定的统计规律。 简要处理方法 算术平均值 标准偏差 不确定度 算术平均值

大多数情况下,随机误差具有抵偿性。测量次数足够多时,符号为正的误差和符号为负的误差基本对称,能大致相消。

因此,用多次测得值的算术平均值作为被测量的估计值,能减小随机误差的影响。 设对同一量作了 n 次重复测量,测得值为Yi ,平均值为 :

标准偏差

随机误差使测得值Yi 有分散性,分散性用实验标准偏差s 表征,s 的值直接体现了随机误差的分布特征。

s 大表示测得值分散,随机误差分布范围宽, 测量精密度低;

s 小表示测得值密集,随机误差分布范围窄, 测量精密度高。

?±=y Y ∑

==n i i y n y 1

1

s 可由贝塞耳公式算出: 系统误差 定义:

重复测量中保持恒定或以可预知方式变化的测量误差分量。

系统误差分类

已定系统误差 未定系统误差

已定系统误差(必须修正)

指符号和绝对值已经确定的误差分量。实验中应尽量消除已定系统误差,或对测量结果进行修正,修正公式为:

测得值(或其平均值)-已定系统误差 例如:

电表、螺旋测微计的零点误差;

伏安法测电阻时,电流表内接、外接, 由于忽略表内阻引起的误差。 已定系统误差的修正

未定系统误差(须估计分布范围)

指符号或绝对值未被确定的系统误差分量。一般只能估计出未定系统误差的限值或分布特征值。

未定系统误差分量大多和B 类不确定度分量的来源有粗略的对应关系。 对实验中的系统误差应如何处理? 系统误差分析的重要性:

大量的一般测量的实践表明,系统误差分量对测量结果的影响常常显著地大于随机误差分量的影响。因此大学物理实验要重视对系统误差的分析,尽量减小它对测量结果的影响。

g R I U R -=

内接法V

R U I U R -=

外接法

1)对已定系统误差进行修正;

2)合理评定系统误差分量对应的B类不确定度分量;

3)通过方案选择、参数设计、计量器具校准、

环境条件控制、计算方法改进等环节减小系统

误差影响。

把待测物理量直接或间接地与一个被选做标准的同类物理量做比较。

测量结果应包括这种比较操作所得到的比值、单位,还应说明这一结果在什么范围内的置信概率。

1.1 等精度测量;直接测量;间接测量

等精度测量:同一个人、用同一仪器、用同样的方法、在相同条件下多次测量同一物理量(5同)。

实际上,事物总在不断变化,只要这种变化较小,不影响测量结果,就算等精度测量。

其它为不等精度测量。

测量分为直接测量和间接测量

直接测量:被测量直接与标准量相比较而得出测量结果

间接测量:利用被测量与可以直接测量的量的函数关系,通过计算而得出测量

结果

例:

测量铜柱的密度时,我们可以用米尺量出它的高h和直径d,算出体积然后用天平称出它的质量M,算出密度

这里,我们说

铜柱的高h、直径d 和质量M是直接测得量,

体积V和密度ρ是间接测得量。

1.2 真值;最佳估计值

2. 误差的概念及分类 2.1 系统误差

2.1.1 系统误差的特点 2.1.2 产生系统误差的原因 (1)仪器构造上的不完善。 (2)安装调整误差。 (3)个人误差。

(4)方法误差或理论误差。 2.1.3 减少系统误差的方法

(1)从误差来源上消除系统误差 (2)用修正法消除系统误差

(3)应用测量技术消除恒定系统误差

① 换测法。 ②替代法。③异号法。

对修正后的遗漏部分,则应认为具有随机的特性予以估计。 2.2 随机误差

2.2.1 随机误差的特点

2.2.2 减少随机误差的方法

由于误差的存在,使得测量结果具有一定程度的不确定性。为了加强国际间的交流与合作,1996年,中国计量科学研究院在国际权威文件《测量不确定度表达指南》的基础上,制定了我国的《测量不确定度规范》。从此,物理实验的不确定度评定有了国际公认的准则。下面将结合对测量结果的评定对不确定度的概念、分类、合成等问题进行讨论。

1)不确定度的概念

不确定度,表示由于测量误差的存在而对被测量值不能确定的程度。

不确定度,反映了可能存在的误差分布范围,即随机误差分量和未定系统误差分量的联合分布范围。

由于真值的不可知,误差一般是不能计算的,它可

正、可负也可能十分接近零;而不确定度总是不为零的正值,是可以具体评定的。

不确定度理论摈弃了传统的“系统误差”和“随机误差”的分类方法,而是将不确定度按照测量数据的性质分类:

1)用数理统计方法处理, 称为A 类不确定度; 2)用非数理统计方法处理,统称为B 类不确定度。 测量不确定度的理论保留系统误差的概念。

A 类分量— 多次重复测量时与随机误差有关的分量;

B 类分量— 多数与未定系统误差有关的分量。

这两类分量在相同置信概率下用方和根方法合成总不确定度:

22B

A ?+?=?

研究不确定度的意义

科学地反映测量结果的数值和可靠程度.

根据对测量不确定度的要求,确定实验方案,选择仪器和环境.

努力找出和减小系统误差,提高实验精度.

历史上不乏通过对不确定度的研究,获得重大发现的例子.

