八个有趣模型——搞定空间几何体地外接球与内切球(教师版)

八个有趣模型——搞定空间几何体地外接球与内切球(教师版)
八个有趣模型——搞定空间几何体地外接球与内切球(教师版)

八个有趣模型——搞定空间几何体的外接球与内切球

一、有关定义

1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球.

2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.

3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.

二、外接球的有关知识与方法

1.性质:

性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;

性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;

性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);

性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;

性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心).

初图1

初图2

2.结论:

结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;

结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;

结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;

结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;

结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;

结论7:圆锥体的外接球球心在圆锥的高所在的直线上;

结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;

结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.

3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度);

三、内切球的有关知识与方法

1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性).

2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆).

3.正多面体的内切球和外接球的球心重合.

4.正棱锥的内切球和外接球球心都在高线上,但不一定重合.

5.基本方法:

(1)构造三角形利用相似比和勾股定理;

(2)体积分割是求内切球半径的通用做法(等体积法).

四、与台体相关的,此略.

五、八大模型

第一讲 柱体背景的模型

类型一、墙角模型(三条棱两两垂直,不找球心的位置即可求出球半径)

图1-1

图1-2

图1-3

方法:找三条两两垂直的线段,直接用公式2

2

2

2

)2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( C ) A .π16 B .π20 C .π24 D .π32 解: 162

==h a V ,2=a ,24164442

2

2

2

=++=++=h a a R ,π24=S ,选C ;

(2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 π9 解:933

342

=++=R ,ππ942

==R S ;

(3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则

正三棱锥ABC S -外接球的表面积是 .π36 解:引理:正三棱锥的对棱互相垂直.证明如下:如图(3)-1, 取BC AB ,的中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH , 则H 是底面正三角形ABC 的中心,

∴⊥SH 平面ABC ,∴AB SH ⊥,

BC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD , ∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直,

本题图如图(3)-2, MN AM ⊥,MN SB //,

∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC , ∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥, ∴⊥SA 平面SBC ,∴SC SA ⊥,

故三棱锥ABC S -的三棱条侧棱两两互相垂直,

∴36)32()32()32()2(2222=

++=R ,即3642=R ,∴正三棱锥

ABC S -外接球的表面积是π36

.

(3)题-1(引理)

A

C

(3)题-2(解答图)

A

C

(4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠?

AB AC SA BAC 则该四面体的外接球的表面积为( D )

π11.A π7.B π310.

C π3

40.D 解:在ABC ?中,7120cos 2222=??-+=

BC AB AB AC BC ,7=

BC ,ABC ?的外接球直径为

3722

37sin 2==∠=

BAC BC r ,∴340

4)3

72()2()2(2222=

+=+=SA r R ,340π=S ,选D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是 解:由已知得三条侧棱两两垂直,设三条侧棱长分别为c b a ,,(+

∈R c b a ,,),则

??

???===6812ac bc ab ,∴24=abc ,∴3=a ,4=b ,2=c ,29)2(2222=++=c b a R ,ππ2942

==R S , (6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几

何体外接球的体积为

解:3)2(2

2

2

2

=++=c b a R ,4

3

2

=

R ,23=R

πππ2

3

83334343=?==R V 球,

类型二、对棱相等模型(补形为长方体) 题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =) 第一步:画出一个长方体,标出三组互为异面直线的对棱; 第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,

y CD AB ==,z BD AC ==,列方程组,

??

???=+=+=+2

222

222

22z a c y c b x b a ?2)2(2222222z y x c b a R ++=

++=, 补充:图2-1中,abc abc abc V BCD A 3

1

461=?-

=-. (6)

题图

(6)题直观图

P

图2-1

第三步:根据墙角模型,222222

22z y x c b a R ++=

++=,82222

z y x R ++=,8

2

22z y x R ++=

求出R .

思考:如何求棱长为a 的正四面体体积,如何求其外接球体积?

例2(1)如下图所示三棱锥A BCD -,其中5,6,7,AB CD AC BD AD BC ======则该三棱锥外接球的表面积为 .

解:对棱相等,补形为长方体,如图2-1,设长宽高分别为c b a ,,,110493625)(22

2

2

=++=++c b a ,

55222=++c b a ,5542=R ,π55=S

(1)题图

B

(2)在三棱锥BCD A -中,2==CD AB ,3==BC AD ,4==BD AC ,则三棱锥BCD A -外接球的表面积为 .

π2

29 解:如图2-1,设补形为长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,则92

2

=+b a ,

422=+c b ,1622=+a c ∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,

229222=

++c b a ,22942

=R ,π2

29=S (3)正四面体的各条棱长都为2,则该正面体外接球的体积为 (3)解答题

解:正四面体对棱相等的模式,放入正方体中,32=R ,2

3=

R ,ππ23

83334=?

=V (4)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如下图,则图中三

角形(正四面体的截面)的面积是 .

(4)题解答图

(4)

解:如解答图,将正四面体放入正方体中,截面为1PCO ?,面积是2.

类型三、汉堡模型(直棱柱的外接球、圆柱的外接球)

图3-1

图3-2 图

3-3

题设:如图3-1,图3-2,图3-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)

第一步:确定球心O 的位置,1O 是ABC ?的外心,则⊥1OO 平面ABC ; 第二步:算出小圆1O 的半径r AO =1,h AA OO 2

1

2111==

(h AA =1也是圆柱的高)

; 第三步:勾股定理:21212O O A O OA +=?2

22)2

(r h

R +=?22)2

(h

r R +=

,解出R

例3(1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,

且该六棱柱的体积为

8

9

,底面周长为3,则这个球的体积为 解:设正六边形边长为a ,正六棱柱的高为h ,底面外接圆的半径为r ,则2

1

=a ,

正六棱柱的底面积为833)21(4362=??

=S ,8

9833===h Sh V 柱,∴3=h ,4)3(14222=+=R 也可1)21()23(

222

=+=R ),1=R ,球的体积为3

=球V ; (2)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=?,则此

球的表面积等于 .

解:32=BC ,4120

sin 3

22==

r ,2=r ,5=R ,π20=S ; (3)已知EAB ?所在的平面与矩形ABCD 所在的平面互相垂直,

?

