污水处理厂计算书

污水处理厂计算书
污水处理厂计算书

污水厂设计计算书

一、粗格栅

1.设计流量

a.日平均流量Q d =30000m 3/d ≈1250m 3/h=0.347m 3/s=347L/s K z 取1.40

b. 最大日流量

Q max =K z ·Q d =1.40×30000m 3/d=42000 m 3/d =1750m 3/h=0.486m 3/s 2.栅条的间隙数(n )

设:栅前水深h=0.8m,过栅流速v=0.9m/s,格栅条间隙宽度b=0.02m,格栅倾

角α=60° 则:栅条间隙数4.319

.08.002.060sin 486.0sin 21=???

==bhv Q n α(取n=32)

3.栅槽宽度(B) 设:栅条宽度s=0.015m

则:B=s (n-1)+en=0.015×(32-1)+0.02×32=1.11m 4.进水渠道渐宽部分长度

设:进水渠宽B 1=0.9m,渐宽部分展开角α1=20°

m B B L 3.020tan 29

.011.1tan 2111=?

-=-=

α

5.栅槽与出水渠道连接处的渐窄部分长度(L 2)

m B B L 3.020tan 29

.011.1tan 2221=?

-=-=

α

6.过格栅的水头损失(h 1)

设:栅条断面为矩形断面,所以k 取3

则:m g v k kh h 18.060sin 81

.929.0)02.0015.0(42.23sin 2234

201=?????===αε

其中ε=β(s/b )4/3

k —格栅受污物堵塞时水头损失增大倍数,一般为3

h 0--计算水头损失,m

ε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=2.4

将β值代入β与ε关系式即可得到阻力系数ε的值

7.栅后槽总高度(H)

设:栅前渠道超高h 2=0.4m

则:栅前槽总高度H 1=h+h 2=0.8+0.4=1.2m

栅后槽总高度H=h+h 1+h 2=0.8+0.18+0.4=1.38m 8.格栅总长度(L)

L=L 1+L 2+0.5+1.0+ H 1/tan α=0.3+0.3+0.5+1.0+1.2/tan60°=2.80m 9. 每日栅渣量(W)

设:单位栅渣量W 1=0.05m 3栅渣/103m 3污水 则:W 1=

05.01000

86400

347.010********??=??W Q =1.49 /d

因为W>0.2 m 3/d,所以宜采用机械格栅清渣及皮带输送机或无轴输送机输送栅渣

二、细格栅

1.设计流量Q=30000m 3/d ,选取流量系数K z =1.40则: 最大流量Q max =1.40×30000m 3/d=0.486m 3/s

2.栅条的间隙数(n )

设:栅前水深h=0.8m,过栅流速v=0.9m/s,格栅条间隙宽度e=0.006m,格栅倾角α=60° 则:栅条间隙数69.1049

.08.0006.060sin 486.0sin 21=???

==

ehv Q n α(n=105)

设计两组格栅,每组格栅间隙数n=53 3.栅槽宽度(B)

设:栅条宽度s=0.015m

则:B 2=s (n-1)+en=0.015×(53-1)+0.006×53=1.1m 所以总槽宽为1.1×2+0.2=2.4m (考虑中间隔墙厚0.2m )

4.进水渠道渐宽部分长度

设:进水渠宽B 1=0.9m,其渐宽部分展开角α1=20°(进水渠道前的流速为0.

6m/s ) 则:m B L 3.020tan 29

.01.1tan 2B 111=?

-=-=

α

5.栅槽与出水渠道连接处的渐窄部分长度(L 2)

m B L 3.020tan 29

.01.1tan 2B 222=?

-=-=

α

6.过格栅的水头损失(h 1)

设:栅条断面为矩形断面,所以k 取3

则:m

g v k kh h 88.060sin 81

.929.0)006.0015.0(42.23sin 22

34

201=?????===αε 其中ε=β(s/b )4/3

k —格栅受污物堵塞时水头损失增大倍数,一般为3 h 0--计算水头损失,m

ε--阻力系数(与栅条断面形状有关,当为矩形断面时形状系数β=2.

42),将β值代入β与ε关系式即可得到阻力系数ε的值。

7.栅后槽总高度(H) 设:栅前渠道超高h 2=0.4m

则:栅前槽总高度H 1=h+h 2=0.8+0.4=1.2m

栅后槽总高度H=h+h 1+h 2=0.8+0.88+0.4=2.08m 8.格栅总长度(L)

L=L 1+L 2+0.5+1.0+ H 1/tan α=0.3+0.3+0.5+1.0+1.2/tan60°=2.8m 9.每日栅渣量(W)

设:单位栅渣量W 1=0.05m 3栅渣/103m 3污水 则:W=

1.01000

86400

347.010********??=??W Q =1.49m 3/d

因为W>0.2 m 3/d,所以宜采用机械格栅清渣

三、沉砂池

本设计采用曝气沉砂池是考虑到为污水的后期处理做好准备。建议设两组沉砂池。每组设计流量Q=0.243 m 3/s

(1)池子总有效容积:设t=2min,

V=max Q t ×60×2=0.243×2×60=29.16m 3

(2)水流断面积:

A=

1

max v Q =1.0243.0=2.43m 2

沉砂池设两格,有效水深为2.00m ,单格的宽度为1.2m 。

(3)池长:

L=A V =43

.216.29=12m ,取L=12m (4)每小时所需空气量q :设m 3污水所需空气量d=0.2 m 3

q=0.2×0.243×3600=174.96 m 3/h=2.916 m 3/min

(5)沉砂池所需容积:

式中取T=2d ,X=30

污水

=1.8 m 3

(6)每个沉砂斗容积

(7)沉砂池上口宽度

设计取 ,

, 。,

(8)沉砂斗有效容积

2.71 m 3

(9)进水渠道

格栅的出水通过DN1000的管道送入沉砂池的进水渠道,然后向两侧配水进入沉砂池,进水渠道的水流流速

设计中取 ,

(10)出水装置

出水采用沉砂池末端薄壁出水堰跌落出水,出水堰可保证沉砂池内水位标高恒定,堰上水头

设计中取m=0.4,

=0.22m

四、辐流沉淀池

设计中选择两组辐流沉淀池,N=2组,每组平流沉淀池设计流量为0.243 ,从沉砂池流来的污水进入配水井,经过配水井分配流量后流入平流沉淀池

1.沉淀部分有效面积

A=

,——表面负荷,一般采用1.5-3.0

设计中取,=2

A==437.4

2.沉淀池有效水深

t ——沉淀时间(h),一般采用1.0-2.0h

设计中取t=1.5h

3.沉淀池直径

=

4.污泥所需容积

按去除水中悬浮物计算

V=

式中Q——平均污水流量;

——进水悬浮物浓度;

——出水悬浮物浓度;一般采用沉淀效率40%-60%

——生活污水量总变化系数;

——污泥容重,约为1

——污泥含水率

设计中取T=0.1d,

V=

=10.2

辐流沉淀池采用周边传动刮泥机,周边传动刮泥机的线速度为2-3m/min,将污泥推入污泥斗,然后用进水压力将污泥排除池外。

5.污泥斗容积

辐流沉淀池采用周边传动刮泥机,池底需做成2%的坡度,刮泥机连续转动将污泥推入污泥斗,设计中选择矩形污泥斗,污泥斗上口尺寸2mx2m,底部尺寸0.5mx0.5m,倾角为60度,有效高度1.35m

=()

设计取 , ,

=2.36

沉淀池底部圆锥体体积

=

设计取 ,r=1m

= 3.14=52.58

沉淀斗总容积

=

11.沉淀池总高度

H=+

式中 H——沉淀池总高度

——沉淀池超高,一般采用0.3-0.5

——缓冲层高度,一般采用0.3m

——污泥部分高度

设计中取 ,

H=0.3+3+0.3+1/2x24x0.05+1.35=5.25m

12.进水配水井

沉淀池分为两组,每组分为4格,每组沉淀池进水端设进水配水井,污水在配水井内平均分配,然后流进每组沉淀池。

配水井内中心管直径

——配水管内中心管上升流速(m/s),一般

设计中取 =0.6m/s

,=1.02m

配水井直径

(,)