不确定度是评价测量质量的一个新概念,是表达测量结果具有分散性的一个参数,它是被测量的真值在某个量值范围内的一个评定。不确定度反映了可能存在的误差分布范围,是误差的数字指标。不确定度愈小,测量结果可信赖程度愈高;不确定度愈大,测量结果可信赖程度愈低。在实验和测量工作中,不确定度是作为估计而言的,因为误差是未知的,不可能用指出误差的方法去说明可信赖程度,而只能用误差的某种可能的数值去说明可信赖程度,所以不确定度更能表示测量结果的性质和测量的质量。用不确定度评定实验结果的误差,其中包含了各种来源不同的误差对结果的影响,而它们的计算又反映了这些误差所服从的分布规律,这是更准确地表述了测量结果的可靠程度,因而有必要采用不确定度的概念。

1.2.2 测量结果的表示和合成不确定度

3. 不确定度概念及计算

3.1 不确定度的概念

不确定度是表征被测量量真值所处范围的评定结果,这个范围以一定概率包含着被测量的真值,不确定度越大,这个范围包含真值的置信度(概率)就越高。按其数值评定方法,它们可分为两类:

A类不确定度:用统计方法计算的那些分量(与数据的离散性对应)常用字母s 表示;

B类不确定度:用其他方法估算的那些分量(与仪器的欠准确对应)常用字母u 表示。

注意:A、B不确定度与传统划分的随机误差、系统误差并不存在简单的对应关系。

§3 不确定度的初步评定

测量结果的表述规范:

(1)如果测量结果是最终结果,其不确定度可用一位或二位数字表示。本课程约定,当不确定度的第一位数字为1或2时取二位,其余的取一位。即

如果是作为间接测量的中间结果,其不确定度位数可比正常截断多取一位以免造成截尾误差的累积。

本课程约定,测量结果的相对不确定度一律用二位数的百分数表示。

(2)不确定度数值截尾时,采取“只入不舍”的方法,以保证其置信概率不降低。例如计算得到不确定度为0.2412,截取两位为0.25。

(3)测量结果的有效数字位数由不确定度来确定。测量结果的最末位应与不确定度末位对齐,数据截断时其尾数按本教程采用“4舍6入5凑偶”的方法处理。

例如,某测量数据计算的平均值为1.83549m,其不确定度(P≈95%)计算得0.04347m,则测量结果可表示为

(1.84±0.05)m Ur=2.7% (P≈95%)

(4)在测量结果后一般用括号注明置信概率的近似值。按本书的计算方法,P≈95%,为方便起见,以后在表示测量结果时,P≈95%不要求注明。

1)总不确定度Δ的有效位数,取1 ~2位

首位>=3时,一般取1位

首位为1、2时,一般取2位

合成不确定度时也可按此原则处理,最后得到的总不确定度按不确定度的取位规则来取位。

最终结果的有效位数由不确定度决定。

具体为:不确定度的有效位数取1位,测量结果的末位与不确定度末位对齐,即不确定度决定测量结果的有效位数。

4.3 间接测量量有效数字的确定

总不确定度Δ的有效位数,取1 ~2位

首位大于5时,一般取1位;首位为1、2时,一般取2位

例:估算结果Δ=0.548mm时,取为Δ=0.5 mm;

Δ=1.37 Ω时,取为Δ=1.4Ω

3、测量结果的不确定度及有效数字的取法

(1)确定最后结果的有效数字位数的一般原则:由不确定度决定.

(2)不确定度的有效数字一般只取一位。

(3)结果的最后一位要与不确定度的最后一位对齐。

如:测量结果为4.2315,不确定度为0.002,则

4.2315 ±0.002 (错)

4.232 ±0.002 (对)

须要指出的是,对于总合成不确定度,一般只入不舍。

例:u(R)=0.00332m= 0.004m(取一位时)

(3)运算结果一般只保留一位存疑数字.

指针式仪表及其它器具,读数时估读到仪器最小分度的1/4-1/10,

或使估读间隔不大于仪器基本误差限的1/5-1/3。

b)运算:运算过程中的有效位数

C)测量结果最终表达式中的有效位数

2)被测量值有效位数的确定

Y=y±Δ中,被测量值y的末位要与不确定度Δ的末位对齐(求出y后先多保留几位,求出Δ,由Δ决定y的末位)。

有效数字与不确定度的关系

有效数字的末位是估读数字,存在不确定性.一般情况下不确定度的有效数字只取一位,其数位即是测量结果的存疑数字的位置;有时不确定度需要取两位数字,其最后一个数位才与测量结果的存疑数字的位置对应.

由于有效数字的最后一位是不确定度所在的位置,因此有效数字在一定程度上反映了测量值的不确定度(或误差限值).测量值的有效数字位数越多,测量的相对不确定度越小;有效数字位数越少,相对不确定度就越大.可见,有效数字可以粗略反映测量结果的不确定度.

(

(4)有效数字位数要与不确定度位数综合考虑.

一般情况下,表示最后结果的不确定度的数值只保留1位,而最后结果的有效数字的最后

一位与不确定度所在的位置对齐.如果实验测量中读取的数字没有存疑数字,不确定度通常需要保留两位.

但要注意:具体规则有一定适用范围,在通常情况下,由于近似的原因,如不严格要求可认为是正确的.

§4 数据处理中的常用方法

§5一元线性函数的最小二乘法

§6合成标准不确定度与扩展不确定度的评定

图2-2

读数:16.726 mm

15

5

10

0 15

30 20 25

读数:4.20cm

图1-8

0 cm 2 4 3 1 5

图1-7

图1-4

读数:18.907 mm

图1-7

测量误差及数据处理.