=∠===60,2,3AEB AD EB EA ,则多面体ABCD E -的外接球

的表面积为 .π16 解:折叠型,

法一:EAB ?的外接圆半径为31=r ,11=OO ,231=+=R ;

法二:231=

M O ,21322==D O r ,44

13432

=+=R ,2=R ,π16=表S ; 法三:补形为直三棱柱,可改变直三棱柱的放置方式为立式,算法可同上,略.换一种方式,通过算圆柱

的轴截面的对角线长来求球的直径:162)32()2(2

22=+=R ,π16=表S ;

(4)在直三棱柱111C B A ABC -中,4,3

,6,41====AA A AC AB π

,则直三棱柱111C B A ABC -的外接

球的表面积为 .

π3

160

解:法一:282164236162

=?

??-+=BC ,72=BC ,3742

3722=

=r ,3

7

2=r , 3404328)2(

2

122=+=+=AA r R ,π3

160=表S ;

法二:求圆柱的轴截面的对角线长得球直径,此略.

第二讲 锥体背景的模型

类型四、切瓜模型(两个大小圆面互相垂直且交于小圆直径——正弦定理求大圆直径是通法)

图4-1

图4-2

图4-3

图4-4

1.如图4-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ?的外心?三棱锥ABC P -的三条侧棱相等?三棱ABC P -的底面ABC ?在圆锥的底上,顶点P 点也是圆锥的顶点. 解题步骤:

第一步:确定球心O 的位置,取ABC ?的外心1O ,则1,,O O P 三点共线;

第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);

(3)题

第三步:勾股定理:21212O O A O OA +=?2

22)(r R h R +-=,解出R ;

事实上,ACP ?的外接圆就是大圆,直接用正弦定理也可求解出R .

2.如图4-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则 利用勾股定理求三棱锥的外接球半径:①2

22)2()2(r PA R +=?22)2(2r PA R +=

②2

12

2OO r R +=?2

12OO r R +=

3.如图4-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径) 2

12

12

O O C O OC +=?2

12

2

O O r R +=?2122O O R AC -=

4.题设:如图4-4,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)

第一步:易知球心O 必是PAC ?的外心,即PAC ?的外接圆是大圆,先求出小圆的直径r AC 2=; 第二步:在PAC ?中,可根据正弦定理

R C

c

B b A a 2sin sin sin ===,求出R . 例4 (1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为32,则该球的表面积为 . 解:法一:由正弦定理(用大圆求外接球直径);法二:找球心联合勾股定理,

72=R ,ππ4942==R S ;

(2)正四棱锥ABCD S -的底面边长和各侧棱长都为2,各顶点都在同一球面上,则此球体积为 解:方法一:找球心的位置,易知1=r ,1=h ,r h =,故球心在正方形的中心ABCD 处,1=R ,3

=

V 方法二:大圆是轴截面所的外接圆,即大圆是SAC ?的外接圆,此处特殊,SAC Rt ?的斜边是球半径,

22=R ,1=R ,3

4π=

V . (3)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正

三棱锥的体积是( )

A .

4

3

3 B .33 C .43 D .123

解:高1==R h ,底面外接圆的半径为1=R ,直径为22=R , 设底面边长为a ,则2

60sin 2==

a

R ,3=a ,433432==a S ,三棱锥的体积为4331==Sh V ; (4)在三棱锥ABC P -中,3===PC PB PA ,侧棱PA 与底面ABC 所成的角为

60,则该三棱锥外

接球的体积为( ) A .π B.

3π C. 4π D.43

π 解:选D ,由线面角的知识,得ABC ?的顶点C B A ,,在以2

3

=

r 为半径的圆上,在圆锥中求解,1=R ; (5)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ?是边长为1的正三角形,SC 为球O 的直

径,且2SC =,则此棱锥的体积为( )A

A

B

C

D

解:3

6

)33(

12221=

-=-=

r R OO ,362=h ,62362433131=??==Sh V 球 类型五、垂面模型(一条直线垂直于一个平面)

1.题设:如图5,⊥PA 平面ABC ,求外接球半径.

解题步骤:

第一步:将ABC ?画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过

球心O ; 第二步:1O 为ABC ?的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直

径算法:利用正弦定理,得

r C c B b A a 2sin sin sin ===)

,PA OO 2

1

1=; 第三步:利用勾股定理求三棱锥的外接球半径:①2

2

2

)2()2(r PA R +=?22)2(2r PA R +=

②2

12

2OO r R +=?2

12OO r R +=

.

2.题设:如图5-1至5-8这七个图形,P 的射影是ABC ?的外心?三棱锥ABC P -的 三条侧棱相等?三棱锥ABC P -的底面ABC ?在圆锥的底上,顶点P 点也是圆锥的 顶点

.

图5-1

图5-2

图5-3

图5-4

图5-6

5-7

图5-8

解题步骤:

第一步:确定球心O 的位置,取ABC ?的外心1O ,则1,,O O P 三点共线;

第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=?2

22)(r R h R +-=,解出R 方法二:小圆直径参与构造大圆,用正弦定理求大圆直径得球的直径. 例5 一个几何体的三视图如图所示,则该几何体外接球的表面积为( )C A .π3 B .π2 C .

3

16π

D .以上都不对

解:选C , 法一:(勾股定理)利用球心的位置求球半径,球心在圆锥的高线上,

221)3(R R =+-,3

2=

R ,

ππ31642

==R S ;

法二:(大圆法求外接球直径)如图,球心在圆锥的高线上,故圆锥的轴截面三角形PMN 的外接圆是大圆,于是3

4

60sin 22==

R ,下略;

第三讲 二面角背景的模型

类型六、折叠模型

题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图6)

俯视图侧视图

正视图解答图

图6

第一步:先画出如图6所示的图形,将BCD ?画在小圆上,找出BCD ?和BD A '?的外心1H 和2H ; 第二步:过1H 和2H 分别作平面BCD 和平面BD A '的垂线,两垂线的交点即为球心O ,连接OC OE ,; 第三步:解1OEH ?,算出1OH ,在1OCH Rt ?中,勾股定理:2

2

12

1OC CH OH =+ 注:易知21,,,H E H O 四点共面且四点共圆,证略.