=1.76m

13.进水渠道

沉淀池分为两组,每组沉淀池进水端设进水渠道,配水井接出的DN800进水管从进水渠道中部汇入,污水沿进水渠道向两侧流动,通过潜孔进入配水渠道,然后由穿孔花墙流入沉淀池。

式中——进水渠道水流流速,一般采用;

——进水渠道宽度;

——进水渠道水深,

设计取 ,

=0.405m

14.进水穿孔花墙

进水采用配水渠道通过穿孔花墙进水,配水渠道宽0.5m,有效水深0.8m,穿孔花墙的开孔总面积为过水断面6%-20%,则过孔流速为

设计取 个

0.08m/s

15.出水堰

沉淀池出水经过出水堰跌落进入出水渠道,然后汇入出水管道排走。出水堰采用矩形薄壁堰,堰后自由跌落水头0.1-0.15m,堰上水深H为

Q=

式中 ——流量系数,一般采用0.45;

b——出水堰宽度;

H——出水堰顶水深。

0.243/4=0.45

H=0.035m

出水堰后自由跌落采用0.15m,则出水堰水头损失为0.185m

16.出水渠道

沉淀池出水端设出水渠道,出水管与出水渠道连接,将污水送至集水井。

设计中取 =0.6m

0.58m/s>0.4m/s

出水管道采用钢管,管径DN=800mm,管内流速v=0.64m/s,水力坡降i=0.479%。

17.进水挡板出水挡板

沉淀池设进水挡板和出水挡板,进水挡板距进水穿孔花墙0.5m,挡板高出水面0.3m,伸入水下0.8m,出水挡板距出水堰0.5m,挡板高出水面0.3m,伸入水下0.5m,在出水挡板处设一个浮渣收集装置,用来收集拦截的浮渣。

18.排泥管

沉淀池采用重力排泥,排泥管直径DN300mm,排泥时间20min,排泥管流速0.82m/s,排泥管伸入污泥斗底部。排泥管上端高出水面0.3m,便于清通和排气。

19.刮泥装置

沉淀池采用行车式刮泥机,刮泥机设于池顶,刮板伸入池底,刮泥机行走时将污泥推入污泥斗内。

五、污水的生物处理

污水生物处理的设计条件为:

进入曝气池的平均流量Q=30000 ,最大设计流量 =0.486L/s

污水中的BO浓度为250mg/L,假定一级处理对BO的去除率为25%,则进入曝气池中污水的BO浓度为187.5mg/L

污水中SS浓度为250mg/L,假定一级处理对SS的去除率为50%,则进入曝气池中污水的SS浓度为125mg/L

污水中TN浓度为40mg/L,TP浓度为5mg/L,水温T=20。

1.污水处理程度计算

按照污水处理程度计算,污水经二级处理后,出水浓度BO浓度小于20mg/L,SS浓度小于20mg/L。由此确定污水处理程度为:

=

2.设计参数

(1)BO-污泥负荷率

式中——有机物最大比降解速度与饱和常数的比值,一般采用0.0168-0.0281之间;

——处理后出水中BO浓度,按要求应小于20mg/L;

f——MLVSS/MLSS值,一般采用0.7-0.8

设计中取 , =20mg/L,f=0.75,n=89.3%

= BO

(2)曝气池内混合液污泥浓度

X=

式中R——污泥回流比,一般采用25%-75%;

r——系数;

SVI——污泥容积指数,SVI=120。

设计中取R=50%,r=1.2

X=

( )

3.平面尺寸计算

(1)曝气池的有效容积

式中Q——曝气池的进水量,按平均流量计算。

设计中Q=30000,=0.33,X=3333.3mg/L

=5109.5

按规定,曝气池个数N不应少于2,本设计中取N=2,则每组曝气池有效容积

=

===2554.7

(2)单座曝气池面积

F=

式中H——曝气池有效水深

设计中取H=4.0m

F==638.7

(3)曝气池长度

L=

式中B——曝气池宽度

设计中取B=5.0m,=1.25,介于1-2之间,符合规定。

==127.7m

长宽比为25.5>10,符合规定

曝气池共设7廊道,则每条廊道长 ==18.2m

设计中取20m

(4)曝气池总高度

=H+h

式中h——曝气池超高,一般采用0.3-0.5m

设计中取h=0.4m

=4.0+0.4=4.4m

4.进出水系统

(1)曝气池进水设计

初沉池的出水通过DN1000mm的管道送入曝气池进水渠道,然后向两侧配水,污水在管道内的流速

=

设计中取d=1.0m, =0.486/s

=

=0.61m/s

最大流量时,污水在渠道内的流速

式中b——渠道的宽度;

——渠道的有效水深。

设计中取b=1.0m, 。

==0.24m/s

曝气池采用潜孔进水,所需孔口总面积

式中 ——孔口流速,一般采用0.2-1.5m/s

设计中取

A==1.21

设每个孔口面积为0.5m ,则孔口数

N==5

在两组曝气池之间设中间配水渠,污水通过中间配水渠可以流入后配水渠,在前后配水渠之间都设配水口,孔口尺寸为0.5m*0.5m,可以实现多点进水。

中间配水渠宽1.0m,有效水深1.0m,则渠内最大流速为:

=0.486m/s

设计中取中间配水渠超高为0.3m,则渠道总高:1.0+0.3=1.3m

(2) 曝气池出水设计

曝气池出水采用矩形薄壁堰,跌落出水,堰上水头

=

式中Q1——曝气池内总流量,

m——流量系数,一般采用0.4-0.5;

b——堰宽;一般等于曝气池宽度。

设计中取m=0.4m,b=5.0m

==0.06m

每组曝气池的出水管管径为800mm管内流速为0.48m/s,两条出水管汇成一条直径为DN1000mm的总管,送往二次沉淀池,总管内流速为0.61m/s。

5.其他管道设计

(1)中位管

曝气池中部设中位管,在活性污泥培养驯化时排放上清液。中位管管径为DN600mm。

(2)放空管

曝气池检修时,需要将水放空,因此应在曝气池底部设放空管,放空管管径为DN500mm。

(3)污泥回流管

二沉池的污泥需要回流至曝气管首端,因此应设污泥回流管,污泥回流管管径

=

式中Q2——每组曝气池回流污泥量;

——回流污泥管内污泥流速,一般采用0.6-2.0m/s

设计中取

==0.33m,设计中取为400mm

六、二沉池计算

本次设计二沉池采用辐流沉淀池,辐流沉淀池一般采用对称布置,配水采用集配水井,这样各池之间配水均匀,结构紧凑。辐流式沉淀池排泥机械已定型化,运行效果好,管理方便。辐流式沉淀池适用于大.中型污水厂。

设计中选择二组辐流沉淀池,N=2,每次设计流量为0.243/s,从曝气池

流出的混合液进入集配水井,经过集配水井分配流量后最后流进辐流沉淀池。

1.沉淀池表面积

F=

式中F——沉淀部分有效容积;

Q ——设计流量

q——表面负荷取1.4/

F=0.243624.86

2.沉淀池直径

D===28.20m

设计中取直径28.20m,则半径为14.1m

3.沉淀池有效水深

=,

式中t——沉淀时间(h),一般采用1.5-3.0h。

设计中取t=2.1 h

=1.4 2.1=3.0m

4.径深比

=9.4,合乎要求。

5.污泥部分所需容积

= (

式中X——曝气池中污泥浓度

——二沉池排泥浓度。

设计中取 =0.347,R=50%。

r

X =

式中SVI——污泥容积指数,一般采用70-150

r ——系数,一般采用1.2。

设计中取SVI=100,

=12000mg/L

X=4000mg/L

=937

6.沉淀池总高度

H=+

式中 ——沉淀池超高,一般采用0.3-0.5m;