第一章测量误差及数据处理 物理实验的任务不仅是定性地观察各种自然现象,更重要的是定量地测量相关物理量。而对事物定量地描述又离不开数学方法和进行实验数据的处理。因此,误差分析和数据处理是物理实验课的基础。本章将从测量及误差的定义开始,逐步介绍有关误差和实验数据处理的方法和基本知识。误差理论及数据处理是一切实验结果中不可缺少的内容,是不可分割的两部分。误差理论是一门独立的学科。随着科学技术事业的发展,近年来误差理论基本的概念和处理方法也有很大发展。误差理论以数理统计和概率论为其数学基础,研究误差性质、规律及如何消除误差。实验中的误差分析,其目的是对实验结果做出评定,最大限度的减小实验误差,或指出减小实验误差的方向,提高测量质量,提高测量结果的可信赖程度。对低年级大学生,这部分内容难度较大,本课程尽限于介绍误差分析的初步知识,着重点放在几个重要概念及最简单情况下的误差处理方法,不进行严密的数学论证,减小学生学习的难度,有利于学好物理实验这门基础课程。 第一节测量与误差 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量,以取得物理量数据的表征。对物理量进行测量,是物理实验中极其重要的一个组成部分。对某些物理量的大小进行测定,实验上就是将此物理量与规定的作为标准单位的同类量或可借以导出的异类物理量进行比较,得出结论,这个比较的过程就叫做测量。例如,物体的质量可通过与规定用千克作为标准单位的标准砝码进行比较而得出测量结果;物体运动速度的测定则必须通过与二个不同的物理量,即长度和时间的标准单位进行比较而获得。比较的结果记录下来就叫做实验数据。测量得到的实验数据应包含测量值的大小和单位,二者是缺一不可的。 国际上规定了七个物理量的单位为基本单位。其它物理量的单位则是由以上基本单位按一定的计算关系式导出的。因此,除基本单位之外的其余单位均称它们为导出单位。如以上提到的速度以及经常遇到的力、电压、电阻等物理量的单位都是导出单位。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 测量可以分为两类。按照测量结果获得的方法来分,可将测量分为直接测量和间接测量两类,而从测量条件是否相同来分,又有所谓等精度测量和不等精度测量。 根据测量方法可分为直接测量和间接测量。直接测量就是把待测量与标准量直接比较得出结果。如用米尺测量物体的长度,用天平称量物体的质量,用电流表测量电流等,

“测量误差、不确定度和数据处理”作业参考答案

“测量误差、不确定度和数据处理”作业参考答案(总分:40分) 1.(3分) 1 5 8 9 2 3 2. (3分) (1) 5位 1.08 (2) 5位 0.862 (3) 5位 27.0 (4) 6位 3.14 (5) 4位 0.00200 (6) 5位 4.52?103 3. (2分) A 正确,其他结果的平均值和不确定度的最后一位没有对齐; 4.(2分) (3) 5. (4分) (1) A=(1.70±0.01)?104km, P=95%; (2) B=(1.7±0.5)?10-3m, P=95%; (3) C=(1.08±0.02)?10cm, P=95%; (4) D=(9.95±0.02)?10?C, P=95%; 6. (4分) (1) 216.5-1.32=215.2 (2) 0.0221?0.0221=0.000488 (3) 55100.60.11000.66.1160.121500400?=?=-? (4) 15cm=1.5?102mm=1.5?105μm 7. (5分) (1) 98.754+1.3=100.0 (2) 107.50–2.5=105.0 (3) 27.6÷0.012=2.3?103 (4) 121×10= 1.2×103 (5) 00.20.3800.760.200.4000.76==- (6) 0.100 .11000.200.50)001.000.1)(0.3103()3.1630.18(00.50=??=+--? (7) ()()23101.20.11010 0.11000.10.110000.100.10.100.1000.110000.100.7700.78412.46.50.100?=+??=+??=+?-+? (8) 27.30 .47915680.4790.9436250.4790.943252==+=+ (9) 6630.148030.1410080.030.141005 .20.230.141005.23.213.23=-=-?=-?=-?- 8. (9分) 解:n=6,一般取置信概率P=95%,查表知t p =2.45 ()mm D D i i 836.9836.9837.9834.9838.9836.9835.96 16161=++++++==∑= ()()()()()mm mm D D t U i i p B A D 3366225 2估2 仪22222估2仪6122 2 10510241017108200010004030 101452166000100020002000010452166-----=?≈?≈?+?=++??=?+?+-++-+++-?=?+?+--=?+?=∑.......... 因此 ()mm D 005.0836.9±=, (P =95%) 9. (8分) 解: 3322485478520 9534214225444cm g cm g h D m .....==???==ππρ 3 3661022 222222222222222210510097410181106151062020901053420050414225400204-----?≈?≈?+?+?=+?+=++=?? ? ????+??? ????+??? ????==..........ln ln ln h U D U m U U h U D U m U E h D m h D m ρρρρρρ 32310252100974485cm g E U --?≈??==...ρρρ 因此()303.048.5cm g ±=ρ, (P =95%)或()302304785cm g ..±=ρ, (P =95%) 分析: 相对不确定度大的直接测量量D 对间接测量量ρ的不确定度贡献最大; 相对不确定度小的直接测量量m 对间接测量量ρ的不确定度贡献最小; 这是乘除表达式构成的间接测量量共同的规律。

测量误差及数据处理的基本知识

第一章 测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差 在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N ,相应的真值为N 0,测量值与真值之差ΔN ΔN =N -N 0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将影响降低到最低程度,并对测量结果中未能消除的误差做出估计,是实验测量中不可缺少的一项重要工作。 相对误差 绝对误差与真值之比的百分数叫做相对误差。用E表示: %1000 ??=N N E 由于真值无法知道,所以计算相对误差时常用N代替0N 。在这种情况下,N可能是公认 值,或高一级精密仪器的测量值,或测量值的平均值。相对误差用来表示测量的相对精确度,相对误差用百分数表示,保留两位有效数字。 1.1.3 误差的分类

测量误差及数据处理的基本知识(精)

第一章测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就 是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N,相应的真值为N0,测量值与真值之差ΔN ΔN=N-N0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将

《误差理论与数据处理》答案..