例6(1)三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 和△ABC 均为边长为2的正三角形,则三棱锥ABC P -外接球的半径为 . 解:如图,3460sin 22221==

=

r r ,3221==r r ,3

1

2=H O , 3

5

34312

1

2

22

=+=+=r H O R ,315=R ; 法二:312=

H O ,3

11=H O ,1=AH , 3

5

2121222=++==O O H O AH AO R ,315=R ; (2)在直角梯形ABCD 中,CD AB //, 90=∠A ,

45=∠C ,1==AD AB ,沿对角线BD 折成四面

体BCD A -',使平面⊥'BD A 平面BCD ,若四面体BCD A -'的顶点在同一个球面上,则该项球的

表面积为 π4

(2)

题-2

(2)题-1

A

(3)题

解:如图,易知球心在

BC 的中点处,π4=表S ;

(1)题

(3)在四面体ABC S -中,BC AB ⊥,2==BC AB ,二面角B AC S --的余弦值为3

3

-

,则四面体ABC S -的外接球表面积为 π6 解:如图,法一:3

3)2

cos(cos 211-

=+

∠=∠π

O OO B SO , 33sin 21=

∠O OO ,3

6cos 21=∠O OO , 2

2cos 21211=

∠=

O OO O O OO ,232112

=+=R ,ππ642==R S ; 法二:延长1BO 到D 使111r BO DO ==,由余弦定理得6=

SB ,2=SD ,大圆直径为62==SB R ;

(4)在边长为32的菱形ABCD 中, 60=∠BAD ,沿对角线BD 折成二面角C BD A --为

120的四

面体ABCD ,则此四面体的外接球表面积为 π28

解:如图,取BD 的中点M ,ABD ?和CBD ?的外接圆半径为221==r r ,ABD ?和CBD ?的外心21,O O 到弦BD 的距离(弦心距)为121==d d , 法一:四边形21MO OO 的外接圆直径2=OM ,7=R ,π28=S ;

法二:31=

OO ,7=R ;

法三:作出CBD ?的外接圆直径CE ,则3==CM AM , 4=CE ,1=ME ,7=AE ,33=AC ,

7

214

7227167cos -

=??-+=

∠AEC ,7

23

3sin =

∠AEC ,727

23333sin 2==∠=

AEC AC R ,7=R ;

(4)题图

(5)在四棱锥ABCD 中, 120=∠BDA ,

150=∠BDC ,2==BD AD ,3=

CD ,二面角C

BD A --的平面角的大小为

120,则此四面体的外接球的体积为 解:如图,过两小圆圆心作相应小圆所在平面的垂线确定球心,

抽象化

(5)题解答图-2

(5)题解答图-1

1

B

32=AB ,22=r ,弦心距32=M O ,13=BC ,131=r ,弦心距321=M O , ∴2121=O O ,72120sin 2

1==

O O OM ,

法一:∴292

2

2

2

=+==OM MD OD R ,29=

R ,∴3

29116π

=

球V ; 法二:2522222=-=M O OM OO ,∴292

22222=+==OO r OD R ,29=

R ,∴3

29116π

=

球V . 类型七、两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型

图7

题设:如图7,

90=∠=∠ACB APB ,求三棱锥ABC P -外接球半径(分析:取公共的斜边的中点O ,连接OC OP ,,则AB OP OC OB OA 2

1

=

===,∴O 为三棱锥ABC P -外接球球心,然后在OCP 中求出半径),当看作矩形沿对角线折起所得三棱锥时与折起成的二面角大小无关,只要不是平角球半径都为定值.

例7(1)在矩形ABCD 中,4=AB ,3=BC ,沿AC 将矩形ABCD 折成一个直二面角D AC B --,

则四面体ABCD 的外接球的体积为( )

A .

π12125 B .π9125 C .π6125 D .π3

125

解:(1)52==AC R ,25

=R ,6

125812534343πππ=?==R V ,选C

(2)在矩形ABCD 中,2=AB ,3=BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥BCD

A -

的外接球的表面积为 .

解:BD 的中点是球心O ,132==BD R ,ππ1342

==R S .

第四讲 多面体的内切球问题模型

类型八、锥体的内切球问题

1.题设:如图8-1,三棱锥ABC P -上正三棱锥,求其内切球的半径. 第一步:先现出内切球的截面图,H E ,分别是两个三角形的外心;

第二步:求BD DH 3

1

=,r PH PO -=,PD 是侧面ABP ?的高;

第三步:由POE ?相似于PDH ?,建立等式:PD

PO

DH OE =

,解出r 2.题设:如图8-2,四棱锥ABC P -是正四棱锥,求其内切球的半径

第一步:先现出内切球的截面图,H O P ,,三点共线;

第二步:求BC FH 2

1

=

,r PH PO -=,PF 是侧面PCD ?的高; 第三步:由POG ?相似于PFH ?,建立等式:PF

PO

HF OG =

,解出

3.题设:三棱锥ABC P -是任意三棱锥,求其的内切球半径

方法:等体积法,即内切球球心与四个面构成的四个三棱锥的体积之和相等 第一步:先画出四个表面的面积和整个锥体体积;

第二步:设内切球的半径为r ,建立等式:PBC O PAC O PAB O ABC O ABC P V V V V V -----+++=?

r S S S S r S r S r S r S V PBC PAC PAB ABC PBC PAC PAB ABC ABC P ?+++=?+?+?+?=????-)(3

1

31313131

第三步:解出PBC

O PAC O PAB O ABC O ABC

P S S S S V r -----+++=

3

例8 (1)棱长为a 的正四面体的内切球表面积是 6

2

a π,

解:设正四面体内切球的半径为r ,将正四面体放入棱长为2

a

的正方体

中(即补形为正方体),如图,则

2

622313133a a V V ABC

P =?==-正方体, 又 r a r a Sr V ABC P 2

23

343314314=???=?