——沉淀池缓冲层高度,一般采用0.3m;

——沉淀池底部圆锥体高度;

——沉淀池污泥区高度

设计中取 , , =3.0m

根据污泥部分容积过大及二沉池污泥的特点,采用机械刮吸泥机连续排泥,池底坡度为0.05。

(r-)

式中r——沉淀池半径;

——沉淀池进水竖井半径,一般采用1.0m。

设计中取

R=14.1m, 1.0m,i=0.05m

=(14.1-1)

式中 ——污泥部分所需容积;

——沉淀池底部圆锥体容积。

=147.8

=1.26m

H=+

=0.3+3.0+0.3+0.66+1.26=5.52m

7.进水管的计算

=Q+R

式中——进水管设计流量

Q——单池设计流量

R——污泥回流比

——单池污水平均量

设计中取Q=0.243/s, =0.347/s,R=50%。

/s

进水管管径取DN600

流速

==1.16m/s

8.进水竖井计算

进水竖井直径采用 =2.0m;

进水竖井采用多孔配水,配水尺寸a ,共设4个沿井壁均匀分布。

流速 ==0.16m/s,符合要求。

孔距l:

l=1.07m

9.稳流筒计算

筒中流速 =0.02m/s。

稳流筒过流面积:f==16.5

稳流筒直径 ==5.0m

10.出水槽计算

采用双边 三角堰出水槽集水,出水槽沿池壁环形布置,环形槽中水流由左右两侧汇入出水口。

每侧流量:

Q=0.243/2=0.122/s

集水槽中流速v=0.6m/s;

设集水槽槽宽B=0.6m;

槽内终点水深 ==0.34m

槽内起点水深

=

式中 ——槽内临界水深(m);

a ——系数,一般采用1;

g ——重力加速度。

=0.16m

=0.37m

设计中取出水堰自由跌落0.1m,集水槽高度:0.1+0.37=0.47m,取0.5m,则集水槽断面尺寸0.6m 。

11.出水堰计算

q=

n

L=+

h=

=

式中 q——三角堰单堰流量;

Q——进水流量;

L——集水堰总长度;

——集水堰外侧堰长;

——集水堰内侧堰长;

n ——三角堰数量;

b——三角堰单宽;

h——堰上水头;

——堰上负荷。

设计中取b=0.1m,水槽距池壁0.5m,得:

=85.4m

=81.6m

L=167.0m

n=1670个

q=0.156m/s

h=0.011m

=1.5L/(s*m)

根据规定二沉池出水堰上负荷在1.5-2.9L/(s*m)之间,计算结果符合要求。

12.出水管

出水管管径D=600mm

v= =

13.排泥装置

沉淀池采用周边传动刮吸泥机,周边传动刮吸泥机的线速度为2-3m/min,刮吸泥机底部设有刮泥板和吸泥管,利用静水压力将污泥吸入污泥槽,沿进水竖井中的排泥管将污泥排除池外。

排泥管管径500mm,回流污泥量 179.2L/s,流速0.92m/s。

14.集配水井的设计计算

(1)配水井中心管直径

=

式中——中心管内污水流速(m/s),

Q——进水流量(。

设计中取 Q=0.660

=1.09m,设计中取1.2m

(2)配水井直径

=

式中——配水井内污水流速(m/s),一般采用0.2-0.4m/s。

设计中取 。

==2.05m,设计中取2.10m

(3)集水井直径

式中 ——集水井内污水流速(m/s),一般采用0.2-0.4m/s。

设计中取

=2.78m,设计中取2.8m

(4)进水管管径

取进入二沉池的管径DN=600mm。

校核流速:

=1.16m/s>0.7m/s符合要求。

v==

(5)出水管管径

由前面结果可知,DN=600mm,v=0.85m/s。

(6)总出水管

取出水管管径DN=800mm,集配水井内设有超越闸门,以便超越。七、消毒设施计算

污水经过以上构筑物处理后,虽然水质得到了改善,细菌数量也大幅减少,但是细菌的绝对值依然十分可观,并存在病原菌的可能。因此污水在排放水体前,应进行消毒处理。

1.消毒剂的选择

污水消毒的主要方法是向污水中投加消毒剂,目前用于污水消毒的常用消毒剂主要有液氯、次氯酸钠、臭氧、二氧化氯、紫外线。由原始资料可知,该水厂规模中等,受纳水体卫生条件无特殊要求,设计中采用液氯作为消毒剂对污水进行消毒。

2.消毒剂的投加

(1)加氯量计算

二级处理出水采用液氯消毒时,液氯投加量一般为5-10mg/L,本设计中液氯投量采用7.0mg/L。每日加氯量为:

q=

式中q——每日加氯量(Kg/d);

——液氯投量(mg/L);

Q——污水设计流量( /s)

q=7

=293.93Kg/d

(2)加氯设备

液氯由真空转子加氯机加入,设计二台,采用一用一备。每小时加氯量:

293.93/24=12.2Kg/d

设计中采用ZJ-1型转子加氯机。

3.平流式消毒接触池

本设计采用2个3廊道平流式消毒接触池,单池设计计算如下:(1)消毒接触池容积

V=Q*t

式中 V——接触池单池容积;

Q——单池污水设计流量

t——消毒接触时间(h),一般采用30min。

设计中取Q=0.243m/s,t=30min。

V=0.243

(2)消毒接触池表面积

F

式中 F——消毒接触池单池表面积;

——消毒接触池有效水深。

设计中取 =2.5m

F==174.96

(3)消毒接触池池长:

=

式中 ——消毒接触池廊道总长;

B——消毒接触池廊道单宽。

设计中取B=4m

==43.74m

消毒接触池采用3廊道,消毒接触池长

L==14.58 设计中取15m

校核长宽比:

=10.7510 合乎要求。

(4)池高

H=

式中——超高(m),一般采用0.3m;

——有效水深(m)。

H=0.3+2.5=2.8m

(5)进水部分

每个消毒接触池的进水管管径D=600mm,v=1.0m/s。

(6)混合

采用管道混合的方式,加氯管线直接接入消毒接触池进水管,为增强混合效果,加氯点后接D=600mm的静态混合器。

(7)出水部分

H=

式中 H——堰上水头(m);

n——消毒接触池个数;

m——流量系数,一般采用0.42;

b——堰宽,数值等于池宽(m)。

设计中取n=2,b=4.0m

H==0.10m

八、污泥处理构筑物设计计算

污水处理厂在处理污水的同时,每日要产生大量的污泥,这些污泥若不进

行有效处理,必然对环境造成二次污染。这些污泥按其来源可分为初沉污泥和剩

余污泥。

初沉污泥是来自于初次沉淀池的污泥,污泥含水率较低,一般不需要浓缩

处理,可直接进行消化、脱水处理。

剩余污泥来源于曝气池,活性污泥微生物在降解有机物的同时自身污泥量

也在不断增长,为保持曝气池内污泥量的平衡,每日增加的污泥量必须排出处理

系统,这一部分被称作剩余污泥。剩余污泥含水率较高,需要先进行浓缩处理,然后进行消化、脱水处理。

1、初沉池污泥量计算

由前面资料可知,初沉池采用间歇排泥的运作方式,每4小时排一次泥。(1)、按水中悬浮物计算

V=

式中取T=4h, ,

V=

=21

初沉池污泥量 =21次

以每次排泥时间30min计,每次排泥量0.0117

2、剩余污泥量计算

(1)曝气池内每日增加的污泥量

式中20mg/L,Y=0.6,V=5109.5,,.

=1737.6Kg/d

(2)曝气池每日排出的剩余污泥量

=,

式中 f-0.75

-回流污泥浓度。

设计中取Q=12000mg/L.

