酚醛树脂固化个阶段

酚醛树脂固化个阶段
酚醛树脂固化个阶段

酚醛树脂固化反应的三个阶段

(1)固化反应过程的三个阶段20世纪初,酚醛树脂创始人,美国科学家巴克兰,把碱性催化剂制得的热固性酚醛树脂,根据其缩聚程度不同的反应过程,划分为巴克兰A、B、C三个阶段。以这三个阶段的树脂特点,分别称作“可熔性酚醛树脂”、“半熔性酚醛树脂”、“不溶性酚醛树脂”。这一科学论断及称谓,一直沿用至今。现在,通常把酚基由亚甲基连接,不带羟甲基这样的反应官能基的热塑性树脂称为线型酚醛树脂。把含有羟甲基或二亚甲基醚键结构且具有自固化性的树脂,称作

为甲阶酚醛树脂。

由于缩聚反应推进程度的不同,所以各阶树脂的性能也不同,按照巴克兰的理论,将热固性酚醛树脂分为不溶不熔状态演变的三个阶段。这种整个固化过程的三个阶段为:甲阶树脂、乙阶树脂

和丙阶树脂。

①甲阶树脂酚和醛经缩聚、干燥脱水后得到的树脂,可呈液体、半固体或固状体。受热时可以熔化,但随着加热的进行由于树脂分子中含有轻羟基和活泼的氢原子,可以较快地转变为不熔状。

甲阶树脂能溶解于酒精,丙酮及碱的水溶液中,它具有热塑性。又称为可熔性树脂。

②乙阶树脂甲阶树脂继续加热,分子上的一CH2OH在分子间不断相互反应而交联。它的分子结构比可熔酚醛树脂要复杂得多,分子链产生支链,酚已经在开始充分发挥其潜在的三官能作用。它不溶解在碱溶液中,可以部分地或全部地溶解在酒精、丙酮中,加热后能转变为不溶不熔的产物。

热塑性较可熔性树脂差。又称为半熔性树脂。

③丙阶树脂乙阶树脂进一步受热,交联反应继续深入,分子量增加得很大,具有复杂的网状

结构,并完全硬化,去其热塑性及可熔性,为不溶不熔的固体物质。又称为不熔性树脂。

丙阶树脂的网状(体型)结构可以如图6-2-1所示。由甲阶树脂结构向乙阶、丙阶树脂结构的

固化过程变化,如图6-2-2所示。

(2)对生产实际的指导热固性酚醛树脂的固化反应过程及其机理是一个十分复杂的问题。至今一些理论问题,在高分子树脂合成的学术界仍是争论不休,无法取得统一的认识。作为覆铜板制造业的工作者,也没必要更深地追究其更复杂的反应机理。但我们应该很好地拿握、认识领会它的固化过程中在性能、分子结构的上述三阶段变化,用此去指导覆铜板生产实际,提高对产品加工

中质量控制的能力和水平。

纸基覆铜板生产实际中热固性酚醛树脂(包括桐油改性酚醛树脂)的制备,是需将树脂反应控制在甲阶树脂阶段。树脂制备的后期,当它反应到甲阶树脂的要求状态,就迅速冷却,并加入溶剂,对它加以溶解、稀释,使其反应停止或减少到反应非常缓慢的状况。用这种树脂溶液,有的可以直接浸渍纤维纸,完成半固化的上胶纸的加工。有的可以从釜中放出,暂短贮存,以备用于配制最后

的浸渍用树脂。

此树脂制备中,控制它的甲阶树脂的缩聚程度是十分重要的。程度控制的深,反映出的是树脂胶化时间小,粘度大。它有利于上胶纸的生产效率的提高。但不利于树脂对增强纤维纸的浸透性提

高,也不利于上胶加工的工艺性提高。

甲阶酚醛树脂反应程度,在大生产实际中常用树脂胶化时间、粘度指标来作为直接判断、控制的手段。也常用树脂的固体量、挥发物含量等指标作为间接的判断、控制的手段。另外,通过测定树脂的折光指数、游离酚含量、游离醛含量、对某种溶剂的溶解程度、树脂分子量等,也可以达到

研究、控制树脂反应程度的目的。

覆铜板上胶纸的加工,是在上胶机中用甲阶树脂浸渍增强材料(浸渍纤维纸),然后进入干燥箱加热干燥,烘走溶剂,并使浸渍树脂,从线状结构通过加工逐步过渡到部分的支链状结构,甚至很少部分达到网状结构。即部分过渡到乙阶树脂、很小部分过渡到丙阶树脂阶段。上胶加工中除了得到工艺要求的上胶纸的均匀一致含胶量外,还有一个重要任务,就是烘干溶剂时或之后,将树脂的缩聚程度加深。这种加深程度的控制,是以压制加工工艺性和达到覆铜板一些性能为基准的。在

常见的上胶纸检测指标中,流动度指标是个综合性质量项目指标,它受着含胶量、树脂胶化时间、可溶性树脂含量三个因素影响。若前两个因素在恒定条件下,流动度的大小就直接反映了上胶纸中树脂在上胶加热加工后向乙、丙阶段过渡的程度。

在覆铜板上胶、压制两个生产加工阶段,经历了树脂向增强材料渗透的四个过程:其一是浸胶时的树脂渗透;其二是浸胶后进人到干燥箱之前的树脂渗透;其三是刚进人干燥箱受热到溶剂基本蒸发干净这一加工时间段的树脂渗透;其四是半成品上胶纸经叠合配板后,放人压机中,初期加压加热时间段的树脂渗透。这四个树脂渗透过程都与树脂大部分处于甲阶树脂阶段或乙阶树脂阶段的程度控制有密切的关联。它是保证上胶纸质量,压制成型纸基覆铜板质量的关键技术。

酚醛树脂的固化性能(技术汇总)