=-,

D

图8-1

A

图8-2

∴2

63332a r a =

,62a r =,∴内切球的表面积为6422

a r S ππ==表(注:还有别的方法,此略) (2)正四棱锥ABCD S -的底面边长为2,侧棱长为3

7

解:如图,正四棱锥ABCD S -的高7=h ,正四棱锥ABCD S -的体积为3

7

4=-ABCD S V 侧面斜高221=h ,正四棱锥ABCD S -的表面积为284+=表S ,

正四棱锥ABCD S -的体积为r r S V ABCD

S ?+==-3

28431表, ∴

3

7

43284=?+r , 77

1427)122(72

21728474-=

-=+=+=r (3)三棱锥ABC P -中,底面ABC ?是边长为2的正三角形,⊥PA 底面ABC ,2=PA ,则

3

2解:如图,3=?ABC S ,2==??ACP ABP S S ,7=?BCP S ,

743++=表S ,

三棱锥ABC P -的体积为3

3

2=

-ABC P V , 另一表达体积的方式是r r S V ABC P ?++=

=-34

7331表, ∴

3323473=?++r ,∴4

733

2++=r

习题: 1.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ) A.3 B.6 C.36 D.9 解:【A 】616164)2(2

=++=R ,3=R

【三棱锥有一侧棱垂直于底面,且底面是直角三角形】【共两种】

2. 三棱锥ABC S -中,侧棱⊥SA 平面ABC ,底面ABC 是边长为3的正三角形,32=SA ,则该三

棱锥的外接球体积等于 .

3

32π

(2)题

(3)题

B

解:260sin 32==

r ,16124)2(2=+=R ,42

=R ,2=R ,外接球体积3

32834ππ=? 【外心法(加中垂线)找球心;正弦定理求球小圆半径】

3.正三棱锥ABC S -中,底面ABC 是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等

于 .

解:ABC ?外接圆的半径为 ,三棱锥ABC S -的直径为3460sin 22==

R ,外接球半径3

2

=R ,

或1)3(2

2+-=R R ,3

2

=

R ,外接球体积2733233834343π

ππ=

?==

R V , 4.三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 边长为2的正三角形,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .

解:PAC ?的外接圆是大圆,3460sin 22==

R ,3

2

=R , 5. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,3==PC PA ,BC AB ⊥,则三棱锥

ABC P -外接球的半径为 .

解:973324992cos 222=??-+=?-+=∠PC PA AC PC PA P ,81

2

16)97(1sin 22?=-=∠P ,924sin =∠P ,

42

92

299

2422=

==R ,829=R 6. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,PC PA ⊥,BC AB ⊥,则三棱锥ABC

P -外接球的半径为 .

解:AC 是公共的斜边,AC 的中点是球心O ,球半径为1=R

教师空间使用 装扮操作指导

宁夏教育资源公共服务平台 教师操作手册(V1.1) 目录 一、 用户登录、注册 ...................................... 1. ..................................................................................... 新用户如何注册? 2. .............................................................................. 忘记密码如何找回? 二、 教师如何维护个人资料 ................................ 1. .......................................................................... 如何修改个人基本信息 2. ................................................................................ 如何绑定登陆账号? 3. ....................................................................................... 如何修改密码? 4. .............................................................................. 如何设置个人头像? 5. .............................................................................. 如何申请加入班级? 6. .............................................................................. 如何申请退出班级? 7. .............................................................................. 如何申请加入学校? 8. .............................................................................. 如何申请退出学校? 三、 教师如何运用个人工作空间 ............................ 1. .......................................................................... 如何进行私信的管理? 2. ....................................................................................... 如何获取积分?

立体几何与解析几何综合题训练

A C E 立体解析综合题练习1 1.如图,正方形ADEF 与梯形ABCD 所在平面互相垂直,已知//,AB CD AD CD ⊥,1 2 AB AD CD ==. (Ⅰ)求证:BF //平面CDE ; (Ⅱ)求平面BDF 与平面CDE 所成锐二面角的余弦值; (Ⅲ)线段EC 上是否存在点M ,使得平面BDM ⊥平面 BDF ?若存在, 求出EM EC 的值;若不存在,说明理由. 2.已知1(2,0)F -,2(2,0)F 两点,曲线C 上的动点P 满足12123 ||||||2 PF PF F F +=. (Ⅰ)求曲线C 的方程; (Ⅱ)若直线l 经过点(0,3)M ,交曲线C 于A ,B 两点,且12 MA MB = ,求直线l 的方程. 立体解析综合题练习2 1. 在如图所示的多面体中,EA ⊥平面ABC ,DB ⊥平面ABC ,BC AC ⊥, 且22====AE BD BC AC ,M 是AB 的中点. (Ⅰ)求证:CM ⊥EM ; (Ⅱ)求平面EMC 与平面BCD 所成的锐二面角的余弦值; (Ⅲ)在棱DC 上是否存在一点N ,使得直线MN 与平面EMC 所成的角为60?.若存在,指出点N 的位置;若不存在,请说明理由. 2.椭圆C:22 221(0)x y a b a b +=>>的两个焦点为F 1,F 2,点P 在椭圆C 上,且11212414,||,||.33PF F F PF PF ⊥== (Ⅰ)求椭圆C 的方程; (Ⅱ)若直线l 过圆M: x 2+y 2+4x-2y=0的圆心,交椭圆C 于,A B 两点,且A 、B 关于点M 对称, 求直线l 的方程. 立体解析综合题练习3 1.在如图所示的几何体中,四边形ABCD 为正方形,PA ⊥平面ABCD ,PA //BE ,AB =PA =4,BE =2. (Ⅰ)求证:CE //平面PAD ; (Ⅱ)求PD 与平面PCE 所成角的正弦值; (Ⅲ)在棱AB 上是否存在一点F ,使得 平面DEF ⊥平面PCE ?如果存在,求AF AB 的值; 如果不存在,说明理由. 2.已知抛物线C :2 2y px =(0p >)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上 异于O 的两点. (Ⅰ)求抛物线C 的方程; (Ⅱ)若直线OA ,OB 的斜率之积为1 2 - ,求证:直线AB 过x 轴上一定点. A B F E D C

高考数学中的内切球和外接球问题

高考数学中的内切球和 外接球问题 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

高考数学中的内切球和外接球问题 一、有关外接球的问题 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用. 一、直接法(公式法) 1、求正方体的外接球的有关问题 例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ . 例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________. 2、求长方体的外接球的有关问题 例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 . 例4已知各顶点都在一个球面上的正四棱柱高为4, 体积为16,则这个球的表面积为(). A. 16π B. 20π C. 24π D. 32π 3.求多面体的外接球的有关问题