=193.1

3、辐流浓缩池

污泥浓缩的对象是颗粒间的空隙水,浓缩的目的在于缩小污泥的体积,便于后续污泥处理,常用污泥浓缩池分为竖流浓缩池和辐流浓缩池两种,设计中一般采用辐流浓缩池。浓缩前污泥量含水率97%,浓缩后污泥含水率97%.

进入浓缩池的剩余污泥量0.0027=9.72

(1)、沉淀池有效部分面积

F=

式中 C——流入浓缩池的剩余污泥浓度,一般采用10kg/

G——固体通量,一般采用0.8—1.2;

Q——入流剩余污泥流量( )

设计中取G=1.0

F==97.2

(2)、沉淀池直径

D=

==11.13,设计中取11.20m;

(3)、浓缩池的容积

V=QT

式中T——浓缩池浓缩时间(h),一般采用10-16h

设计中取T=16h

V=0.00270

(4)、沉淀池有效水深

==1.6m

(5)、浓缩后剩余污泥量

式中——浓缩后剩余污泥量( )

=0.0009

(6)、池底高度

辐流沉淀池采用中心驱动刮泥机,池底需做成1%的坡度,刮泥机连续转动将污泥推入污泥斗。池底高度

=i

式中——池底高度(m);

i——池底坡度,一般采用0.01。

,设计中取0.06m;

(7)、污泥斗容积

=( )

式中——污泥斗高度;

——泥斗倾角,为保证排泥顺畅,圆形污泥斗倾角一般采用 。;

a——污泥斗上口半径;

b——污泥斗底部半径。

设计中取a=1.25m;b=0.25m、

= ( )=1.43

污泥斗容积

=()

=2.9;

污泥斗中污泥停留时间

T===0.9h

(8)、浓缩池总高度

h=

式中——超高,一般采用 ;

——缓冲层高度,一般采用0.3-0.5m。

设计中取

h=

=0.3+1.6+0.3+0.06+1.43=3.69m

设计取沉淀池总高度3.70m。

(9)、浓缩后分离出的污水量

q=Q

式中 Q——进入浓缩池的污泥量;

q=0.0027=0.0018

(10)、溢流堰

浓缩池溢流堰出水经过溢流堰进入出水槽,然后汇入出水管排出。出水槽流量q=0.0018 ,设出水槽款0.2m,水深0.05m,则水流流速为0.18m/s。

溢流堰周长

c=

式中 c——溢流堰周长;

D——浓缩池直径;

b——出水槽宽。

c=3.14(11.2-2*0.2)=33.9m

某新建城镇污水处理厂(AB)工艺设计论文

佛山科学技术学院 《水污染控制工程》课程设计 题目:某新建城镇污水处理厂(AB)工艺设计 学院:环建学院系:资环系 专业:环境工程 班级: 1班 学号: 姓名: 指导教师:韦华 填表日期:2011年07月日

目录 1. 前言 (1) 1.1 设计概述 (1) 1.1.1 设计目的 (1) 1.1.2 设计背景 (1) 1.2 设计内容 (1) 1.2.1 基本资料 (1) 1.2.2 主要内容 (2) 1.2.3 水质去除率计算 (2) 2. 城镇污水处理厂设计方案的确定 (3) 2.1污水处理方式的设计原则与设计依据 (3) 2.1.1设计原则 (3) 2.2污水处理AB工艺的简介 (4) 2.2.1 AB法的由来 (4) 2.2.2 AB法工艺的主要特征 (4) 2.2.3 AB法工艺的处理机理和适用范围 (4) 2.2.4 AB法的除磷脱氮 (5) 2.2.5 AB法的优缺点 (6) 2.3 AB处理工艺流程示意图 (7) 2.4 主要构筑物的选择 (8) 2.4.1 污水处理构筑物的选择 (8)

2.4.2 污泥处理构筑物的选择 (9) 3.设计计算及说明 (10) 3.2格栅的设计计算 (11) 3.2.1泵前中格栅 (11) 3.2.2泵后细格栅 (13) 3.3 污水提升泵房 (16) 3.3.1 选泵 (16) 3.3.2 集水池 (17) 3.3.3 潜污泵的布置 (18) 3.3.4 泵房高度的确定 (18) 3.3.5 泵房附属设施 (18) 3.3.6单管出水井的设计 (19) 3.3.7 污水提升泵房设计草图 (19) 3.4曝气沉砂池的设计计算 (19) 3.4.1池子的有效容积(V) (20) 3.4.2 水流断面积(A) (20) 3.4.3 池总宽度(B) (20) 3.4.4 每格池子宽度(b) (20) 3.4.5 池长(L) (20) 3.4.6 每小时的需空气量(q) (20) 3.4.7 沉砂室所需容积(V/m3) (20) 3.4.8 每个沉砂斗容积(V0) (21)

污水处理厂的节能降耗措施与应用

污水处理厂的节能降耗措施与应用 摘要:近年来,由于城市的发展速度加快,城市的污水量也不断增加,这些污水如果不经处理就排放到江河中,则会导致水源受 到污染,使生态环境受到破坏。所以对这部分城市污水进行处理是必不可少的。文章针对衡水市污水处理厂的实际运行情况,对 节能技术改造进行了分析,并进一步对通过建立激励机制加强员工的管理进行了具体的阐述。 在进行污水处理技术方面我国处于落后状态,而且在进行污水处理过程中存在着耗电量大的问题,所以与先进国家相比,我国在污水处理上还存在着很大的节能空间,无论是曝气设备还是污水污泥设备,都具有较大的节能潜力,目前普通存在着能耗过高的问题,所以当前污水处理成本偏高,而且使能源消耗过度,不利于能源的可持续利用,另一方面也加强了环境的污染,这与当前我国建立节约型社会的宗旨相违背,所以需要在污水处理过程中,实现节能降耗,从而推动建设资源节约型社会的进程,实现社会的可持续发展。 1、节能技术改造1.1增设快速浓缩池 随着我国对排水标准的不同提升,目前不仅需要对出水COD进行控制,同时还要控制NH3-N、TP等,而且一些浓缩池所剩余的部分污泥还会释放磷,所以针对这种情况,目前在一些新建的污泥处理厂内,则不再进行浓缩池的设置,这就为后期污水处理的成本增加埋下了伏笔。因为这势必会在污泥脱水时电耗增加,而且药耗量也会上升。所以针对于剩余污泥在浓缩池内停留时释放磷的问题,则需要在利用向污泥内添加絮凝剂来解决,而且这些絮凝剂也不需要再额外购置,其只需将脱水滤液中剩余的部分进行添加即可,这样可以有效的减少污泥在浓缩池内停留的时间,避免了磷的释放,而且也达到了浓缩的效果,这样在污水处理时,其脱水效率也会有较大程度的提高,同时也不用过多的增加药耗,对节约成本起到关键的作用。 1.2、污水提升泵的变频改造通常在选择污水提升泵时,其都会以最大扬程和最大流量的设计来对水泵的参数进行选择,这就导致使用过程中,水泵则处

污水处理厂工程模板工程

第五节模板工程 1. 模板的使用原则 (30) 1.1 大模板介绍 (30) 1.2 市政SZ系列模板 (30) 2. 模板的主要控制点 (30) 3. 模板施工顺序 (31) 3.1 总体顺序 (31) 3.2 各部位模板施工顺序: (31) 4. 模板的施工 (31) 4.1 模板设计依据 (31) 4.2 垫层模板 (32) 4.3 模板拼装及支撑图 (32) 4.4 结构模板 (33) 4.4.1 模板使用前的准备工作 (33) 4.4.2 模板支搭 (33) 4.4.3 穿墙螺栓使用 (33) 4.4.4 模板拆除 (33) 5. 脚手架工程 (34) 5.1 构筑物脚手架施工 (34) 5.2 支撑架 (34)