《误差理论与数据处理》 第一章绪论 1-1.研究误差的意义是什么?简述误差理论的主要内容。 答:研究误差的意义为: (1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差; (2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据; (3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结 果。 误差理论的主要内容:误差定义、误差来源及误差分类等。 1-2.试述测量误差的定义及分类,不同种类误差的特点是什么? 答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。 系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化); 随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化; 粗大误差的特点是可取性。 1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。 答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量; 绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。+多少表明大了多少,-多少表示小了多少。 (2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定 1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解: 绝对误差等于: 相对误差等于: 1-6.在万能测长仪上,测量某一被测件的长度为 50mm,已知其最大绝对误差为 1μm,试问该被测件 的真实长度为多少? 解:绝对误差=测得值-真值,即:△L=L-L0已知:L=50,△L=1μm=, 测件的真实长度L0=L-△L=50-=(mm) 1-7.用二等标准活塞压力计测量某压力得,该压力用更准确的办法测得为,问二等标准活塞压力计测量值的误差为多少? 解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。 故二等标准活塞压力计测量值的误差=测得值-实际值, 即: -=-( Pa) 1-8在测量某一长度时,读数值为,其最大绝对误差为20m μ,试求其最大相对误差。 1-9、解: 由 2 12 2 4() h h g T π+ =,得 对 2 12 2 4() h h g T π+ =进行全微分,令 12 h h h =+,并令g V,h V,T V代替dg,dh,dT得 2 180 20 00 180'' = -'' 'o o % 000031 .0 1 0000030864 .0 64800 2 06 60 180 2 180 2 ≈ = '' '' '' ? ? '' = '' = o

物理实验中的测量误差与数据处理方法总结

物理实验中的测量误差与数据处理方法总结

物理实验中的测量误差与数据处理方法总结 作者:石皓昆李珩 指导教师:邓靖武 2014年4月17日

摘要:在学习物理的过程中,学习进行物理实验是不可忽略的一步。在笔者参加学校在北京大学物理实验教学中心学习的过程中,发现在实验结果处理中,应用了许多高中没有出现的方法。我们在这里对我们使用过、遇到过的方法进行总结。 关键词:基础物理实验误差分析不确定度数据处理 目录 一、引言 二、正文 1、测量误差与测量结果的不确定度 2、测量结果的书写规则 3、对测量数据进行处理的几种方法 三、结尾

一、引言:本文着重总结了测量误差与数据处理的几种方法,其中测量误差理论是重中之重。笔者认为进行一项物理实验始终与误差理论有密切的关系,不断减小测量误差即使我们进行试验时不断需要考虑的问题,亦可以帮助我们正确、有效地设计实验方案、进行实验操作、正确处理数据。 二、正文 1、测量误差与测量结果的不确定度 ①测量误差的定义 首先,需要明确测量误差的定义。当我们进行测量时,由于理论的近似性、实验仪器的局限性等,测量结果总不可能绝对准确。待测物理量的真值同我们的测量值之间总会存在某种差异。我们将测量误差定义为 测量误差=测量值-真值 ②测量误差的分类 其次,按照习惯的分类方法,根据误差的性质,误差又分为系统误差和随机误差。 ③系统误差 我们在这里讨论系统误差。系统误差指的是在相同条件下,多次测量同一物理量时,测量值对真值的偏离总是相同的误差。其造成原因大概分为三类:(1)、实验理论、计算公式的局限性(例:测量单摆周期中使用在摆角趋于0 的情况下的周期公式) (2)、仪器的使用问题 (3)、测量者的生理心理因素的影响 (4)、未定系统误差(例如仪器的允差) ④随机误差 与系统误差相对应,随机误差是由于偶然的、不确定的因素造成每一次测量值的无规律的涨落,这类误差我们称作随机误差。 随机误差的特点在于它的随机性。即如果在相同宏观条件下,对某一物理量进行多次测量,每次的测量结果都不相同。但当测量次数足够多时,我们一般认为大多数的随机误差近似符合正态分布。 不妨记随机误差为连续型随机变量x,其概率密度函数为(x) ρ。由“概率论”中对于随机变量的数字特征的定义 数学期望 ()() E x x x dx ρ +∞ -∞ =? 方差 2 D()[()]() x x E x x dx ρ +∞ -∞ =- ? 正态分布的概率密度函数 2 2 2 (x) x σ ρ- =(1.1)