例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为8 9,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h ,则有 ∴正六棱柱的底面圆的半径2 1=r ,球心到底面的距离2 3 =d .∴外接球的半径22d r R +=. 体积:3 3 4R V π= . 小结 本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式. 二、构造法(补形法) 1、构造正方体 例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________. 例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 . 故其外接球的表面积ππ942==r S . 小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有 2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。

空间几何体练习题与答案

(数学2必修) 第一章 空间几何体 [基础训练A 组] 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A .棱台 B .棱锥 C .棱柱 D .都不对 2.棱长都是1的三棱锥的表面积为( ) A 3 B . 23 C . 33 D . 33.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 4.正方体的内切球和外接球的半径之比为( ) A 3 B 32 C .23 D 33 5.在△ABC 中,0 2, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( ) A. 92π B. 72π C. 52π D. 32 π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题 1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 主视图 左视图 俯视图

顶点最少的一个棱台有 ________条侧棱。 2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。 3.正方体1111ABCD A B C D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。 4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。 5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题 1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M ,高4M ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。 (1) 分别计算按这两种方案所建的仓库的体积; (2) 分别计算按这两种方案所建的仓库的表面积; (3) 哪个方案更经济些? 2.将圆心角为0 120,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积 新课程高中数学训练题组 (数学2必修)第一章 空间几何体 [综合训练B 组] 一、选择题

八个有趣模型搞定外接球内切球问题(学生版))解析

八个有趣模型——搞定空间几何体的外接球与内切球 类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径) 方法:找三条两两垂直的线段,直接用公式2 2 2 2 )2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( ) A .π16 B .π20 C .π24 D .π32 (2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是 (3)在正三棱锥中,分别是棱的中点,且MN AM ⊥,若侧棱,则正三棱锥ABC S -外接球的表面积是 (4)在四面体中,ABC SA 平面⊥,,1,2,120====∠? AB AC SA BAC 则该四面体的外接 球的表面积为( ) π11.A π7.B π310. C π3 40.D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是 图2 图3 S ABC -M N 、SC BC 、SA =S ABC -

(6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为 1的正方形,则该几何体外接球的体积为 类型二、垂面模型(一条直线垂直于一个平面) 1.题设:如图5,⊥PA 平面ABC 解题步骤: 第一步:将ABC ?画在小圆面上,A 为小圆直径的一个端点,作小圆的直 径AD ,连接PD ,则PD 必过球心O ; 第二步:1O 为ABC ?的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半 径r D O =1(三角形的外接圆直径算法:利用正弦定理,得 r C c B b A a 2sin sin sin ===),PA OO 2 1 1=; 第三步:利用勾股定理求三棱锥的外接球半径:①2 2 2 )2()2(r PA R +=?22)2(2r PA R +=; ②2 12 2 OO r R +=?2 12OO r R += 2.题设:如图6,7,8,P 的射影是ABC ?的外心?三棱锥ABC P -的三条侧棱相等? 三棱锥ABC P -的底面ABC ?在圆锥的底上,顶点P 点也是圆锥的顶点 图6 P A D O 1 O C B 图7-1 P A O 1 O C B 图7-2 P A O 1 O C B 图8 P A O 1 O C B 图5 A D P O 1O C B

空间几何体的外接球和内切球问题说课材料

空间几何体的外接球和内切球问题

空间几何体的外接球和内切球问题 类型1 外接球的问题 1.必备知识: (1)简单多面体外接球的球心的结论. 结论1:正方体或长方体的外接球的球心是其体对角线的中点. 结论2:正棱柱的外接球的球心是上下底面中心的连线的中点. 结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点. (2)构造正方体或长方体确定球心. (3)利用球心O 与截面圆圆心O 1的连线垂直于截面圆及球心O 与弦中点的连线垂直于弦的性质,确定球心. 2.方法技巧:(1)几何体补成正方体或长方体.(2)轴截面法(3)空间向量法 1AB DC AD BC BD AC ======例1-1、正四面体的棱长都为,求此四面体外接球和内切球的半径 例1-2、四面体中,, 求此四面体外接球的表面积 例1-3.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ) A.3 B.6 C.36 D.9 训练1(创新110页) 某几何体的三视图如图所示,则该几何体的外接球的表面积为( ) A.25π B.26π C.32π D.36π 训练2(创新110页)已知边长为2的等边三角形ABC ,D 为BC 的中点,沿AD 进行折叠,使折叠后的∠BDC =π2 ,则过A ,B ,C ,D 四点的球的表面积为( ) A.3π B.4π C.5π D.6π 例2-1(创新110页)体积为3的三棱锥P -ABC 的顶点都在球O 的球面上,P A ⊥平面ABC ,P A =2,∠ABC =120°,则球O 的体积的最小值为( ) A.773 π B.2873π C.19193π D.76193 π 例2-1(创新109页)三棱锥P -ABC 中,平面P AC ⊥平面ABC ,AB ⊥AC ,P A =PC =AC =2,AB =4,则三棱锥P -ABC 的外接球的表面积为( ) A.23π B.234π C.64π D.643π 类型2 内切球问题 1.必备知识: (1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等. (2)正多面体的内切球和外接球的球心重合. (3)正棱锥的内切球和外接球球心都在高线上,但不一定重合. 2.方法技巧:体积分割是求内切球半径的通用做法.

第一章 空间几何体练习题

第一章空间几何体 1.1 空间几何体的结构 一、选择题 1、下列各组几何体中是多面体的一组是() A 三棱柱四棱台球圆锥 B 三棱柱四棱台正方体圆台 C 三棱柱四棱台正方体六棱锥 D 圆锥圆台球半球 2、下列说法正确的是() A 有一个面是多边形,其余各面是三角形的多面体是棱锥 B 有两个面互相平行,其余各面均为梯形的多面体是棱台 C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱 D 棱柱的两个底面互相平行,侧面均为平行四边形 3、下面多面体是五面体的是() A 三棱锥 B 三棱柱 C 四棱柱 D 五棱锥 4、下列说法错误的是() A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成 B 一个圆台可以由两个圆台拼合而成 C 一个圆锥可以由两个圆锥拼合而成 D 一个四棱台可以由两个四棱台拼合而成 5、下面多面体中有12条棱的是() A 四棱柱 B 四棱锥 C 五棱锥 D 五棱柱 6、在三棱锥的四个面中,直角三角形最多可有几个() A 1 个 B 2 个 C 3个 D 4个 二、填空题 7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点, 有—————————个棱。 8、一个棱柱有10个顶点,所有侧棱长的和为60,则每条侧棱长为———————————— 9、把等腰三角形绕底边上的高旋转1800,所得的几何体是—————— 10、水平放置的正方体分别用“前面、后面、上面、下面、左面、右面”表示。 图中是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面,“程”表示下面。 则“祝”“你”“前”分别表示正方体的————— 祝 你前程 似锦