酚醛树脂的固化性能(技术汇总) (一)定义 酚和醛在合成反应设备中,通过加成和适当缩聚反应所得到的树脂,通常都是分子量不高的低聚物和各种羟甲基酚的混合体系,虽然Novolaks及Resoles以如上节所述,结构上是有差异的,但从物性上它们均应为可溶及可熔。这样的可溶、可熔性使得它们便于浸渍填充增强材料制成各种类型的塑料用于生产形态及性能多种多样的塑料制品,也便于用作黏结剂、成模剂、功能性助剂等应用于耐火材料、铸造造型材料、摩擦材料、涂料、电子封 装材料等多种府用领域。 然而,酚醛树脂只有在形成交联网状(或称体型)结构之后才具有优良的使用性能,包括力学性能、电绝缘性能、化学稳定性、热稳定性等。 酚醛树脂的固化就是使其转变为网状结构的过程,表现出凝胶化和完全固化的两个阶段,这一转变不仅是物理过程,更要强调的是,这是一个化学过程。所以酚醛树脂的固化绝不是熔体冷却到熔点以下的一般意义上的固化,而是高分子化学概念上的由线(支)型分子交联(cure)成网状分子导致失去可溶、可熔性的固化。 酚醛树脂固化后,在获得优良物理性质的同时,又失去了可溶、可熔性,不再有可加工性。因而其固化过程必然应在以酚醛树脂(Novolaks或Resoles)为黏结剂组成的塑料、油漆涂料及各种各样工程材料的使用或成型过程中完成。 正由于酚醛树脂的固化过程本质上是一种化学反应过程,所以表现出以下一些特点: (1)树脂在固化前的结构因素(组成、分子量大小、反应官能度等)影响显著; (2)固化反应受催化剂、固化剂、树脂pH值等的影响显著;(3)固化过程有热效应;(4)固化速率受温度、压力的影响显著;(5)固化过程有副产物(如水、甲醛等)产生;(6)固化反应是不可逆过程。 (二)热塑性酚醛树脂固化 Novolak型树脂的结构,一般可表示为: n一般为4~12,其值大小与起始反应原料中苯酚过量多少及反应时间有关。工业生产的此类树脂视应用领域不同而控制掌握n的大小,也就是分子量的大小。例如当竹值平均为5时,其平均分子量(Mn)约在500左右。

热塑性酚醛树脂及其工艺

热塑性酚醛树脂,即线型酚醛树脂,它不含进一步缩聚的基团,加固化剂并加热才能固化。如以六亚甲基四胺为固化剂,固化温度150 ℃,有没有办法可以降低它的固化温度? 当甲醛/苯酚(摩尔比)小于1时,可得热塑性产物,称热塑性酚醛树脂,即线型酚醛树脂,它不含进一步缩聚的基团,加固化剂并加热才能固化。如以六亚甲基四胺为固化剂,固化温度150 ℃,混以填料制成的模塑粉俗称电木粉。当甲醛/苯酚(摩尔比)大于1时,在碱催化下先得到甲阶段树脂,即热固型酚醛树脂,能溶于有机溶剂,甲阶段树脂含能进一步缩聚的羟甲基,因此不需加固化剂即能固化:加热下反应得到乙阶段树脂,又称半溶酚醛树脂,不溶不熔但可溶胀和软化。再进一步反应则得到不溶不熔的体型结构丙阶段树脂,也称不溶酚醛树脂。甲阶段树脂长期存放也能自行固化。 热固性酚醛树脂的固化形式分为常温固化和热固化两种。常温固化可使用无毒常温固化剂NL,也可使用苯磺酰氯或石油磺酸,但后两种材料的毒性、刺激性较大。 酚醛树脂(BAKELITE) 酚类和醛类的缩聚产物通称为酚醛树脂,一般常指由苯酚和甲醛经缩聚反应而得的合成树脂,它是最早合成的一类热固性树脂。 酚醛树脂虽然是最老的一类热固性树脂,但由于它原料易得,合成方便,以及酚醛树脂具有良好的机械强度和耐热性能,尤其具有突出的瞬时耐高温烧蚀性能,而且树脂本身又有广泛改性的余地,所以目前酚醛树脂仍广泛用于制造玻璃纤维增强塑料、碳纤维增强塑料等复合材料。酚醛树脂复合材料尤其在宇航工业方面(空间飞行器、火箭、导弹等)作为瞬时耐高温和烧蚀的结构材料有着非常重要的用途。 酚醛树脂的合成和固化过程完全遵循体型缩聚反应的规律。控制不同的合成条件(如酚和醛的比例,所用催化剂的类型等),可以得到两类不同的酚醛树脂:一类称为热固性酚醛树脂,它是一种含有可进一步反应的羟甲基活性基团的树脂,如果合成瓜不加控制,则会使体型缩聚反应一直进行至形成不熔、不溶的具有三向网络结构的固化树脂,因此这类树脂又称为一阶树脂;另一类称为热塑性酚醛树脂,它是线型树脂,在合成过程中不会形成三向网络结构,在进一步的固化过程中必须加入固化剂,这类树脂又称为二阶树脂。这两类树脂的合成和固化原理并不相同,树脂的分子结构也不同。

酚醛树脂简介

1.1酚醛树脂简介 1.1.1酚醛树脂 酚类化合物与醛类化合物缩聚而得的树脂为酚醛树脂。其中以苯酚和甲醛缩聚而得的酚醛树脂最为重要。 酚醛树脂综合性能优良,是一种人工合成的最古老树脂,拥有近百年的使用历史。早在1872年德国化学家拜耳(A,Baeyer)首先发现了酚和醛在酸的存在下反应可以得到结晶的产物,但当时没有对其开展研究。接着化学家克莱堡(W,Kleeberg,1891)和史密斯(A,Smith,1899)对这个反应进行了研究。进入20世纪,1902年布卢默(B.Blumer)合成了第一个商业化酚醛树脂,命名为Laccain 。然而直到1905~1907,被称为酚醛树脂创始人的美国化学家巴克兰(L.H.Baekeland)才对酚醛树脂进行了系统而广泛的研究,并于1907年申请了关于酚醛树脂“加压、加热”固化的专利,而且于1910年10月10日成立了Bakelite公司。巴克兰的功绩不仅首次合成了交联的聚合物,而且发现了树脂的模压过程,实现了酚醛树脂的实用化,这对酚醛树脂的生产和应用起了很重大的作用。因此此年(1910年)定为酚醛树脂元年(或者合成高分子元年),巴克兰被成为酚醛树脂之父。 由于酚醛树脂原料易得,价格低廉,生产工艺和设备简单,而且制品具有优异的机械性能、耐热性、耐寒性、电绝缘性、尺寸稳定性、成型加工性、阻燃性及低烟雾性,因此其成为工业部门不可缺少的材料,具有广泛的用途。 1.1.2酚醛树脂的合成、固化及其改进 酚醛树脂是由酚类和醛类在酸性或碱性催化剂作用下合成的缩合物。主要的原料是苯酚和甲醛,此外,酚类还有甲酚、二甲酚、多元酚、乙基苯酚、苯基苯酚、丁基苯酚、戊基苯酚、双酚A、间苯二酚等;醛类还有乙醛、多聚甲醛、糠醛等。 影响酚醛树脂合成和决定树脂性能的因素有:原料化学结构和单体官能度、酚醛摩尔比、催化剂的性质和反应介质的PH值。 各种酚和醛按其化学结构不同,其所固有的官能度和反应能力也不同。属于线性(热塑性)的酚醛树脂是由三官能度及双官能度的酚和醛作用生成的,如:苯酚,邻、对甲酚,1,2,3-二甲酚,1,2,5-二甲酚和1,3,4-二甲酚。