1.模板的使用原则 污水处理厂混凝土结构不同于一般混凝土工程,不仅要求混凝土达到其技术等级指标,而且要求其浇筑完成后,保持其颜色一致,混凝土表面平滑、顺直、美观,不得有错台、漏浆现象,尤其是其几何尺寸必须精确,以满足工艺设备精度要求,对模板本身要求较高。在本工程中将采用SZ系列钢模板、新设计标准型覆膜大模板以及异形模板,针对不同部位搭配组合使用。 1.1覆膜大模板介绍 我公司在近几年中针对污水厂站工程,专门设计了新型的大模板,在本工程中,我们再次设计制作了大型覆膜模板,这种模板采用型钢作为刚性后背框架,框架上安装18mm厚的覆膜面板,加工成为一种大型模板。这种模板安拆方便、施工效率高,施工完的混凝土结构外表光洁、线形美观,对大型构筑物施工最为适合。我公司在北京市酒仙桥污水厂一期工程(日处理污水量20万吨)和清河污水处理厂一期工程(日处理污水量20万吨)施工中广泛采用大模板技术,不仅使污水厂站结构混凝土很好地体现了棱角分明、外美内实的特点,还使工程施工工期提前,受到相关单位的好评。目前我公司在施的昌平污水处理厂也使用的是大模板技术。 1.2市政SZ系列模板 市政SZ系列模板是我公司于九十年代中期引进国外模板技术并进行改进的一种钢模板,并且通过多年的改进和完善,成为一个专用于混凝土构筑物施工的专用模板系列,能满足不同结构尺寸的要求。模板规格多样,有600×1200mm,450×900mm,450×1200mm,600×900mm 等十几种,配以专门的SZ模板系列的支撑体系,能够依据不同的结构形式灵活的调整装配。我单位在承接的多项工程中,例如全国最大的污水工程高碑店污水厂(日处理污水100万吨)、北京市大兴污水厂(日处理污水10万吨)等充分的应用了这项技术并且非常好的完成了施工任务。 2.模板的主要控制点 ①保持模板平整、直顺;拼缝严密不漏浆,无错台现象;模板表面光洁无锈。 ②模板及其支撑体系、刚度、强度安全可靠;在浇筑混凝土施工荷载作用下无超标变形,

小型污水处理厂设计方案说明

金川县观音桥镇特色魅力乡镇污水处理厂 设计方案 四川东升工程设计有限责任公司 二O一二年四月

目录 一、项目概况 (1) 1.1项目名称 (1) 1.2 项目地点 (1) 二、工程规模 (1) 2.1 给水规划 (1) 2.2 排水规划 (1) 2.4 人口 (1) 2.4 工程规模确定 (1) 三、设计水质 (2) 3.1 进水水质 (2) 3.2 排放标准 (2) 四、污水处理厂工艺方案的选择 (3) 4.1 生物脱氮除磷的必要性 (3) 4.2生物脱氮除磷的可行性 (4) 4.3污水处理工艺 (5) 4.3.1污染物去除原理及方法选择 (5) 4.3.2生物脱氮除磷的可行性 (7) 4.3.3常规脱磷除氮污水处理工艺 (8) 4.3.4 工艺拟定方案 (17) 4.4深度处理 (17) 4.4.1 滤池的选择 (20) 4.4.2 化学除磷 (24) 4.5污泥处理工艺选择 (27) 4.6出水消毒方案 (27) 五、工艺方案设计 (30) 5.1 主要处理构筑物 (31) 5.1.1 粗格栅提升泵房 (31) 5.1.2 细格栅渠、曝气沉砂池 (32) 5.1.3 氧化沟 (34) 5.1.4 二沉池 (35) 5.1.5 纤维滤池及反冲洗泵房 (35) 5.1.6 污泥回流泵井 (36) 5.1.7 紫外线消毒渠 (37) 5.1.8 浓缩脱水机房 (37) 5.2 主要工程量统计 (39) 5.2.1 主要建(构)筑物一览表 (39) 5.2.2 主要工艺设备一览表 (41) 六、投资估算(方案一) (1)

6.1工程概况 (1) 6.2编制依据 (1) 6.3各项指标分析(详见附表一) (2) 七、投资估算(方案二) (1) 7.1工程概况 (1) 7.2编制依据 (1) 7.3各项指标分析(详见附表一) (2)

城市污水处理厂设计计算

污水厂设计计算书 第一章 污水处理构筑物设计计算 一、粗格栅 1.设计流量Q=20000m 3/d ,选取流量系数K z =1.5则: 最大流量Q max =1.5×20000m 3/d=30000m 3/d =0.347m 3/s 2.栅条的间隙数(n ) 设:栅前水深h=0.4m,过栅流速v=0.9m/s,格栅条间隙宽度b=0.02m,格栅倾 角α=60° 则:栅条间隙数85.449 .04.002.060sin 347.0sin 21=???== bhv Q n α(取n=45) 3.栅槽宽度(B) 设:栅条宽度s=0.01m 则:B=s (n-1)+bn=0.01×(45-1)+0.02×45=1.34m 4.进水渠道渐宽部分长度 设:进水渠宽B 1=0.90m,其渐宽部分展开角α1=20°(进水渠道前的流速为0. 6m/s ) 则:m B B L 60.020tan 290.034.1tan 2111=?-=-=α 5.栅槽与出水渠道连接处的渐窄部分长度(L 2) m L L 30.02 60.0212=== 6.过格栅的水头损失(h 1) 设:栅条断面为矩形断面,所以k 取3

则:m g v k kh h 102.060sin 81 .929.0)02.001.0(4.23sin 2234 201=?????===αε 其中ε=β(s/b )4/3 k —格栅受污物堵塞时水头损失增大倍数,一般为3 h 0--计算水头损失,m ε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=2.4将β 值代入β与ε关系式即可得到阻力系数ε的值 7.栅后槽总高度(H) 设:栅前渠道超高h 2=0.3m 则:栅前槽总高度H 1=h+h 2=0.4+0.3=0.7m 栅后槽总高度H=h+h 1+h 2=0.4+0.102+0.3=0.802m 8.格栅总长度(L) L=L 1+L 2+0.5+1.0+ H 1/tan α=0.6+0.3+0.5+1.0+0.7/tan60°=2.8 9. 每日栅渣量(W) 设:单位栅渣量W 1=0.05m 3栅渣/103m 3污水 则:W=Q W 1=05.0105.130000100031max ??=??-Z K W Q =1.0m 3/d 因为W>0.2 m 3/d,所以宜采用机械格栅清渣 10.计算草图:

污水处理厂的优秀设计

污水处理厂的设计方案 一、工程概述 城市污水处理厂的设计工作一般分为两个阶段,即初步设计和施工图设计。 城市污水处理厂的设计工作内容包括确定厂址、选择合理的工艺流程、确定污水处理厂平面与高程的布置、计算建(构)筑物等。 1、设计资料的收集与调查 (1)建设单位的设计任务书 包括设计规模(处理水量)、处理程度要求、占地要求、投资情况等。 (2)收集相关资料 包括原水水质资料、当地气象资料(温度、风向、日照情况等)、水文地质资料(地下水位、土壤承载力、受纳水体流量、最高水位等)、地形资料、城市规划情况等。 (3)必要的现场调查 当缺乏某些重要的设计资料时,则现场的调查是必需的。 2、厂址选择 城市污水处理厂厂址选择是城市污水处理厂设计的前提,应根据选址条件和要求综合考虑,选出适用的、系统优化、工程造价低、施工及管理方便的厂址。 二、处理流程选择: 污水处理厂的工艺流程是指在达到所要求的处理程度的前提下,污水处理各单元的有机组合,以满足污水处理的要求。 1、污水处理流程的选择原则: 经济节省性原则; 运行可靠性原则; 技术先进性原则。 2、应考虑的其他一些重要因素:

充分考虑业主的需求; 考虑实际操作管理人员的水平。 本次设计采用生物好氧处理法。好氧生物处理5去除率高,可达9095%,稳定性较强,系统启动时间短,一般为2~4周,很少产生臭气,不产生沼气,对污水的碱度要求低。 污水处理工艺流程图如下: 平面图: 三、污水处理工程设计计算: (一)、设计水量,水质及处理程度: 平均流量:5万吨/天,变化系数1.4; 进水::400 ,:300 ,:350 ; 出水:: 60 ,: 20 ,: 20 ; 处理程度计算::(400-60)/400=85% ; :(300-20)/300=93.3% ; :(350-20)/350=94.3% 。 (二)、格栅及其设计: 格栅是由一组平行的金属栅条制成,斜置在污水流经的渠道上或水泵前集水井处,用以截留污水中的大块悬浮杂质,以免后续处理单元的水泵或构筑物造成损害。 设计中取二组格栅,2组,安装角度α=60° Q 设计水量=平均流量×变化系数=0.810 m3 2、格栅槽宽度:

吨每天城市污水处理厂设计计算

污水厂设计计算书 第一章 污水处理构筑物设计计算 一、粗格栅 1.设计流量Q=20000m 3/d ,选取流量系数K z =则: 最大流量Q max =×20000m 3/d=30000m 3/d =0.347m 3/s 2.栅条的间隙数(n ) 设:栅前水深h=0.4m,过栅流速v=0.9m/s,格栅条间隙宽度b=0.02m,格栅倾 角α=60° 则:栅条间隙数85.449 .04.002.060sin 347.0sin 21=??? ==bhv Q n α(取n=45) 3.栅槽宽度(B) 设:栅条宽度s=0.01m 则:B=s (n-1)+bn=×(45-1)+×45=1.34m 4.进水渠道渐宽部分长度 设:进水渠宽B 1=0.90m,其渐宽部分展开角α1=20°(进水渠道前的流速为0.6 m/s ) 则:m B B L 60.020tan 290 .034.1tan 2111=? -=-= α 5.栅槽与出水渠道连接处的渐窄部分长度(L 2) m L L 30.02 60 .0212=== 6.过格栅的水头损失(h 1) 设:栅条断面为矩形断面,所以k 取3

则:m g v k kh h 102.060sin 81 .929.0)02.001.0(4.23sin 22 34 201=?????===αε 其中ε=β(s/b )4/3 k —格栅受污物堵塞时水头损失增大倍数,一般为3 h 0--计算水头损失,m ε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=将β值代入β与ε关系式即可得到阻力系数ε的值 7.栅后槽总高度(H) 设:栅前渠道超高h 2=0.3m 则:栅前槽总高度H 1=h+h 2=+=0.7m 栅后槽总高度H=h+h 1+h 2=++=0.802m 8.格栅总长度(L) L=L 1+L 2+++ H 1/tan α=++++tan60°= 9. 每日栅渣量(W) 设:单位栅渣量W 1=0.05m 3栅渣/103m 3污水 则:W=Q W 1= 05.0105 .130000 10003 1max ??=??-Z K W Q =1.0m 3/d 因为W>0.2 m 3/d,所以宜采用机械格栅清渣 10.计算草图:

设计题目:某城市污水处理厂设计

设计题目:某城市污水处理厂设计第一章设计资料 一、自然条件 1、气候:该城镇气候为亚热带海洋季风性季风气候,常年主导风向为东南风。 2、水文:最高潮水位 6.48m(罗零高程,下同) 高潮常水位 5.28m 低潮常水位 2.72m 二、城市污水排放现状 1、污水水量 (1)生活污水按人均生活污水排放量300L/人.d; (2)生产废水量按近期1.5万m3/d,远期2.4万m3/d; (3)公用建筑废水量排放系数按近期0.15,远期0.20考虑; (4)处理厂处理系数按近期0.80,远期0.90考虑。 2、污水水质 (1)生活污水水质指标为 CODcr 60g/人.d BOD5 30g/人.d (2)工业污染源参照沿海开发区指标,拟定为: CODcr 300mg/L; BOD5 170mg/L (3)氨氮根据经验确定为30md/L。 三、污水处理厂建设规模与处理目标 1、建设规模 该污水处理厂服务面积为10.09km2,近期(2000年)规划人口为6.0万人,远期(2020年)规划人口为10.0万人。处理水量近期3.0万m3/d,远期6.0万m3/d。 2、处理目标 根据该城镇环保规划,污水处理厂出水进入的水体水质按国家3类水体标准控制,同时

执行国家关于污水排放的规范和标准,拟定出水水质指标为 CODcr≤100mg/L;BOD5≤30mg/L;SS≤30mg/L ;NH3-N≤10mg/L 四、建设原则 污水处理工程建设过程中应遵从下列原则:污水处理工艺技术方案,在达到治理要求的前提下应优先选择基建投资和运行费用少、运行管理简便的先进的工艺;所用污水、污泥处理技术和其他技术不仅要求先进,更要求成熟可靠;和污水处理厂配套的厂外工程应同时建设,以使污水处理厂尽快完全发挥效益;污水处理厂出水应尽可能回用,以缓解城市严重缺水问题;污泥及浮渣处理应尽量完善,消除二次污染;尽量减少工程占地。 第二章污水处理工艺方案选择 一、工艺方案分析 本项目污水以有机污染为主,BOD/COD=0.54 可生化性较好,重金属及其他难以生物降解的有毒有害污染物一般不超标,针对这些特点,以及出水要求,现有城市污水处理技术的特点,以采用生化处理最为经济。由于将来可能要求出水回用,处理工艺尚应硝化。 根据国内外已运行的大、中型污水处理厂的调查,要达到确定的治理目标,可采用“普通活性污泥法”或“氧化沟”法。 普通活性污泥法,也称传统活性污泥法,推广年限长,具有成熟的设计运行经验,处理效果可靠,如设计合理,运行得当,出水BOD5可达10-20mg/L,它的缺点是工艺路线长,工艺构筑物及设备多而复杂,运行管理困难,运行费用高。 氧化沟处理技术是20世纪50年代有荷兰人首创。60年代以来,这项技术在国外已被广泛采用,工艺及构筑物有了很大的发展和进步。随着对该技术缺点(占地面积大)的克服和对其优点的逐步深入认识,目前已成为普遍采用的一项污水处理技术。 氧化沟工艺一般可不设初沉池,在不增加构筑物及设备的情况下,氧化沟内不仅可完成碳源的氧化,还可实行脱氮,成为A/O工艺,由于氧化沟内活性污泥已经好氧稳定,可直接浓缩脱水,不必厌氧消化。 氧化沟污水处理技术已被公认为一种成功的革新的活性污泥法工艺,与传统活性污泥系统相比较,它在技术、经济等方面具有一系列独特的优点。 1、工艺流程简单、构筑物少,运行管理方便。一般情况下,氧化沟工艺可比传统活性污泥 法少建初沉池和污泥厌氧消化系统,基建投资少。另外,由于不采用鼓风曝气和空气扩散器,不建厌氧硝化系统,运行管理方便。