【精品】2019年高考数学中的内切球和外接球问题

【精品】2019年高考数学中的内切球和外接球问题 一、 有关外接球的问题 一、直接法(公式法) 1、求正方体的外接球的有关问题 例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ . 例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________. 2、求长方体的外接球的有关问题 例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 . 例4已知各顶点都在一个球面上的正四棱柱高为4, 体积为16,则这个球的表面积为( ). A. 16π B. 20π C. 24π D. 32π 3.求多面体的外接球的有关问题 例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为8 9,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h ,则有 ??????==h x x 2436893 6 ?????==213x h

∴正六棱柱的底面圆的半径21=r ,球心到底面的距离2 3= d .∴外接球的半径22d r R +=. 体积:334R V π=. 小结 本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式. 二、构造法(补形法) 1、构造正方体 例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________. 例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 . 故其外接球的表面积ππ942==r S . 小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。 【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为222c b a l ++=,几何体的外接球直径为R 2体对角线长l 即2 222c b a R ++=

教师空间使用、装扮操作指导

宁夏教育资源公共服务平台教师操作手册(V1.1) 宁夏回族自治区教育厅 技术支持:宁夏立思辰银山教育产业有限公司

目录 一、用户登录、注册............................................................................. 错误!未定义书签。 1.新用户如何注册? ........................................................................... 错误!未定义书签。 2.忘记密码如何找回?..................................................................... 错误!未定义书签。 二、教师如何维护个人资料................................................................. 错误!未定义书签。 1.如何修改个人基本信息................................................................. 错误!未定义书签。 2.如何绑定登陆账号? ....................................................................... 错误!未定义书签。 3.如何修改密码?............................................................................. 错误!未定义书签。 4.如何设置个人头像?..................................................................... 错误!未定义书签。 5.如何申请加入班级?..................................................................... 错误!未定义书签。 6.如何申请退出班级?..................................................................... 错误!未定义书签。 7.如何申请加入学校?..................................................................... 错误!未定义书签。 8.如何申请退出学校?..................................................................... 错误!未定义书签。 三、教师如何运用个人工作空间 (3) 1.如何进行私信的管理? (3) 2.如何获取积分? (3) 3.如何查看个人收藏夹? (5) 4.如何管理我的应用? (6) 5.如何设置工作空间的动态显示内容? (7) 6.如何发布作业/班级通知? (8) 7.如何发布学生成绩? (8) 8.如何查看班级成员成长秀? (10) 9.如何进入我的班级? (11) 10.如何进入学校主页? (11) 11.如何退出登录? (12) 四、教师如何进行资源管理 (13) 1.如何进行“资源检索”? (13) 2.如何管理“我的收藏”? (14) 3.如何管理“上传的资源”? (15) 4.如何管理我的分享? (17) 五、教师如何进行文章管理 (18) 1.如何设置文章的分类? (18) 2.如何设置文章的可见范围? (20) 3.如何加密文章? (21) 4.如何置顶文章? (22) 六、空间装扮 (23) 1.如何进入空间装扮? (23) 2.如何改变空间的版式布局? (23) 3.如何设置留言板显示的留言条数? (23) 4.如何在好友文章中指定要显示好友? (24) 5.如何更换展示空间的背景? (25) 6.如何改变展示空间模板的位置? (25) 7.如何在展示空间播放视频? (26)

理科数学2010-2019高考真题分类训练专题八立体几何第二十二讲空间几何体的三视图、表面积和体积答案

专题八 立体几何初步 第二十二讲 空间几何体的三视图、表面积和体积 答案部分 2019年 1.解析 该模型为长方体1111ABCD A B C D -,挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H ,分别为所在棱的中点,6cm AB BC ==, 14cm AA =, 所以该模型体积为: 1111311 664(46432)314412132(cm )32 ABCD A B C D O EFGH V V ---=??-??-????=-=, 3D 打印所用原料密度因为为30.9g /cm ,不考虑打印损耗, 所以制作该模型所需原料的质量为:1320.9118.8(g)?=. 2.解析 因为长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点, 所以11111120ABCD A B C D V AB BC DD -=??=,所以三棱锥E BCD -的体积: 111332E BCD BCD V S CE BC DC CE -=??=????=V 11 1012 AB BC DD ???=. 3.解析 由题可知,四棱锥底面正方形的对角线长为2,且垂直相交平分,由勾股定理得,正四棱锥的高为2. 因为圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,则圆柱的上底面直径为底面正方形对角线的一半等于1,即半径等于 1 2 ,由相似比可得圆柱的高为正四棱锥高的一半,为1. 所以该圆柱的体积为2 1124V Sh π?? ==π?= ??? . 4.解析:由PA PB PC ==及ABC △是边长为2的正三角形可知,三棱锥P ABC -为正三棱锥,

79.高考数学专题39 空间几何体综合练习(理)(原卷版)

专题39 空间几何体综合练习 1.用一个平面去截一个几何体,得到的截面是圆面,这个几何体不可能是( )。 A 、圆锥 B 、圆柱 C 、球 D 、棱柱 2.如右图所示,在正方体1111D C B A ABCD -中,M 、N 分别是1BB 、BC 的中点,则图中阴影部分在正方体的六个面上的正投影(投射线垂直于投射面所得的平行投影)可能为下图中的( )。 ① ② ③ ④ A 、①③ B 、②④ C 、②③④ D 、③④ 3.如图所示,在多面体ABCDEF 中,已知四边形ABCD 是边长为1的正方形,且AD E ?、BC F ?均为正三角形,AB EF //,2=EF ,则该多面体的体积为( )。 A 、3 2 B 、 33 C 、 32 D 、3 4 4.如图,在长方体D C B A ABCD ''''-中,用截面截下一个棱锥D D A C ''-,则棱锥D D A C ''-的体积与剩余部分的体积之比为( )。 A 、51: B 、41: C 、31: D 、21: 5.如图所示,已知一圆台上底面半径为5cm ,下底面半径为10cm ,母线AB 长为20cm ,其中A 在上底面上,B 在下底面上,从AB 的中点M 处拉一条绳子,绕圆台的侧面转一周达到B 点,则这条绳子的长度