酚醛树脂的聚合原理、方法及运用

酚醛树脂的聚合原理、方法及其应用 应化1102班柳宗 0121114450208 摘要:酚醛树脂也叫电木,又称电木粉。原为无色或黄褐色透明物,市场销售往往加着色剂而呈红、黄、黑、绿、棕、蓝等颜色,有颗粒、粉末状。耐弱酸和弱碱,遇强酸发生分解,遇强碱发生腐蚀。不溶于水,溶于丙酮、酒精等有机溶剂中。苯酚与甲醛缩聚而得。酚醛树脂主要用于制造各种塑料、涂料、胶粘剂及合成纤维等。 关键词:酚醛树脂聚合原理聚合方法酚醛树脂的应用 正文: 酚醛树脂是世界上人工合成的第一类树脂材料,它具有良好的耐酸性能、力学性能、耐热性能,而且由于它原料易得,合成方便,目前仍被广泛应用。在高中教材里,酚醛树脂作为缩聚反应的典例,阐述了单体分子聚合成高分子的一种形式。与加聚反应不同,单体分子在发生缩聚反应时,生成的不仅仅是高分子化合物,还有小分子物质(如水)生成。也正是因为单体间缩去小分子物质,才成为有机物彼此连接成链状或体型的直接诱因。 缩聚反应是指单体间相互反应,生成高分子化合物同时生成小分子的聚合反应。酚醛树脂是由苯酚和甲醛在催化剂条件下缩聚而成。反应机理是苯酚羟基邻位上的两个氢原子比较活泼,与甲醛醛基上的氧原子结合为水分子,其余部分连接起来成为高分子化合物——酚醛树脂。如果采用不同的催化剂,苯酚羟基对位上的氢原子也可以和甲醛进行缩聚,使分子链之间发生交联,生成体型酚醛树脂。体型酚醛树脂绝缘性很好,是用作电木的原料。另外,以玻璃纤维作骨架,以酚醛树脂为肌肉,组合固化制成复合材料即玻璃钢。 苯酚和甲醛的合成反应是一个较复杂的反应过程,目前公认的看法认为苯酚和甲醛之间反应合成酚醛树脂的反应是一种缩聚反应。其生产工艺的基本原理是由一种或几种单体化合物合成聚合物的反应。缩聚反应具有逐步的性质,中间形成物具有相当稳定的性能。苯酚和甲醛两种物质发生反应时根据缩聚反应条件的差异可以形成两大类树脂,即热固性酚醛树脂和热塑性酚醛树脂。其中需要注意的是酚醛的化学结构是影响酚醛树脂合成及性能的主要因素。在选择原料时其中对酚类物质的要求是:酚分子中必须具有2个以上的官能度。酚环上连有供电子基时反应速度会加快;连有吸电子基时,反应速度会变慢。在选用醛类物质时,没有多高的要求,工业上一般都是使用甲醛的。 ( 一)合成反应酚醛树脂的合成反应分为两步,首先是苯酚与甲醛的加成反应,随后是缩合及缩聚反应。即: 1、加成反应在适当条件下,一元羟甲基苯酚继续进行加成反应,就可生成二 ( 一)合成反应 酚醛树脂的合成反应分为两步,首先是苯酚与甲醛的加成反应,随后是缩合及缩聚反应。即: 1、加成反应 在适当条件下,一元羟甲基苯酚继续进行加成反应,就可生成二元及多元羟甲基苯酚:

酚醛树脂

酚醛树脂的聚合原理、方法及其应用 摘要:酚醛树脂也叫电木,又称电木粉。原为无色或黄褐色透明物,市场销售往往加着色剂而呈红、黄、黑、绿、棕、蓝等颜色,有颗粒、粉末状。耐弱酸和弱碱,遇强酸发生分解,遇强碱发生腐蚀。不溶于水,溶于丙酮、酒精等有机溶剂中。苯酚与甲醛缩聚而得。酚醛树脂主要用于制造各种塑料、涂料、胶粘剂及合成纤维等。 关键词:酚醛树脂聚合原理聚合方法酚醛树脂的应用 正文: 酚醛树脂是世界上人工合成的第一类树脂材料,它具有良好的耐酸性能、力学性能、耐热性能,而且由于它原料易得,合成方便,目前仍被广泛应用。在高中教材里,酚醛树脂作为缩聚反应的典例,阐述了单体分子聚合成高分子的一种形式。与加聚反应不同,单体分子在发生缩聚反应时,生成的不仅仅是高分子化合物,还有小分子物质(如水)生成。也正是因为单体间缩去小分子物质,才成为有机物彼此连接成链状或体型的直接诱因。 缩聚反应是指单体间相互反应,生成高分子化合物同时生成小分子的聚合反应。酚醛树脂是由苯酚和甲醛在催化剂条件下缩聚而成。反应机理是苯酚羟基邻位上的两个氢原子比较活泼,与甲醛醛基上的氧原子结合为水分子,其余部分连接起来成为高分子化合物——酚醛树脂。如果采用不同的催化剂,苯酚羟基对位上的氢原子也可以和甲醛进行缩聚,使分子链之间发生交联,生成体型酚醛树脂。体型酚醛树脂绝缘性很好,是用作电木的原料。另外,以玻璃纤维作骨架,以酚醛树脂为肌肉,组合固化制成复合材料即玻璃钢。 苯酚和甲醛的合成反应是一个较复杂的反应过程,目前公认的看法认为苯酚和甲醛之间反应合成酚醛树脂的反应是一种缩聚反应。其生产工艺的基本原理是由一种或几种单体化合物合成聚合物的反应。缩聚反应具有逐步的性质,中间形成物具有相当稳定的性能。苯酚和甲醛两种物质发生反应时根据缩聚反应条件的差异可以形成两大类树脂,即热固性酚醛树脂和热塑性酚醛树脂。其中需要注意的是酚醛的化学结构是影响酚醛树脂合成及性能的主要因素。在选择原料时其中对酚类物质的要求是:酚分子中必须具有2个以上的官能度。酚环上连有供电子基时反应速度会加快;连有吸电子基时,反应速度会变慢。在选用醛类物质时,没有多高的要求,工业上一般都是使用甲醛的。 实验聚合方法,在25×200mm的试管中加入4g化学纯苯酚和2.5mL化学纯甲醛溶液(密度约1.1g/cm3、浓度为36~38%),再加入1mL化学纯的浓盐酸,振荡均匀后塞上带有直玻璃管(长300mm)的橡皮塞。把上述试管固定在铁架台上,放在80~90℃的水浴中加热(如左图)。片刻后,试管中发生剧烈反应,反应后还要继续加热,直到生成粉红的固体树脂为止。取出固体树脂(用铁丝钩出),用水冲洗后得到热塑性树脂。在25×200mm的试管中加入2.5g化学纯苯酚和3mL化学纯甲醛溶液(浓度同前),再加入1mL化学纯浓氨水(浓度为25~28%),振荡均匀之后塞上带有直玻璃管(长300mm)的橡皮塞。把上述的试管固定在铁架台上,用沸水浴加热,直到混合物分成两层。当底层的树脂粘度增大时,取下试管用水冷却,等树脂固化后倒出,用水冲洗,得到黄色的热固性树脂。 液体酚醛树脂的生产工艺,生产液体酚醛树脂时甲醛的加入量要比正常的需要量略多一些,甲醛量多一些树脂的生产速度快,产量高,游离酚减少。通常取苯酚与甲醛的克分子比为:6 :7;催化剂氨水加入量为苯酚加入量的4%,(氨水中氢氧化铵含量按25%计时)。当混合物料加热到85℃左右时,可停止加热,物料以缩聚反应放出的热量自行升温到98 ℃左右,并开始沸腾,当反应过于激烈时应通水冷却。 一般非水性一步型酚醛树脂胶粘剂由苯酚与甲醛以摩尔比1:(1~3),在碱性催化剂存在下进行加成反应,生成含羟甲基苯酚的低聚物,常配成固含量50%~60%的乙醇溶液供使用。储藏中,胶粘剂的pH会下降,由12~13降至11~9.5,会造成储藏不稳定性,可加入二氧化