城镇污水处理厂的能耗分析及节能降耗措施

城镇污水处理厂的能耗分析及节能降耗措施 水资源短缺已成为全球性的重要问题。在社会和经济快速发展过程中,伴随着水资源的大量耗损,我国越来越多的城市都存在着水资源污染及匮乏的问题,因此需要重视水资源的循环利用,加强对污水进行处理。但当前我国各城镇污水处理厂由于自身技术不完善,在污水处理过程中存在着能耗过大的问题。文章从污水处理厂的能耗分析入手,进一步对城镇污水处理厂的节能措施进行了具体阐述。 标签:污水处理厂;能耗;污水提升系统;曝气系统;污泥处理系统 近年来我国城市化建设进程速度较快,城市每天有大量的污水需要进行处理,这也导致城市水资源匮乏现象十分突出。目前城镇污水处理厂在对污水处理过程中存在能源消耗量大的问题,为了实现节能降耗的目标,需要对污水处理厂能耗情况进行分析,从而采取有效措施实现污水处理厂的节能。 1 污水处理厂的能耗分析 城镇污水处理厂每天都需要对城市生产生活中产生的大量污水进行处理,采取各种方法将污水中的污染物进行分离,从而使排放的水质能够达到规定的标准,这不仅能够有效的保护水资源环境,而且对经济的可持續发展也具有非常重要的意义。 一直以来我国污水处理厂发展都较为缓慢,污水处理厂能源消耗量大的问题得不到有效重视。近年来人们生活水平提升速度较快,对水质处理有了更高的要求,加之大量污水处理厂的兴建,这也使污水排放标准更为严格。排放标准的提升,进一步加剧了污水处理过程中能源的消耗量,这使污水处理厂能源消耗问题越来越受到重视。当前我国污水处理厂在污水处理过程中,在提升污水和污泥、生物处理供氧及污泥处理等工艺过程中存在大量的能源消耗问题,特别是污水生物处理和污泥处理过程中能耗比重更大,在曝气、污水提升及污泥处理等生化处理阶段也存在着较大的能耗。由于污水处理厂存在着能源消耗大及运行成本高的问题,这对城市污水处理厂的建设和发展起到了较大的阻碍作用,因此需要加大对污水处理工艺和设备能耗能效等问题进行研究,注重新工艺的应用,从而实现污水处理的高效性和低能耗,加快城镇污水处理厂建设,确保水资源环境的安全。 2 城镇污水处理厂节能措施 2.1 污水提升系统的节能措施 水泵作为污水处理厂中非常重要的设备,其在运行过程中存在着大量的电能消耗,因此需要有效的提高水泵的运行效能,实现泵房的节能,从而达到污水处理厂节能降耗的目标。

污水处理厂技术标doc

目录 1、主要施工办法 2、施工进度计划及保证措施 3、施工总平面布置图 4、工程质量的技术组织措施 5、安全生产、文明施工、环境保护的措施 6、劳动力安排计划 7、主要材料、构件用量计划 8、主要施工机械设备使用计划 9、合理化建议对降低工程造价、缩短工期保证质量的实际意义和采用价值

1、主要施工办法 工程概况: 鹤壁市淇滨污水处理中水回用项目附属工程,位于鹤壁市淇滨区污水处理厂院内。 本工程为混凝土构筑物,砼强度等级:垫层C15、其他砼构件为C30,八度抗震设防。基础持力层位于第5层粉质粘土上,地基承载力fk=16 0Kpa。 (一)施工方案 一、施工组织机构 (1)施工组织结构的建立 对此工程严格实行“项目法”施工,同时向业主承诺:公司推选的项目班子一律持证上岗、押证施工,并且该项目经理部仅负责此工程。实行项目经理责任制,项目经理将对质量、工期、安全、成本及文明施工全面负责。各施工管理职能部门在项目经理部的直接指导下做到有计划的组织施工,确保工程质量、工期、安全等方面达到目标要求。 (2)施工组织机构 本工程项目部是公司直属的工程项目部,将严格执行建设部推行的项目法施工,实行项目经理负责制,运用科学的管理手段,确保以一流的质量创造一流的业绩。 项目经理部分为管理层和作业层,项目经理由多年从事项目管理工作,并参加过多个项目的建筑施工,具有丰富的施工管理经验,且具有项目经理资质的人员担任。项目经理全权组织施工生产和各项工作,对

本工程的工期、质量、安全生产、文明施工、成本控制等指标,进行高效率、有计划的组织协调和管理,全面履行公司对业主的签约承诺,并每月向公司汇报,接受公司各业务科室对工程的全面检查和监督。作业层由公司的专业技术工人和劳务处组成。

污水处理厂设计计算

某污水处理厂设计说明书 1.1 计算依据 1、工程概况 该城市污水处理厂服务面积为12.00km2,近期(2000年)规划人口10万人,远期(2020年)规划人口15.0万人。 2、水质计算依据 A.根据《室外排水设计规范》,生活污水水质指标为: COD Cr 60g/人d BOD5 30g/人d B.工业污染源,拟定为 COD Cr 500 mg/L BOD5 200 mg/L C.氨氮根据经验值确定为30 mg/L 3、水量数据计算依据: A.生活污水按人均生活污水排放量300L/人·d; B.生产废水量近期1.2×104m3/d,远期2.0×104m3/d考虑; C.公用建筑废水量排放系数近期按0.15,远期0.20考虑; D.处理厂处理系数按近期0.80,远期0.90考虑。 4、出水水质 根据该厂城镇环保规划,污水处理厂出水进入水体水质按照国家三类水体标准控制,同时执行国家关于污水排放的规范和标准,拟定出水水质指标为: COD Cr 100mg/L BOD5 30mg/L SS 30mg/L

NH3-N 10mg/L 1.2 污水量的确定 1、综合生活污水 近期综合生活污水 远期综合生活污水 2、工业污水 近期工业污水 远期工业污水 3、进水口混合污水量 处理厂处理系数按近期0.80,远期0.90考虑,由于工业废水必须完全去除,所以不考虑其处理系数。近期混合总污水量 取 远期混合总污水量 取 4、污水厂最大设计水量的计算 近期; ,取日变化系数;时变化系数;

。 远期; ,取日变化系数;时变化系数; 。 拟订该城市污水处理厂的最大设计水量为 1.3 污水水质的确定 近期取 取 远期取 取 则根据以上计算以及经验值确定污水厂的设计处理水质为: ,,

实例一某城市污水处理厂设计.

1设计资料 1.1工程概况 某城市临近北海,以海产养殖、水产品加工、海洋运输为主,工业发展速度较慢。 1.2水质水量资料 该市气候温和,年平均21C,最热月平均35C,极端最高41C,最高月平均 15C,最低10C。常年主导风向为南风和北风。夏季平均风速2.8m/s,冬季1.5 m/s。 根据该市中长期发展规划,2005年城市人口20万,2015年城市人口28万。由于临近大海,城市地势平坦,地质条件良好,地表土层厚度一般在10 m以上, 主要为亚砂土、亚粘土、砂卵石组成,地基承载力为 1 kg/ cm 2。此外,地面标高为123.00m,附近河流的最高水位为121.40m。 目前城市居民平均用水400L/人.d,日排放工业废水2X104nVd,主要为有机工业废水,具体水质资料如下: 1. 城市生活污水:COD 400mg/l,B0D5 200mg/l,SS 200mg/l,NH 3-N 40mg/l,TP 8mg/l,pH 6 ?9. 2. 工业废水:COD 800mg/l,BOD5 350mg/l,SS 400mg/l,NH3-N 80mg/l,TP 12mg/l,pH 6 ?8 1.3设计排放标准 为保护环境,防止海洋污染,污水处理厂出水执行“城镇污水处理厂污染物排放标准 2.污水处理工艺流程的选择 2.1计算依据 ①生活污水280000 X 400 X 103 =112000 m7d=1296.30 L/s 设计污水量:112000+20000=132000 屜,水量较大。 ②设计水质 设计平均COD 461 mg/L ;设计平均BOD 223 mg/L ;设计平均SS: 230mg/L 设计平均NhkN 46 mg/L ;设计平均TP9 mg/L。 ③污水可生化性及营养比例 可生化性:BOD/COD=223/46^0.484,可生化性好,易生化处理。 去除BOD 223-20=203 mg/L。根据BOD N: P=100: 5: 1,去除203 mg/LBO□需消耗N和P分别为N: 10.2 mg/L , P: 2.03 mg/L。 允许排放的TN 8 mg/L, TP: 1 mg/L,故应去除的氨氮△ N=45-10.2-8=26.8 mg/L, 应去工程实例一某城市污水处理厂设计