(完整版)误差理论与数据处理简答题及答案

基本概念题 1.误差的定义是什么?它有什么性质?为什么测量误差不可避免? 答:误差=测得值-真值。 误差的性质有: (1)误差永远不等于零; (2)误差具有随机性; (3)误差具有不确定性; (4)误差是未知的。 由于实验方法和实验设备的不完善,周围环境的影响,受人们认识能力所限,测量或实 验所得数据和被测量真值之间不可避免地存在差异,因此误差是不可避免的。 2.什么叫真值?什么叫修正值?修正后能否得到真值?为什么? 答:真值:在观测一个量时,该量本身所具有的真实大小。 修正值:为消除系统误差用代数法加到测量结果上的值,它等于负的误差值。 修正后一般情况下难以得到真值。因为修正值本身也有误差,修正后只能得到较测得值更为准确的结果。 3.测量误差有几种常见的表示方法?它们各用于何种场合? 答:绝对误差、相对误差、引用误差 绝对误差——对于相同的被测量,用绝对误差评定其测量精度的高低。 相对误差——对于不同的被测俩量以及不同的物理量,采用相对误差来评定其测量精度的高低。 引用误差——简化和实用的仪器仪表示值的相对误差(常用在多档和连续分度的仪表中)。4.测量误差分哪几类?它们各有什么特点? 答:随机误差、系统误差、粗大误差 随机误差:在同一测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化着的误差。 系统误差:在同一条件下,多次测量同一量值时,绝对值和符号保持不变,或在条件改变时,按一定规律变化的误差。 粗大误差:超出在规定条件下预期的误差。误差值较大,明显歪曲测量结果。 5.准确度、精密度、精确度的涵义分别是什么?它们分别反映了什么? 答:准确度:反映测量结果中系统误差的影响程度。 精密度:反映测量结果中随机误差的影响程度。 精确度:反映测量结果中系统误差和随机误差综合的影响程度。 准确度反映测量结果中系统误差的影响程度。精密度反映测量结果中随机误差的影响程度。精确度反映测量结果中系统误差和随机误差综合的影响程度。

误差理论及数据处理-复习题及答案

《误差理论与数据处理》 一、填空题(每空1分,共20分) 1 ?测量误差按性质分为________ 差、_________ 差和 _______ 差,相应的处理手段为 _____ 、 ____ 和_____ 。 答案:系统,粗大,随机,消除或减小,剔除,统计的手段 2 .随机误差的统计特性为____________ 、_________ _________ 和________ 。 答案:对称性、单峰性、有界性、抵偿性 3.用测角仪测得某矩形的四个角内角和为360 °0 04 〃,贝U测量的绝对误差为________ ,相对误差__________ 答案:04 ",3.1*10-5 4 ?在实际测量中通常以被测量的 作为约定真值。 答案:高一等级精度的标准给出值、最佳估计值、参考值 5 ?测量结果的重复性条件包括:、 测量人员,测量仪器、测量方法、测量材料、测量环境 6. 一个标称值为5g的砝码,经高一等标准砝码检定,知其误差为0.1mg,问该砝码的实际质量是__________ 。 5g-0.1mg 7 ?置信度是表征测量数据或结果可信赖程度的一个参数,可用_________和

来表示。 标准差极限误差 8 ?指针式仪表的准确度等级是根据 _____________ 差划分的。 引用 9 ?对某电阻进行无系差等精度重复测量,所得测量列的平均值为100.2 Q,标准偏差为0.2 Q,测量次数15次,则平均值的标准差为__________________ ,当置信因子K 二3时,测量结果的置信区间为____________________ 0.2/sqrt(15),3*0.2/sqrt(15) 10 ?在等精度重复测量中,测量列的最佳可信赖值是___________________ < 平均值 11 ?替代法的作用是_____________ 特点是___________ 。 _ 消除恒定系统误差,不改变测量条件 12.对某电压做无系统误差等精度独立测量,测量值服从正态分布。已知被测电 压的真值U 0 = 79.83 V,标准差c(U)= 0.02V,按99% (置信因子k = 2.58 ) 可能性估计测量值出现的范围: ________________________________________________________________________ 。 79.83 ±0.02 V*2.58 13 . R 1 = 150 - - R 1 = ±0.75 二;R 2 = 100 门,丄R 2 =二0.4 二,则两电阻并联后总电阻的绝对误差为 R R;1002 R1(R R2)2 (150 100)2 R R;1502 R2(R R2)2(150 100)20.16 0.36 R=R1*R2/(R1+R2), 二R=』R R1R R2 0.16* 0.75 0.36* 0.4 R2 0.264

2测量误差与数据处理

果总是与被测量的真实量值不一致,即任何测量都不可避免地存在着测量误差。为了减小和消除测量误差对测量结果的影响,需要研究和了解测量误差及测量不确定度。本章包括三个部分的内容。第一部分是测量误差,包括测量误差的基本概念、各类测量误差的处理方法、误差的传递、误差的合成与分配等;第二部分是测量不确定度,包括测量不确定度的概念和表示方法、测量不确定度的评定等;第三部分是数据处理。 2.1 测量误差的基本概念 2.1.1 测量误差存在的必然性和普遍性 在测量过程中,由于实验原理和实验方法的不完善,所采用的测量装置性能指标的局限,在环境中存在着各种干扰因素,以及操作人员技术水平的限制,必然使测量值与被测量的真实量值之间存在着差异。测量结果与被测量的真实量值之间的差异,称为测量误差,简称误差。 误差公理认为:在测量过程中各种各样的测量误差的产生是不可避免的,测量误差自始至终存在于测量过程中,一切测量结果都存在误差。因此,误差的存在具有必然性和普遍性。 随着科学技术的发展和我们认识水平的不断提高,可以将测量误差控制得越来越小,但是测量误差的存在仍是不可避免的。 2.1.2 有关量值的几个基本概念 1.真值 真值是指在一定的时间和空间条件下,能够准确反映某一被测量真实状态和属性的量值,也就是某一被测量客观存在的、实际具有的量值。 2.理论真值和约定真值 真值有理论真值和约定真值两种。 理论真值是在理想情况下表征某一被测量真实状态和属性的量值。理论真值是客观存在的,或者是根据一定的理论所定义的。例如,三角形三内角之和为180°。 由于测量误差的普遍存在,一般情况下被测量的理论真值是不可能通过测量得到的,但却是实际存在的。 由于被测量的理论真值不能通过测量得到,为解决测量中的真值问题,只能用约定的办法来确定真值。约定真值就是指人们为了达到某种目的,按照约定的办法所确定的量值。约定真值是人们定义的,得到国际上公认的某个物理量的标准量值。例如:光速被约定为3×108m/s;以高精度等级仪器的测量值约定为低精度等级仪器测量值的约定真值。 3.实际值 在满足实际需要的前提下,相对于实际测量所考虑的精确程度,其测量误差