酚醛树脂固化个阶段

酚醛树脂固化个阶段 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

酚醛树脂固化反应的三个阶段 (1)固化反应过程的三个阶段20世纪初,酚醛树脂创始人,美国科学家巴克兰,把碱性催化剂制得的热固性酚醛树脂,根据其缩聚程度不同的反应过程,划分为巴克兰A、B、C三个阶段。以这三个阶段的树脂特点,分别称作“可熔性酚醛树脂”、“半熔性酚醛树脂”、“不溶性酚醛树脂”。这一科学论断及称谓,一直沿用至今。现在,通常把酚基由亚甲基连接,不带羟甲基这样的反应官能基的热塑性树脂称为线型酚醛树脂。把含有羟甲基或二亚甲基醚键结构且具有自固化性的树脂,称作为甲阶酚醛树脂。 由于缩聚反应推进程度的不同,所以各阶树脂的性能也不同,按照巴克兰的理论,将热固性酚醛树脂分为不溶不熔状态演变的三个阶段。这种整个固化过程的三个阶段为:甲阶树脂、乙阶树脂和丙阶树脂。 ①甲阶树脂酚和醛经缩聚、干燥脱水后得到的树脂,可呈液体、半固体或固状体。受热时可以熔化,但随着加热的进行由于树脂分子中含有轻羟基和活泼的氢原子,可以较快地转变为不熔状。甲阶树脂能溶解于酒精,丙酮及碱的水溶液中,它具有热塑性。又称为可熔性树脂。 ②乙阶树脂甲阶树脂继续加热,分子上的一CH2OH在分子间不断相互反应而交联。它的分子结构比可熔酚醛树脂要复杂得多,分子链产生支链,酚已经在开始充分发挥其潜在的三官能作用。它不溶解在碱溶液中,可以部分地或全部地溶解在酒精、丙酮中,加热后能转变为不溶不熔的产物。热塑性较可 熔性树脂差。又称为半熔性树脂。

③丙阶树脂乙阶树脂进一步受热,交联反应继续深入,分子量增加得很大,具有复杂的网状结构,并完全硬化,去其热塑性及可熔性,为不溶不熔的 固体物质。又称为不熔性树脂。 丙阶树脂的网状(体型)结构可以如图6-2-1所示。由甲阶树脂结构向乙阶、丙阶树脂结构的固化过程变化,如图6-2-2所示。 (2)对生产实际的指导热固性酚醛树脂的固化反应过程及其机理是一个十分复杂的问题。至今一些理论问题,在高分子树脂合成的学术界仍是争论不休,无法取得统一的认识。作为覆铜板制造业的工作者,也没必要更深地追究其更复杂的反应机理。但我们应该很好地拿握、认识领会它的固化过程中在性

酚醛树脂固化3个阶段教案资料

酚醛树脂固化3个阶 段

酚醛树脂固化反应的三个阶段 (1)固化反应过程的三个阶段20世纪初,酚醛树脂创始人,美国科学家巴克兰,把碱性催化剂制得的热固性酚醛树脂,根据其缩聚程度不同的反应过程,划分为巴克兰A、B、C三个阶段。以这三个阶段的树脂特点,分别称作“可熔性酚醛树脂”、“半熔性酚醛树脂”、“不溶性酚醛树脂”。这一科学论断及称谓,一直沿用至今。现在,通常把酚基由亚甲基连接,不带羟甲基这样的反应官能基的热塑性树脂称为线型酚醛树脂。把含有羟甲基或二亚甲基醚键结构且具有自固化性的树脂,称作为甲阶酚醛树脂。 由于缩聚反应推进程度的不同,所以各阶树脂的性能也不同,按照巴克兰的理论,将热固性酚醛树脂分为不溶不熔状态演变的三个阶段。这种整个固化过程的三个阶段为:甲阶树脂、乙阶树脂和丙阶树脂。 ①甲阶树脂酚和醛经缩聚、干燥脱水后得到的树脂,可呈液体、半固体或固状体。受热时可以熔化,但随着加热的进行由于树脂分子中含有轻羟基和活泼的氢原子,可以较快地转变为不熔状。甲阶树脂能溶解于酒精,丙酮及碱的水溶液中,它具有热塑性。又称为可熔性树脂。 ②乙阶树脂甲阶树脂继续加热,分子上的一CH2OH在分子间不断相互反应而交联。它的分子结构比可熔酚醛树脂要复杂得多,分子链产生支链,酚已经在开始充分发挥其潜在的三官能作用。它不溶解在碱溶液中,可以部分地或全部地溶解在酒精、丙酮中,加热后能转变为不溶不熔的产物。热塑性较可 熔性树脂差。又称为半熔性树脂。

③丙阶树脂乙阶树脂进一步受热,交联反应继续深入,分子量增加得很大,具有复杂的网状结构,并完全硬化,去其热塑性及可熔性,为不溶不熔的 固体物质。又称为不熔性树脂。 丙阶树脂的网状(体型)结构可以如图6-2-1所示。由甲阶树脂结构向乙阶、丙阶树脂结构的固化过程变化,如图6-2-2所示。 (2)对生产实际的指导热固性酚醛树脂的固化反应过程及其机理是一个十分复杂的问题。至今一些理论问题,在高分子树脂合成的学术界仍是争论不休,无法取得统一的认识。作为覆铜板制造业的工作者,也没必要更深地追究其更复杂的反应机理。但我们应该很好地拿握、认识领会它的固化过程中在性