最短为( )。 A 、30cm B 、40cm C 、50cm D 、60cm 6.如图为一个几何体的三视图,则该几何体的外接球的表面积为( )。 A 、π4 B 、π8 C 、π12 D 、π16 7.在地球北纬 60圈上有A 、B 两点,它们的经度相差 180,A 、B 两地沿纬线圈的弧长与A 、B 两点的球面距离之比为( )。 A 、31: B 、21: C 、32: D 、23: 8.已知A 、B 是球O 的球面上两点, 90=∠AOB ,C 为该球面上的动点,若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( )。 A 、π36 B 、π64 C 、π144 D 、π256 9.平行四边形ABCD 中,BD AB ⊥,且4222=+BD AB ,沿BD 将四边形折起成平面⊥ABD 平面BDC ,则三棱锥BCD A -外接球的表面积为( )。 A 、2 π B 、π2 C 、π4 D 、π16 10.已知四面体ABCD 是球O 的内接四面体,且AB 是球O 的一条直径,2=AD ,3=BD ,则下面结论错误的是( )。 A 、球O 的表面积为π13 B 、A C 上存在一点M ,使得BM A D // C 、若N 为C D 的中点,则CD ON ⊥

数学研究课题---空间几何体的外接球与内切球问题.

高中数学课题研究 几何体与球切、接的问题 纵观近几年高考对于组合体的考查,与球相关的外接与内切问题是高考命题的热点之一.高考命题小题综合化倾向尤为明显,要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识学生掌握较为薄弱、认识较为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理. 下面结合近几年高考题对球与几何体的切接问题作深入的探究,以便更好地把握高考命题的趋势和高考的命题思路,力争在这部分内容不失分.从近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见. 首先明确定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。 定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球. 1 球与柱体的切接 规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题. 1.1 球与正方体 如图所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2a OJ r ==;二 是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则GO R a ==;三是球为正方体的 外接球,截面图为长方形11ACA C 和其外接圆,则12 A O R a '==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.

教师个人空间应用操作手册

一、栏目创建操作手册 1.在浏览器中输入“福建省教育资源公共服务平台”地址:https://www.360docs.net/doc/7517928125.html,/。 2.在“空间登录”处,输入教师用户名、密码,点击“登录”进入个人空间。 3.进入教师空间首页:可以在个人主页中发表、管理文章、资源,同时可以进入社区,管理相册、查看留言,了解心得和留言等。 (1)文章: 可以发布新的文章、对文章分类、删除、编辑、站内用搜索等,对已经发表的文章进行称赞、转载、收藏和评论等操作。 (2)资源: 提供个人资源网盘、收藏资源和上报资源的管理功能。可以上传、新建、发布资源,对资源文件夹进行编辑、移动和删除。 (3)文章栏目设置方法步骤 文章分类管理的方法:先创建“主类”,如“教学设计(教案)”,在每个再主类下再创建子类,如“2014—2015下学期”,每个主类下至少创建一个子类,否则该主类内无法发表文章,文章只能发表在某个子类下。操作步骤如下: 第一步:进入“我的工作空间”,选择“文章”总栏目,再选择“文章分类”栏目标题中的“管理”选项。

第一步 第二步:选择“添加主类”,在提示文本框中输入主类名如“教学设计(教案)”,再选择“确定”按钮。 第三步:选择对应主类名称标题行右边“添加子类”,在提示文本框中输入子类名称,名称统一规范为“年度+学期”(如:2014—2015下学期),再选择“确定”按钮。 第四步:选择“排序管理”下方的“保存”按钮,保存栏目设置。可通过“编辑”、“删除”按钮,修改或删除当前分类。 第三步 第四步 第二步 二、上传文章操作手册 1.在浏览器中输入“福建省教育资源公共服务平台”地 — 2 —

立体几何综合训练

立体几何综合性训练 一、单选题 1.下列说法中不正确...的是( ) A .圆柱的侧面展开图是一个矩形 B .直角三角形绕它的一条边所在直线旋转一周形成的曲面围成的几何体是圆锥 C .圆锥中过轴的截面是一个等腰三角形 D .圆台中平行于底面的截面是圆面 2.下列命题中错误的是:( ) A .如果α⊥β,那么α内一定存在直线平行于平面β; B .如果α⊥β,那么α内所有直线都垂直于平面β; C .如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β; D .如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ. 3.已知,m n 是两条不同的直线,,αβ是两个不同的平面.在下列条件中,可得出αβ⊥的是( ) A .,,//m n m n αβ⊥⊥ B .//,//,m n m n αβ⊥ C .,//,//m n m n αβ⊥ D .//,,m n m n αβ⊥⊥ 4.一个几何体的三视图如图所示,则该几何体的体积为( ) A . 10 3 B .3 C .8 3 D .73 5.用一个平面去截正方体,则截面不可能是( ) A .直角三角形 B .等边三角形 C .正方形 D .正六边形 6.如图,长方体1111ABCD A B C D -中,12AA AB ==,1AD =,点,,E F G 分别是1DD , AB ,1CC 的中点,则异面直线1A E 与GF 所成的角是 A .90o B .60o C .45o D .30o 7.已知点,E F 分别是正方体1111ABCD A B C D -的棱1,AB AA 的中点,点,M N 分别是线段1D E 与1C F 上的点,则与平面ABCD 平行的直线MN 有( )条