测量误差和数据处理技术规范

测量误差及数据处理技术规范 JJG 1027—1991 本技术规范对测量误差和数据处理中比较常遇到的一些问题做出统一的规定,以便正确地给出和使用测量结果。 本规范适用于测量不确定度的评定,计量器具准确度的评定,及其评定结果的表达。 本规范所研究的测量结果的方差是有限的例如,在晶振频率的误差中,由于噪声导致理论方差发散,而是非有限的*。除非特别指明,本规范所述处理方法与误差的分布无关。 一测量结果的误差评定 1 一般原理 由于存在一些不可避免对测量有影响的原因,导致测量结果中存在误差。 误差的准确值、总体标准差都是未知的,但可以通过重复条件或复现条件下的有限次数测量列的统计计算或其它非统计方法得出它们的评定值。 计算得到的误差和(或)已确定的系统误差,应尽量消除或对结果进行修正。无法修正的部分,在测量不确定度评定中作为随机误差处理。 2 测量误差的种类 测量误差是指测量结果与被测量真值之差。它既可用绝对误差表示,也可以用相对误差表示。按其出现的特点,可分为系统误差、随机误差和粗大误差。 2.1 系统误差 在同一被测量的多次测量过程中,保持恒定或以可预知方式变化的测量误差的分量。按其变化规律可分为两类: a 固定值的系统误差。其值(包括正负号)恒定。如,采用天平称重中标准砝码误差所引起的测量误差分量。 b 随条件变化的系统误差。其值以确定的,并通常是已知的规律随某些测量条件变化。如,随温度周期变化引起的温度附加误差。 2.2 随机误差 在同一量的多次测量过程中,以不可预知方式变化的测量误差分量。它引起对同一量的测量列中各次测量结果之间的差异,常用标准差表征。对标准差以及系统误差中不可掌握的部分的估计,是测量不确定度评定的主要对象。 2.3 粗大误差 指明显超出规定条件下预期的误差。它是统计的异常值,测量结果带有的粗大误差应按一定规则剔除。 3 误差来源及分解 任何详细的误差评定报告,应包括各误差项的完整材料,其中应有评定方法的说明。3.1 误差来源 设被测量的真值为Y0,而测量结果为Y,则绝对误差ΔY可表示为: ΔY=Y-Y0 (1.1) 本条叙述由测量绝对误差ΔY分解成可以评定的误差分量ΔYk的法则。 绝对误差可认为是各分量ΔY k的代数和:

完整word版数据处理及测量误差

数据处理及测量误差 一、有效数字和计算规则 (一) 有效数字概念 所谓“有效数字”是指在分析和测量中所能得到的有实际意义的数字。换句话说,有效数字的位数反映了计量器具的精密度和准确度。记录和报告的结果只应包含有效数字,对有效数字的位数不能任意增删。因此必须按实际工作需要对测量结果的原始数据进行处理。 (二) 有效数字的记录 有效数字是由全部确定数字和一位不确定的可疑数字构成的。从最后一个算起的第二位以前的数字应该是可靠的(确定的),只有末位数字是可疑的(不确定的),总体构成有效数字的数值。如2.368为四位有效数字,698523为五位有效数字。这里要注意:当数字“0”用于指示小数点的位置,而与测量的准确度无关时,不是有效数字;当它用于表示与测量准确程度有关的数值大小时,则是有效数字。这与“0”在数值中的位置有关。下面将要点列举如下: (1) 如:“0”在数字前,仅起定位作用,则“0”本身不是有效数字。如:某一测量结果记录为0.02315g,为四位有效数字。 (2) 数值中间的“0”为有效数字。如:2.04和5005分别为三位和四位有效数字。 (3)“0”在数字后面为有效数字。如6.230和0.1420均为四位有效数字。 (4) 以“0”结尾的整数,有效位数不确定。此时应根据测定值的准确度改写成指数44,分别为三位和五位有效数字。10 和2.4200形式。如2.42×10×(三) 有效数字修约规则 测量结果的数据处理和结果表达是测量过程的最后环节,由于测量结果含有测量误差,测量结果的有效位数应保留适宜,太多会使人误认为测量准确度很高,同时也会带来计算上的繁琐;太少则会损失测量准确度。测量、计算结果的数值应按《数值修约规则》(GB/T8170-1987)进行修约,即按“四舍六入五余进,奇进偶舍”规则修约。 “四舍六入五余进,奇进偶舍”规则,即当尾数不大于4时,舍去;尾数不小于6时进位;当尾数为5时,则视保留的末位数是奇数还是偶数:5前为偶数应将5舍去,5前为奇数则将5进位。这一规则具体运用如下: (1) 拟舍弃的第一位数字小于5,则舍去,拟保留的末位数字不变。如2.7258修约到只保留一位小数时,其被舍弃的第一位数字为2(小于5),则修约后的数值应为2.7。 (2) 拟舍弃的第一位数字大于5,则进1,即拟保留的末位数字加1。如2.78修约到只保留一位小数时,其被舍弃的第一位数字为8(大于5),则修约后的数值应为2.8。 (3) 拟舍弃的第一位数字为5,而其后的数字不全为零,则进1。如2.7502修约到只保留一位小数,其被舍弃的第一位数字是5,5后面为“01”,则修约后的数值应为2.8。 (4) 拟舍弃的第一位数字为5,而其后无数字或数字全部为零,则视被保留的末位2.735、2.705如末位数字为偶数时舍去。,1末位数字为奇数时进数字为奇数