酚醛树脂固化个阶段

酚醛树脂固化反应的三个阶段 (1)固化反应过程的三个阶段20世纪初,酚醛树脂创始人,美国科学家巴克兰,把碱性催化剂制得的热固性酚醛树脂,根据其缩聚程度不同的反应过程,划分为巴克兰A、B、C三个阶段。以这三个阶段的树脂特点,分别称作“可熔性酚醛树脂”、“半熔性酚醛树脂”、“不溶性酚醛树脂”。这一科学论断及称谓,一直沿用至今。现在,通常把酚基由亚甲基连接,不带羟甲基这样的反应官能基的热塑性树脂称为线型酚醛树脂。把含有羟甲基或二亚甲基醚键结构且具有自固化性的树脂,称作 为甲阶酚醛树脂。 由于缩聚反应推进程度的不同,所以各阶树脂的性能也不同,按照巴克兰的理论,将热固性酚醛树脂分为不溶不熔状态演变的三个阶段。这种整个固化过程的三个阶段为:甲阶树脂、乙阶树脂 和丙阶树脂。 ①甲阶树脂酚和醛经缩聚、干燥脱水后得到的树脂,可呈液体、半固体或固状体。受热时可以熔化,但随着加热的进行由于树脂分子中含有轻羟基和活泼的氢原子,可以较快地转变为不熔状。 甲阶树脂能溶解于酒精,丙酮及碱的水溶液中,它具有热塑性。又称为可熔性树脂。 ②乙阶树脂甲阶树脂继续加热,分子上的一CH2OH在分子间不断相互反应而交联。它的分子结构比可熔酚醛树脂要复杂得多,分子链产生支链,酚已经在开始充分发挥其潜在的三官能作用。它不溶解在碱溶液中,可以部分地或全部地溶解在酒精、丙酮中,加热后能转变为不溶不熔的产物。 热塑性较可熔性树脂差。又称为半熔性树脂。 ③丙阶树脂乙阶树脂进一步受热,交联反应继续深入,分子量增加得很大,具有复杂的网状 结构,并完全硬化,去其热塑性及可熔性,为不溶不熔的固体物质。又称为不熔性树脂。 丙阶树脂的网状(体型)结构可以如图6-2-1所示。由甲阶树脂结构向乙阶、丙阶树脂结构的 固化过程变化,如图6-2-2所示。 (2)对生产实际的指导热固性酚醛树脂的固化反应过程及其机理是一个十分复杂的问题。至今一些理论问题,在高分子树脂合成的学术界仍是争论不休,无法取得统一的认识。作为覆铜板制造业的工作者,也没必要更深地追究其更复杂的反应机理。但我们应该很好地拿握、认识领会它的固化过程中在性能、分子结构的上述三阶段变化,用此去指导覆铜板生产实际,提高对产品加工 中质量控制的能力和水平。 纸基覆铜板生产实际中热固性酚醛树脂(包括桐油改性酚醛树脂)的制备,是需将树脂反应控制在甲阶树脂阶段。树脂制备的后期,当它反应到甲阶树脂的要求状态,就迅速冷却,并加入溶剂,对它加以溶解、稀释,使其反应停止或减少到反应非常缓慢的状况。用这种树脂溶液,有的可以直接浸渍纤维纸,完成半固化的上胶纸的加工。有的可以从釜中放出,暂短贮存,以备用于配制最后 的浸渍用树脂。 此树脂制备中,控制它的甲阶树脂的缩聚程度是十分重要的。程度控制的深,反映出的是树脂胶化时间小,粘度大。它有利于上胶纸的生产效率的提高。但不利于树脂对增强纤维纸的浸透性提 高,也不利于上胶加工的工艺性提高。 甲阶酚醛树脂反应程度,在大生产实际中常用树脂胶化时间、粘度指标来作为直接判断、控制的手段。也常用树脂的固体量、挥发物含量等指标作为间接的判断、控制的手段。另外,通过测定树脂的折光指数、游离酚含量、游离醛含量、对某种溶剂的溶解程度、树脂分子量等,也可以达到 研究、控制树脂反应程度的目的。 覆铜板上胶纸的加工,是在上胶机中用甲阶树脂浸渍增强材料(浸渍纤维纸),然后进入干燥箱加热干燥,烘走溶剂,并使浸渍树脂,从线状结构通过加工逐步过渡到部分的支链状结构,甚至很少部分达到网状结构。即部分过渡到乙阶树脂、很小部分过渡到丙阶树脂阶段。上胶加工中除了得到工艺要求的上胶纸的均匀一致含胶量外,还有一个重要任务,就是烘干溶剂时或之后,将树脂的缩聚程度加深。这种加深程度的控制,是以压制加工工艺性和达到覆铜板一些性能为基准的。在

酚醛树脂胶粘剂(1)

酚醛树脂胶粘剂的原料: 酚类:苯酚甲酚间苯二酚单宁 醛类:甲醛糠醛 通常用作胶粘剂的是苯酚和甲醛经缩聚反应得到的树脂 在酚醛树脂的合成中,根据原料的化学结构、酚和醛的用量(摩尔比)以及介质的PH值不同,所生成的树脂有两种类型:热塑性酚醛树脂、热固性酚醛树脂 热固性酚醛树脂用的酚脂必须含有三个官能团,因为有三个反应点,才能形成体型的结构,得到不溶(熔)的的热固性树脂;双管能团的酚不能形成体型交联结构,只能生成热塑形树脂。 不同酚类和甲醛的反应活性不同 热固性酚醛树脂的合成原理 热固性酚醛树脂是在碱性催化剂作用下苯酚与甲醛以摩尔比小于1的情况下反应制成。 由于酚羟基的影响,使酚核上的邻位和一个对位活化。这些活性的位置当收到甲醛的进攻时生成邻位或对位的羟甲基酚。