内切球和外接球问题专题复习

内切球和外接球问题 一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用. 一、直接法(公式法) 1、求正方体的外接球的有关问题 例1 (2006年广东高考题)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ . 解析:要求球的表面积,只要知道球的半径即可.因为正方体内接于球,所以它的体对角线正好为球的直径,因此,求球的半径可转化为先求正方体的体对角线长,再计算半径. 故表面积为27π. 例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________. 解析:要求球的体积,还是先得求出球的半径,而球的直径正好是正方体的体对角线, 23所以球的半径为3.因此,由正方体表面积可求出棱长,从而求出正方体的体对角线是 43π. 故该球的体积为 2、求长方体的外接球的有关问题 例3 (2007年天津高考题)一个长方体的各顶点均在同一球面上,且一个顶点上的三 1,2,3,则此球的表面积为. 条棱长分别为 解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。长方体体对角线长为14,故球的表面积为14π. 例4、(2006年全国卷I)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为(). A. 16π B. 20π C. 24π D. 32π 解析:正四棱柱也是长方体。由长方体的体积16及 高4可以求出长方体的底面边长为2,因此,长方体的长、 宽、高分别为2,2,4,于是等同于例3,故选C. 3.求多面体的外接球的有关问题 例5. 一个六棱柱的底面是正六边形,其侧棱垂直于 底面,已知该六棱柱的顶点都在同一个球面上,且该六棱

(新高考)2020高考数学小题考法专训(四)空间几何体与空间位置关系

小题考法专训(四) 空间几何体与空间位置关系 A 级——保分小题落实练 一、选择题 1.已知某圆柱的底面周长为12,高为2,矩形ABCD 是该圆柱的轴 截面,则在此圆柱侧面上,从A 到C 的路径中,最短路径的长度为( ) A .210 B .2 5 C .3 D .2 解析:选A 如图,圆柱的侧面展开图是矩形,且矩形的长为 12,宽为2,则在此圆柱侧面上从A 到C 的最短路径为线段AC , AC =22+62=210.故选A. 2.已知a ,b ,c 表示不同的直线,α,β表示不同的平面,下列命题: ①若a ∥b ,b ∥α,则a ∥α; ②若a ⊥b ,b ⊥α,c ⊥α,则a ⊥c ; ③若a ⊥b ,b ⊥α,则a ∥α; ④若a ∥b ,b ∥α,b ?β,α∩β=c ,则a ∥c . 其中错误命题的序号是( ) A .①③ B .②④ C .③④ D .①② 解析:选A 对于①,由a ∥b ,b ∥α,可得a ∥α或a ?α,故①错误;对于②,由b ⊥α,c ⊥α得b ∥c ,又a ⊥b ,所以a ⊥c .故②正确;对于③,由a ⊥b ,b ⊥α,可得a ∥α或a ?α,故③错误;对于④,由b ∥α,b ?β,α∩β=c 得b ∥c ,又a ∥b ,所以a ∥c ,④正确.综上所述,错误命题的序号是①③,选A. 3.设一个球形西瓜,切下一刀后所得切面圆的半径为4,球心到切面圆心的距离为3,则该西瓜的体积为( ) A .100π B .2563π C.4003π D .5003 π 解析:选D 因为切面圆的半径r =4,球心到切面的距离d =3,所以球的半径R =r 2+d 2=42+32=5,故球的体积V =43πR 3=43π×53=5003π,即该西瓜的体积为5003 π. 4.(2019·广州综合测试)如图是一几何体的平面展开图,其中四 边形ABCD 为矩形,E ,F 分别为PA ,PD 的中点,在此几何体中,给出下 面结论:

空间几何体的内切球与外接球问题

空间几何体的内切球与外接球问题 1.[2016·全国卷Ⅱ] 体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A .12π B.32 3π C .8π D .4π [解析]A 因为正方体的体积为8,所以正方体的体对角线长为23,所以正方体的外接球的半径为3,所以球的表面积为4π·(3)2=12π. 2.[2016·全国卷Ⅲ] 在封闭的直三棱柱ABC - A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4π B.9π2 C .6π D.32π 3 [解析]B 当球与三侧面相切时,设球的半径为r 1,∵AB ⊥BC ,AB =6,BC =8,∴8-r 1+6-r 1=10,解得r 1=2,不合题意;当球与直三棱柱的上、下底面相切时,设球的半径为r 2, 则2r 2=3,即r 2=32.∴球的最大半径为32,故V 的最大值为43π×????323=92 π. 3.[2016·郑州模拟]在平行四边形ABCD 中,∠CBA =120°,AD =4,对角线BD =23,将其沿对角线BD 折起,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一球面上,则该球的体积为________. 答案:2053 π;解析:因为∠CBA =120°,所以∠DAB =60°,在三角形ABD 中,由余弦 定理得(23)2=42+AB 2-2×4·AB ·cos 60°,解得AB =2,所以AB ⊥BD .折起后平面ABD ⊥平面BCD ,即有AB ⊥平面BCD ,如图所示,可知A ,B ,C ,D 可看作一个长方体中的四个顶点,长方体的体对角线AC 就是四面体ABCD 外接球的直径,易知AC =22+42=25, 所以球的体积为205 3 π. 4.[2016·山西右玉一中模拟]球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S-ABC 的体积的最大 值为( ) A . 3 3 B .3 C .23 D .4 选A ;[解析] (1)由于平面SAB ⊥平面ABC ,所以点S 在平面ABC 上的射影H 落在AB 上,根据球的对称性可知,当S 在“最高点”,即H 为AB 的中点时,SH 最大,此时棱锥S -ABC 的体积最大. 因为△ABC 是边长为2的正三角形,所以球的半径r =OC =23CH =23×32×2=23 3 . 在Rt △SHO 中,OH =12OC =3 3 ,

(完整版)高考数学中的内切球和外接球问题.

高考数学中的内切球和外接球问题 一、有关外接球的问题 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用. 一、直接法(公式法) 1、求正方体的外接球的有关问题 例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ . 例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________. 2、求长方体的外接球的有关问题 例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为. 例4已知各顶点都在一个球面上的正四棱柱高为4, 体积为16,则这个球的表面积为(). A. 16π B. 20π C. 24π D. 32π

3.求多面体的外接球的有关问题 例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为8 9,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h ,则有 ?? ???? ==h x x 24368936 ?? ???= =213 x h ∴正六棱柱的底面圆的半径2 1 =r ,球心到底面的距离2 3 =d .∴外接球的半径22d r R +=. 体积:3 3 4R V π= . 小结 本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式. 二、构造法(补形法) 1、构造正方体 例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________. 例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 . 故其外接球的表面积ππ942==r S . 小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。

相关文档
最新文档