测量误差及数据处理技术规范

测量误差及数据处理技术规范 JJG 1027-1991 本技术规范对测量误差和数据处理中比较常遇到得一些问题做出统一规定,以便正确地给出和使用测量结果。 本规范适用于测量不确定度的评定,计量器具准确度的评定,及其平时结果的表达。 本规范所研究的测量结果的方差是有限的,例如,在品振频率的误差中,由于噪声导致理论方差发散,而是非有限的*。除非特别指明,本规范所述处理方法与误差分布无关。 1.一般原理 由于存在一些不可避免对测量有影响的原因,导致测量结果中存在误差。 误差的准确值、总体标准差都是未知的,但可以通过重复条件或复现条件下的有限次数测量列的统计计算或其它非统计方法得出它们的评定值。 2.测量误差的种类 测量误差是指测量结果与被测量真值之差,它既可用绝对误差表示,也可以用相对误差表示。按其出现的特点,可分为系统误差、随机误差和粗大误差。 2.1系统误差 在同一被测量的多次测量过程中,保持恒定或以可预知方式变化的测量误差的分量。按其变化可分为两类: a 固定值的系统误差。其值(包括正负号)恒定。如,采用天平称重中标准砝码误差所引起的测量误差分量。 b 随条件变化的系统误差。其值以确定的,并通常是已知的规律随某些测量条件变化。如,随温度周期变化引起的温度附加误差。 2.2随机误差 在同一被测量的多次测量过程中,以不可预知方式变化的测量误差的分量。它引起对同一量的测量列中各次测量结果之间的差异,常用标准差表征。对标准差以及系统误差中不可掌握的部分的估计,是测量不确定度评定的主要对象。 2.3粗大误差 指明显超出规定条件下预期的误差。它是统计的异常值,测量结果带有的粗大误差应该按一定规则剔除。 3.误差来源及分解 任何详细的误差评定报告,应包括各项误差的完整材料,其中应有评定方法的说明。 3.1误差来源及分解 设被测量的真值为0Y ,而测量结果为Y ,则绝对误差Y ?可表示为: 0Y Y Y -=? (1.1) 本条叙述由测量绝对误差Y ?分解成可以评定的误差分量K Y ?的法则。

误差理论与数据处理--课后答案

《误差理论与数据处理》练习题参-考-答-案

第一章 绪论 1-5 测得某三角块的三个角度之和为180o 00’02”,试求测量的绝对误差和相对误差 解: 绝对误差等于: 相对误差等于: 1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。 % 108.66 % 1002.31 1020 100% max max 4-6 -?=??=?= 测得值 绝对误差相对误差 1-10 检定2.5级(即引用误差为2.5%)的全量程为l00V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电表是否合格? 解: 依题意,该电压表的示值误差为 2V 由此求出该电表的引用相对误差为 2/100=2% 因为 2%<2.5% 所以,该电表合格。 1-12用两种方法分别测量L 1=50mm ,L 2=80mm 。测得值各为50.004mm ,80.006mm 。试评定两种方法测量精度的高低。 相对误差 L 1:50mm 0.008%100%5050 004.501=?-= I L 2:80mm 0.0075%100%80 80 006.802=?-=I 21I I > 所以L 2=80mm 方法测量精度高。 1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射击精度高? 21802000180''=-'''o o %000031.010*********.00648002066018021802≈=' '' '''??''=''=o

《测量误差与数据处理》复习资料

《测量误差与数据处理》复习资料 一、填空题 1、若用L表示观测值,L~表示真值,则观测误差的计算方法为:。 2、测量上传统的直接测量数据为、和。 3、误差椭圆研究的是待定点相对于的精度,相对误差椭圆研究的是任意两个之间相对位置的精度。(起始点/待定点) 4、某测角网共有n个角度观测值,t个必要观测,如按条件平差进行时,此三角网可以列出 个条件方程,如按间接平差进行时,此三角网可以列出个误差方程。 5、设某角度观测值的协因数为9,则其观测值的权为。 6、偶然误差的统计规律性是指:、聚中性、和抵偿性。 7、观测误差按其性质不同可以分为系统误差和偶然误差,其中误差在观测或计算过程中可以采用一定的措施消除或消弱,而误差在观测结果中必然存在。8、观测误差产生的原因可归结为:、、,当观测条件好时,观测质量就会;反之,观测条件差时,观测成果质量就会;如果观测条件相同,观测成果的质量也就可以说是。 9、根据观测误差对观测结果影响的性质,可将误差分为和。 10、误差具有累积性,对成果的影响较大,应当设法消除或减弱的。 11、消除系统误差的方法有两种:(1);(2)。 12、为了提高最后结果的质量,同时也为了检查和及时发现观测值中有无错误存在,通常要,也就是要进行。 13、测量平差的任务是:(1);(2)。 14、由偶然误差的对称性和抵偿性可知,误差的理论平均值为。 15、若误差的理论平均值不为0,且数值较大,说明观测成果中含有和。 16、在一定观测条件下进行的一组观测,如果分布较为密集,则表示该组观测质量较 也就是说,这一组观测精度较。 17、在一定观测条件下进行的一组观测,如果分布较为离散,则表示该组观测质量较 也就是说,这一组观测精度较。 18、判定观测误差中粗差的标准是,即超过这个标准的误差就列入粗差,相应的观测值应予以剔除或返工重测。 19、我们把衡量单位长度的精度叫做,一般来说,当观测误差随着观测量的