羟甲基酚除了能与苯酚反应外,还可继续与甲醛反应而生成多羟甲基酚。 羟甲基酚与苯酚作用或相互之间发生反应生成线性结构的酚醛树脂。 酚醛树脂由甲(A)阶段向乙(B)阶段和丙(C)阶段转化后形成三维网状体型结构的化学过程称为酚醛树脂的固化。酚醛树脂的固化主要是羟甲基的缩合反应,一般是以两种方式进行,其一是羟甲基与酚环上的活泼氢发生缩合反应生成亚甲基;另者则是羟甲基之间发生缩合反应生成来甲基醚 1、热固化 甲阶酚醛树脂含有较多量的羟甲基,加热时由于羟甲基与酚环上邻们或对位活泼氢缩合以及羟甲基本身的醚化而固化。也就是说热固化时来甲基键和醚键同时生成并放出低分子水分当于150~1600C加热时整个固化过程约为30min。 2、碱固化 用一种或几种较弱或较强的碱性催化剂,如氢氧化钠(NaOH)、氢氧化钡(Ba(OH)2)、氢氧化镁、氨水等,可使酚醛树酯固化。碱性酚醛树脂固化属二级肥应,与羟甲基的浓度有关,游离甲醛能促进固化。 3、酸固化 酚醛树脂中加入适当的酸性固化剂如盐酸、磷酸、硫酸、对甲苯磺酸、石油磺酸、对氯苯磺酸等,可在较低的温度下固化。 酚醛树脂的固化反应须在高温(150~1800C)下进行,工业上一般控制在1700C左右。由于固化反应过和有低分子物放出,必须施加0.3~1.5mpa的压力。加压的目的是克服固化过程产生的挥发分(如水分、溶剂、甲醛)在胶层中产生气孔。 酚醛树脂分热塑性和热固性的,热塑性的一般用碱做固化剂,一般用的是六次甲基四胺,热固性的话用的是酸做催化剂,酚醛树脂常用的固化剂如磷酸,乙二胺。

酚醛树脂的合成与应用

课程论文报告书 题目:酚醛树脂的合成与应用 学院:化学工程学院 专业:材料化学 班级: 姓名: 学号: 2012年12 月28日 摘要:本文介绍了酚醛树脂的合成的原料及其原理,并简单的阐述了酚醛树脂的应用及

其以后的发展趋势 关键词:酚醛树脂;合成;原理;应用;发展方向 Abstract: This article introduced the phenolics synthesis raw material and the principle, and simple elaboration phenolics application and later trend of development keyword: Phenolics; Synthesis; Principle; Using; Trend of development 1 引言 酚醛树脂是世界最早人工合成和工业化生产的一类合成树脂,其原料易得,生产工艺 简单,综合性能优良,应用非常广泛,因此研究酚醛树脂的制备方法,具有很高的社会意义和经济价值。 酚醛树脂因其具有较高的力学强度,耐热性好,难燃、低毒、低发烟,可与其他多聚物共混,实现高性能化而广泛应用于航空航天、汽车、电子、机械、交通运输等国民经济各个领域。近年来科研人员对酚醛树脂本身的脆性和力学性能进行改进,在下游产品应用新工艺,使酚醛树脂基复合材料有了更大的发展。随着电子产业的迅速成长,高纯度及改性酚醛树脂也在半导体封装材料、印制电路基板材料和光刻胶领域发挥着越来越重要的作用。现代酚醛泡沫反应机理和生产工艺的不断创新,使酚醛泡沫材料应用于民用建筑、采矿等新领域。各种改性酚醛树脂作为增粘、增硬、补强材料,也不断地应用于橡胶工艺的改进之中1。 2酚醛树脂的历史 20世纪50年代是酚醛树脂高速发展的阶段,新的应用领域有涂料、油漆、铸造和航空航天等,国际酚醛树脂的产量达到20万t。上世纪80年代,酚醛树脂、新型酚醛复合材料系统应用于建筑、运输等领域。1997年后全球经济发展的低潮期,全球酚醛树脂生产装置的开工率不足65%,但总的市场消费量仍旧维持在300万t以上。20世纪末到21世纪初,在全球经济快速发展的带动下,汽车工业、冶金、电子消费产品迅速发展,促进了酚醛树脂在铸造、耐火材料、电工电子材料等领域的全新发展。 国外酚醛树脂的应用已涉及木材粘结、模塑料、铸造造型材料、耐火材料、轮胎橡胶、摩擦材料、磨具磨料、电子封装材料、浸渍层压材料、纤维增强复合材料、酚醛泡沫塑料等领域,应用于工业、民用、交通、建筑、采矿、石油和天然气开采、航空航天、核工业等科技范围。全世界的酚醛树脂产量也由20世纪50年代的约20万t发展到2006年的401.5 万t。预计今后几年全球酚醛树脂行业将以7%的速度增长2。 3酚醛树脂的特点 酚醛树脂是一种以酚类化合物与醛类化合物经缩聚而制得的一大类合成树脂。所用酚类化合物主要是苯酚、其他还可以用甲酚、混合酚、壬基酚、辛基酚、二甲酚、腰果酚、芳烷基酚、双酚A或几种酚的混合物的;所用醛类化合物主要是甲醛,其他还常用多聚甲醛、糠醛、乙醛或几种醛的混合物。生产酚醛树脂,根据所采用原料反应官能度、酚与醛

酚醛树脂特点和用途

粘结强度 酚醛树脂一个重要的应用就是作为粘结剂。酚醛树脂是一种多功能,与各种各样的有机和无机填料都能相容的物质。设计正确的酚醛树脂,润湿速度特别快。并且在交联后可以为磨具、耐火材料,摩擦材料以及电木粉提供所需要的机械强度,耐热性能和电性能。 水溶性酚醛树脂或醇溶性酚醛树脂被用来浸渍纸、棉布、玻璃、石棉和其它类似的物质为它们提供机械强度,电性能等。典型的例子包括电绝缘和机械层压制造,离合器片和汽车滤清器用滤纸。 高残碳率 在温度大约为1000℃ 的惰性气体条件下,酚醛树脂会产生很高的残碳,这有利于维持酚醛树脂的结构稳定性。酚醛树脂的这种特性,也是它能用于耐火材料领域的一个重要原因。 低烟低毒 与其他树脂系统相比,酚醛树脂系统具有低烟低毒的优势。在燃烧的情况下,用科学配方生产出的酚醛树脂系统,将会缓慢分解产生氢气、碳氢化合物、水蒸气和碳氧化物。分解过程中所产生的烟相对少,毒性也相对低。这些特点使酚醛树脂适用于公共运输和安全要求非常严格的领域,如矿山,防护栏和建筑业等。 抗化学性 交联后的酚醛树脂可以抵制任何化学物质的分解。例如汽油,石油,醇,乙二醇和各种碳氢化合物。 热处理 热处理会提高固化树脂的玻璃化温度,可以进一步改善树脂的各项性能。玻璃化温度与结晶固体如聚丙烯的熔化状态相似。酚醛树脂最初的玻璃化温度与在最初固化阶段所用的固化温度有关。热处理过程可以提高交联树脂的流动性促使反应进一步发生,同时也可以除去残留的挥发酚,降低收缩、增强尺寸稳定性、硬度和高温强度。同时,树脂也趋向于收缩和变脆。树脂后处理升温曲线将取决于树脂最初的固化条件和树脂系统。 影响树脂合成和性能的主要因素为酚与醛的化学结构、摩尔比和反应介质的pH。酚与醛的摩尔比大于或等于1时,初始产物为一羟甲基酚,缩聚时生成线型树脂;小于1时,生成多羟甲基酚衍生物,形成的缩聚树脂可交

酚醛树脂性能综述

酚醛树脂性能工艺综述 一、前言 聚合物材料又称高分子材料。两种名称的侧重点不同。聚合物的英语为“Polymer”,意为多体。聚合物分子是由多个重复化学单元相连接而成的大分子。从19世纪开始,人类开始合成自然界并不存在的聚合物材料,到目前已经掌握了数万种合成聚合物的工业生产技术。第一个工业化的合成聚合物是酚醛树脂,由Adolf Bayer于1872年首次合成,Arthur Smith于1899年获得首项专利。从19世纪末到20世纪30年代,人们陆续合成了脲醛树脂、醋酸纤维素、聚苯乙烯、聚氯乙烯、聚甲基丙烯酸甲酯,以及最 重要的塑料聚乙烯。第二次世界大战刺激了对合成材料的需求,一系列材料在30~40年代被发现和大量生产,如丁苯橡胶,尼龙,聚四氟乙烯,蜜胺树脂等都是在战争年代问世的。二次大战以后,聚合物材料的发展更为迅速,新旧材料更新换代的速度明显加快。50年代出现了高密度聚乙烯、聚丙烯、聚碳酸酯、聚甲醛、ABS;60年代出现了聚砜,聚苯醚和芳香聚酯;70年代出现了芳香尼龙,80年代出现了聚芳醚酮。一部聚合物材料产生与发展的简史见图:

热固性聚合物是从低粘度液体开始,通过催化剂或外加能量(热或射线)固化为固体。最早的热固性基体是酚醛,紧随其后的是环氧,接着是不饱和聚酯、脲醛,再接着是硅树脂,以及更新的基体。从实用的角度看, 最重要的仍然是前三种:酚醛、环氧和不饱和聚酯 二、简介 酚醛树脂也叫电木,又称电木粉,英文名称phenolic resin,简称PF,比重~是热固性塑料家族中最古老的成员,可以追溯到1870年。合成酚醛树脂的两种单体是苯酚和甲醛,通过聚合形成, 酚醛树脂原为无色或黄褐色透明物,因含有游离分子而呈微红色,市场销售往往加着色剂而呈红、黄、黑、绿、棕、蓝等颜色,有颗粒、粉末状。耐弱酸和弱碱,遇强酸发生分解,遇强碱发生腐蚀。不溶于水,溶于丙酮、酒精等有机溶剂中。对水、弱酸、弱碱溶液稳定。由苯酚和甲醛在催化剂条件下缩聚、经中和、水洗而制成的树脂。酚与醛的摩尔比大于一,用酸类物质作催化剂,生成热塑性酚醛树脂。酚与醛的摩尔比小于一,用碱类物质作催化剂,生成热

酚醛树脂合成影响因素

1、原料的化学结构 根据高分子化合物合成的基本原理,只有原料的反应官能度为2时才能形成线型大分子,而若要形成支链以及体型(网状)结构高分子,原料的官能团必须大于2。 酚醛树脂的合成原料是酚与醛。由于醛类的反应官能度为2,所以酚的官能度就起了决定性作用。 苯酚的反应官能度为3,即羟基的邻、对位,其他常用酚的官能度数目及它们的活化点(以*记)表示如下: 显然,以上各种酚中,只有反应官能度为3的苯酚、间位取代酚才能与醛类反应获得交联网状结构。如果采用混甲酚为原料,其中间位甲酚所占比例应高于40%,否则难以形成足够交联密度的网状结构,致使树脂性能不佳。 酚上取代基不同,其与醛的反应速率差异显著,如以苯酚的反应速率为基准,设为1,其他酚的相对反应速率分别为: 3,5-二甲酚间甲酚苯酚对甲酚邻甲酚 7.75 2.88 1 0.35 O.26 醛类中,甲醛具有很高的反应活性,其在酸或碱的水溶液中极易形成甲二醇,并很快达到如下平衡: CH20+H20 HOCH20H 甲二醇是实际的活性双官能团单体。另外一种常用的醛是糠醛,由于其取代基远大于甲醛的-CH2,所以与酚的反应速率较甲醛慢。但糠醛的呋喃基中含有双键,具有多种反应活性,其所制酚醛树脂仍具有很好的交联固化特性。 2、酚与醛的摩尔比 酚醛树脂是酚类与醛类反应合成的产物,所以两者必须有适当的摩尔比,任何一种原料极大的过量,都不可能生成酚醛树脂。

当反应采取酚与醛的摩尔比为1:1时,理想状态下,应可生成线型结构的酚醛树脂,但因没有更多的甲醛分子,苯酚的三个反应活化点并没有充分起作用,故而不能形成交联网状结构的酚醛树脂。 若反应采取酚稍过量,例如醛与酚的摩尔比为2:3,则不能产生足够的羟甲基,缩聚反应达到一定阶段就会停止,只能得到较低分子量的线型结构酚醛树脂: 与上相反,若反应采取醛过量,即两者摩尔比大于1,则反应初期的加成反应,易于形成二元及多元羟甲基酚: 只有醛过量达到一定水平,能够保证生成较多量的三羟甲基苯酚的情况下,反应初期才能有一定支链结构的大分子,也才有可能继续进行交联反应最终形成网状结构。 3、反应介质的酸、碱性 实践得知,当甲醛水溶液(37%~40%)与等体积的苯酚混合后,其体系pH为3.O~3.1,即使加热至沸腾,亦难以发生反应。若在上述混合物系内另加入酸或碱,使pH小于3或大于3.1,则在稍加热的条件下,就可发生一定的反应。 人们根据研究和多年实践,普遍认为酚醛树脂合成的介质pH有两个比较适用的范围,即pH<3和pH=7~11。当pH<3,反应介质呈强酸性,这时酚醛树脂合成的第二步缩合反应速率远高于其第一步加成反应速率,因而更有利于形成线型结构大分子;当pH=7~11,反应介质呈强碱性,与前述情况相反,酚醛树脂合成的第一步产物(一元羟甲基苯酚)继续进行加成反应二元及多元羟甲基苯酚的速率都远比一元羟甲基苯酚生成的速率快,也比一元羟甲基苯酚继续反应速率快,所以更有利于生成二元及多元羟甲基苯酚,它们经缩聚反应就会形成带支链的树脂分子,不加控制情况下甚至会深度反应,形成交联的网状结构,并失去熔融流动性和可加工性。 4、生产操作方法 生产预定结构和性能的酚醛树脂,还应注意生产操作方法的影响,诸如原料和催化剂投入反应釜的时间差;各反应阶段温度、时间控制的调配;脱水干燥的