《误差理论与数据处理(第6版)》费业泰 较全答案

《误差理论与数据处理》 第一章 绪论 1-1.研究误差的意义是什么?简述误差理论的主要内容。 答: 研究误差的意义为: (1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差; (2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据; (3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。 误差理论的主要内容:误差定义、误差来源及误差分类等。 1-2.试述测量误差的定义及分类,不同种类误差的特点是什么? 答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。 系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化); 随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化; 粗大误差的特点是可取性。 1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。 答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量; 绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。+多少表明大了多少,-多少表示小了多少。 (2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定 1-5 测得某三角块的三个角度之和为180o 00’02”,试求测量的绝对误差和相对误差 解: 绝对误差等于: 相对误差等于: 1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对 误差为 1μm ,试问该被测件的真实长度为多少? 解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1 21802000180''=-'''o o %000031.010*********.00648002066018021802≈=' '' '''??''=''=o

测量误差和数据处理

测量误差和数据处理 (一) 测量与误差 1. 测量 在科学实验中,一切物理量都是通过测量得到的。所谓测量就是将待测物理量与规定作为标准单位的标准物理量通过一定的比较,其倍数即为待测物理量的测量值。测量按测量方式的不同分为直接测量和间接测量两类: ①直接测量(简单测量) 运用量具或仪表能直接得到物理量的数值,称为直接测量。例如,用米尺、游标卡尺、千分尺测量长度;用秒表测时间;用电流表测电路中的电流强度等。它的特点是:测量结果直接得到。 ②间接测量(复合测量) 多数物理量,不便或不能直接测量。但是我们可以先对可直接测量的相关物理量进行测量,然后依据一定的函数关系,计算出待测的物理量,这称为间接测量。例如,要测量一圆柱体的体积V,可以先用米尺(或卡尺)对直径d 和高度h 进行直接测量,然后根据公式h d V 24 1π=计算出它的体积。 当然一个物理量应直接测量还是间接测力测量,不使绝对的。要根据所有的仪器和测量方法来定。如上例中的圆柱体投入盛有一定量水的量筒中,从液面的上升即可直接得到体积。 2. 真值和近似真值 物质是客观存在的,有各种特性。反映物质特性的物理量在一定条件下,对应有一个确定的客观真实值。这个数值就称为真值。 从测量者的主观愿望来说,总想测出物理量的真值。然而任何实际测量中是在一定环境下,用一定的仪器、一定的方法,由一定的人员完成的,由于周围环境不理想、测量方法不完善、仪器设备不精密,而且受到测量人员技术经验和能力等因素的限制,使任何测量都不会绝对精确。 测量值与真值之间的差别,称为误差。任何测量都有误差,误差贯穿于测量的全过程。 某一物理量的误差,定义为该量的测量值x 与真值μ之差,即: μδ-=x 由于真值测不出来,误差又不可避免,所以测量的目的硬是:在给定的条件下,求出被测量的最可信赖值,并对它的精确程度给予正确的估计。

测量误差及数据处理.

测量误差及数据处理 物理实验的任务不仅是定性地观察各种自然现象,更重要的是定量地测量相关物理 量。而对事物定量地描述又离不开数学方法和进行实验数据的处理。因此,误差分析和数据处理是物理实验课的基础。本章将从测量及误差的定义开始,逐步介绍有关误差和实验数据处理的方法和基本知识。误差理论及数据处理是一切实验结果中不可缺少的内 容,是不可分割的两部分。误差理论是一门独立的学科。随着科学技术事业的发展,近年来误差理论基本的概念和处理方法也有很大发展。误差理论以数理统计和概率论为其 数学基础,研究误差性质、规律及如何消除误差。实验中的误差分析,其目的是对实验结果做出评定,最大限度的减小实验误差,或指出减小实验误差的方向,提高测量质量, 提高测量结果的可信赖程度。对低年级大学生,这部分内容难度较大,本课程尽限于介绍误差分析的初步知识,着重点放在几个重要概念及最简单情况下的误差处理方法,不进行严密的数学论证,减小学生学习的难度,有利于学好物理实验这门基础课程。 第一节测量与误差 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量,以取得物理量数据的表征。对物理量进行测量,是物理实验中极其重要的一个组成部分。对某些物理量的大小进行测定,实验上就是将此物理量与规定的作为标准单位的同类量或可借以导出的异类物理量进行比较,得出结论,这个比较的过程就叫做测量。例如,物体的质量可通过与规定用千克作为标准单位的标准砝码进行比较而得出测量结果;物体运动速度的测定则必须通过与二个不同的物理量,即长度和时间的标准单位进行比较而获得。比较的结果记录下来就叫做实验数据。测量得到的实验数据应包含测量值的大小和单位,二者是缺一不可的。 国际上规定了七个物理量的单位为基本单位。其它物理量的单位则是由以上基本单 位按一定的计算关系式导出的。因此,除基本单位之外的其余单位均称它们为导出单位。如以上提到的速度以及经常遇到的力、电压、电阻等物理量的单位都是导出单位。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同 等的重要意义,三者是缺一不可的。 测量可以分为两类。按照测量结果获得的方法来分,可将测量分为直接测量和间接测量两类,而从测量条件是否相同来分,又有所谓等精度测量和不等精度测量。 根据测量方法可分为直接测量和间接测量。直接测量就是把待测量与标准量直接比 较得出结果。如用米尺测量物体的长度,用天平称量物体的质量,用电流表测量电流等, 都是直

相关文档
最新文档