酚醛树脂及其应用

一、酚醛树脂 酚醛树脂是一种最经典的人工合成树脂,有近百年的使用史。由于酚醛树脂原料易得,价格低廉,生产工艺和设备简单,而且制品具有优异的机械性能,耐热性、耐寒性、电绝性、尺寸稳定性、成型加工型、阻燃性及低烟雾性。因此其成为工业部门不可缺少的材料,被广泛应用于固结磨具、涂附磨具、摩擦材料、耐火材料以及电木粉、烟花爆竹、铸造等各个领域。 酚醛树脂是以酚类化合物、醛类化合物作原料,在催化剂作用下缩聚而成的高分子化合物,其中以苯酚和甲醛缩聚的酚醛树脂最为重要。 酚醛树脂大体分为热固型和热塑型两大类。热固性树脂是由苯酚在碱性条件下与过量的甲醛发生反应合成;热塑性树脂是苯酚在酸性条件下与少量的甲醛反应合成。影响酚醛树脂合成和决定树脂性能的因素有:原料化学结构和单体官能度,酚醛摩尔比,催化剂的性质和反应介质的PH值。 热固性树脂具有活性官能团,在加热和酸的作用下都会固化。这种自动反应确切解释了热固性树脂在储存过程中,粘度升高,凝胶速度加快的原因。由于自动反应是热固性树脂内在的本性,温度平均每升高10℃反应速度就会加倍。所以热固性树脂必须储存再低温条件下,才能尽量延长其保存期。热塑性树脂需要加入固化剂才能交联。对于热塑性树脂来说最常用的固化剂就是六次甲基四胺(俗称乌洛托品),已经交联固化的树脂含部分氮,氮来源于乌洛托品。 酚醛树脂从A阶段向B阶段和C阶段转化后形成三维网状结构成为固化。线性树脂和甲阶分子量小的树脂都能溶熔,因此称此时的树脂为A阶段树脂。当树脂硬化后,就到凝胶阶段即B阶段。这个阶段树脂肿胀氮仍可以被溶剂溶解,这就到了C阶段。 随着工业的发展,对高性能材料提出了更高的要求,如较高的分解温度,较好的耐磨性能,足够的韧性和强度等。由于酚醛树脂在结构上存在弱点:酚羟基和亚基易氧化,因此耐热性受到影响。 普通酚醛树脂在200℃以下能够长期稳定使用,但超过200℃便明显发生变化。从300℃-360℃起进入热分解阶段,到600℃-900℃释放CO、C02、H2O、苯酚等物质。而且普通酚醛树脂固化时释放水分子,脆性大,韧性差,限制了其在高性能材料方面的发展。因此,需要对酚醛树脂进行改进,提高其韧性和耐热

酚醛树脂指标与其作用

树脂砂轮制造用高性能酚醛树脂的选择和应用 1酚醛树脂介绍 酚醛树脂已经有近百年的使用史。由于酚醛树脂原料易得,价格低廉,生产 工艺和设备简单,而且制品具有优异的机械性能,耐热性、耐寒性、电绝性、尺 寸稳定性、成型加工型、阻燃性及低烟雾性。因此其成为工业部门不可缺少的材 料,被广泛应用于固结磨具、涂附磨具、摩擦材料、耐火材料以及电木粉、烟花 爆竹、铸造等各个领域。 酚醛树脂是以酚类化合物、醛类化合物作原料,在催化剂作用下缩聚而成的 高分子化合物,其中以苯酚和甲醛缩聚的酚醛树脂最为重要。 酚醛树脂大体分为热固型和热塑型两大类。热固性树脂是由苯酚在碱性条件 下与过量的甲醛发生反应合成;热塑性树脂是苯酚在酸性条件下与少量的甲醛反 应合成。影响酚醛树脂合成和决定树脂性能的因素有:原料化学结构和单体官能度,酚醛摩尔比,催化剂的性质和反应介质的PH 值。 热固性树脂具有活性官能团,在加热和酸的作用下都会固化。这种自动反应确切解释了热固性树脂在储存过程中,粘度升高,凝胶速度加快的原因。由于自 动反应是热固性树脂内在的本性,温度平均每升高10 ℃反应速度就会加倍。所 以热固性树脂必须储存再低温条件下,才能尽量延长其保存期。热塑性树脂需要 加入固化剂才能交联。对于热塑性树脂来说最常用的固化剂就是六次甲基四胺 (俗称乌洛托品 ),已经交联固化的树脂含部分氮,氮来源于乌洛托品。 酚醛树脂从 A 阶段向 B 阶段和 C 阶段转化后形成三维网状结构成为固化。 线性树脂和甲阶分子量小的树脂都能溶熔,因此称此时的树脂为 A 阶段树脂。

当树脂硬化后,就到凝胶阶段即 B 阶段。这个阶段树脂肿胀氮仍可以被溶剂溶 解,这就到了 C 阶段。 随着工业的发展,对高性能材料提出了更高的要求,如较高的分解温度,较好的耐磨性能,足够的韧性和强度等。由于酚醛树脂在结构上存在弱点:酚羟基 和亚基易氧化,因此耐热性受到影响。 普通酚醛树脂在 200 ℃以下能够长期稳定使用,但超过 200 ℃便明显发生变 化。从 300 ℃-360 ℃起进入热分解阶段,到 600 ℃ -900 ℃释放 CO 、C02 、H2O 、 苯酚等物质。而且普通酚醛树脂固化时释放水分子,脆性大,韧性差,限制了其 在高性能材料方面的发展。因此,需要对酚醛树脂进行改进,提高其韧性和耐热 性。 改进酚醛树脂的途径主要有: 1)在酚醛树脂中加入外增韧物质,如天然橡胶、丁腈橡胶、丁苯橡胶及热塑性树 脂等。 2)在酚醛树脂中加入内增韧物质,如使酚羟基醚化,在酚核间引入长的亚甲基链 及其他柔性基团等。 3)用玻璃纤维、玻璃布及石棉等增强材料来改善脆性。 其他改进的方法还有:将酚醛树脂的酚羟基醚化,酯化、重金属螯合,或者 增加固化剂加入量,严格成型条件或后固化条件,或者导入亚胺环或三嗪环等刚 性结构。这些方法虽然提高了树脂的耐热性,但韧性却下降了。因此,目前很难 同时既提高了树脂的韧性又改进其耐热性。 2酚醛树脂在树脂砂轮中的应用

相关文档
最新文档