污水处理厂的节能降耗措施与应用

污水处理厂的节能降耗 措施与应用 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

污水处理厂的节能降耗措施与应用摘要:近年来,由于城市的发展速度加快,城市的污水量也不断增加,这些污水如果不经处理就排放到江河中,则会导致水源受 到污染,使生态环境受到破坏。所以对这部分城市污水进行处理是必不可少的。文章针对衡水市污水处理厂的实际运行情况,对 节能技术改造进行了分析,并进一步对通过建立激励机制加强员工的管理进行了具体的阐述。 在进行污水处理技术方面我国处于落后状态,而且在进行污水处理过程中存在着耗电量大的问题,所以与先进国家相比,我国在污水处理上还存在着很大的节能空间,无论是曝气设备还是污水污泥设备,都具有较大的节能潜力,目前普通存在着能耗过高的问题,所以当前污水处理成本偏高,而且使能源消耗过度,不利于能源的可持续利用,另一方面也加强了环境的污染,这与当前我国建立节约型社会的宗旨相违背,所以需要在污水处理过程中,实现节能降耗,从而推动建设资源节约型社会的进程,实现社会的可持续发展。

1、节能技术改造1.1增设快速浓缩池 随着我国对排水标准的不同提升,目前不仅需要对出水COD进行控制,同时还要控制NH3-N、TP等,而且一些浓缩池所剩余的部分污泥还会释放磷,所以针对这种情况,目前在一些新建的污泥处理厂内,则不再进行浓缩池的设置,这就为后期污水处理的成本增加埋下了伏笔。因为这势必会在污泥脱水时电耗增加,而且药耗量也会上升。所以针对于剩余污泥在浓缩池内停留时释放磷的问题,则需要在利用向污泥内添加絮凝剂来解决,而且这些絮凝剂也不需要再额外购置,其只需将脱水滤液中剩余的部分进行添加即可,这样可以有效的减少污泥在浓缩池内停留的时间,避免了磷的释放,而且也达到了浓缩的效果,这样在污水处理时,其脱水效率也会有较大程度的提高,同时也不用过多的增加药耗,对节约成本起到关键的作用。 1.2、污水提升泵的变频改造通常在选择污水提升泵时,其都会以最大扬程和最大流量的设计来对水泵的参数进行选择,这就导致使用过程中,水泵则处于低扬程、大流量和低效区的状态下,直接导致耗电量的增加,而且电机极易出现过热的情况。 针对于这个问题,可以通过对水泵的性能曲线进行改变,从而对其效率进行调整,而通过对转速进行调整,可以使水泵趋于高效区内,而且没有能量的损失,运行的效率也处于较高的水平。所以利用变频调速技术

污水厂臭气处理方法

污水处理厂除臭技术 污水处理厂臭味的处理方法有很多,如化学吸附法、催化剂氧化法、燃烧法、活性碳物理吸附法、废气直接通入曝气池、土壤脱臭法、臭气氧化法、填充塔式微生物法、湿式吸收氧化法、生物脱臭法、高能离子脱臭技术、天然植物提取液脱臭等。 在这些方法中化学吸附和氧化法,具有脱臭效率高的优点,但投资和运行费用高,适用于高浓度的臭气处理。 燃烧法脱臭:燃烧法可以分为直接燃烧法和辅助燃烧法。利用风机和风道将臭气收集起来, 送入焚烧炉内直接或与其它介质混合进行燃烧。 燃烧法特点:1.适用于高浓度臭气;2.适用于臭气源集中的场所;3.系统需要连续运行,需要考虑焚烧炉不运行时的处理对策;4.考虑到污水厂臭气具有腐蚀性,并且所发生的臭气浓度一般不太高但气量大、场所分散,因此投资及运行、管理费用高。

活性炭吸附法:以活性炭为原料,利用活性炭吸附功能对臭气进行处理。 活性炭除臭法特点:1.适用于低浓度臭气处理;2.方法简单,系统紧凑,占地面积较小;3.需要经常更换吸附剂,运行费用高;4产生二次污染;5由于活性炭的吸附能力极易受到臭气中的潮气、灰尘等影响而下降,因此需要增设其它附属设备,如需在系统管道上安装除尘、除湿装置,在吸附塔前面设置加热器等。 废气直接通入曝气池法:将从格栅间、沉砂池、浓缩池、污泥脱水机房收集到的废气直接通入曝气池中,有机气味物质在曝气池中被活性污泥吸收,随后被分解。其主要优点是方法简单,费用低,但除臭效果较差,存在过曝气的可能,曝气池中污水生化处理过程将受到一定的影响,使得曝气池成为严重的气味扩散源,因此其应用有较大的局限性。 土壤法:土壤脱臭主要可分为物理吸附和生物分解两类。恶臭气体,如胺类、硫化氢、低级脂肪酸等水溶性臭气类,被土壤中的水分吸收去除,而非溶性臭气则被土壤表面物理吸附继而被土壤中微生物分解。

日处理3万吨城市污水处理厂设计毕业设计

毕业设计 日处理3万吨城市污水处理厂设计

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 1. 绪论 (2) 1.1 国内外城市污水处理的主要方法 (2) 1.1.1 活性污泥法 (2) 1.1.2 AB法 (2) 1.1.3 SBR法 (2) 1.1.4 氧化沟法 (2) 1.1.5 A2/O工艺 (2) 1.1.6 生物膜法 (2) 2. 设计任务说明 (2) 2.1 设计目的 (2) 2.2 设计背景 (3) 3. 设计内容 (3) 3.1 设计步骤 (3) 3.2 设计依据 (4) 3.3 工艺流程的选择 (4) 3.3.1 污水处理厂进出水水质指标 (4) 3.3.2 污水处理工艺的选择 (4) 3.3.3 设计工艺流程图 (5) 4. 污水处理厂主要构筑物 (5) 4.1 格栅 (5) 4.1.1 粗格栅计算 (5) 4.1.2 细格栅计算 (7) 4.2 泵房 (8) 4.3 曝气沉砂池 (8) 4.3.1 设计要求 (8) 4.3.2 设计参数 (8) 4.3.3 计算公式 (8) 4.4 鼓风机房 (9) 4.5 配水井 (9) 4.5.1 进水管管径D1 (9) 4.5.2 矩形宽顶堰 (9) 4.5.3 配水管管径D2 (10) 4.5.4 配水漏斗上口口径D (10) 4.6厌氧池 (10) 4.6.1 设计参数 (10) 4.6.2 计算公式 (10) 4.6.3 设备选择 (11)

4.7 三沟式氧化沟 (12) 4.7.1 设计参数 (12) 4.7.2 计算公式 (13) 4.8 消毒接触池 (17) 4.8.1 设计参数 (17) 4.8.2 设计计算 (17) 4.9 污泥浓缩池 (18) 4.9.1 设计参数 (18) 4.9.2 设计计算 (18) 4.10 脱水机房 (19) 4.10.1 设计参数 (19) 4.10.2 设计计算 (20) 4.11 堆泥厂 (20) 5. 平面布置 (20) 5.2 主要构筑物计算尺寸 (20) 6. 高程布置 (21) 6.1 布置原则 (21) 7. 污水处理厂投资估算 (21) 7.1 工程投资估算 (22) 8. 结论 (23) 参考文献 (23) 致谢 (23) 附录 (24)

污水处理场设计计算书

第二篇设计计算书 1.污水处理厂处理规模 1.1处理规模 污水厂的设计处理规模为城市生活污水平均日流量与工业废水的总和:近期1.0万m3/d,远期2.0万m3/d。 1.2污水处理厂处理规模 污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量。最高日水量为生活污水最高日设计水量和工业废水的总和。 Q设= Q1+Q2 = 5000+5000 = 10000 m3/d 总变化系数:K Z=K h×K d=1.6×1=1.6 2.城市污水处理工艺流程 污水处理厂CASS工艺流程图 3.污水处理构筑物的设计 3.1泵房、格栅与沉砂池的计算 3.1.1 泵前中格栅 格栅是由一组平行的的金属栅条制成的框架,斜置在污水流经的渠道上,或泵站集水井的井口处,用以截阻大块的呈悬浮或漂浮状态的污物。在污水处理流程中,格栅是一种对后续处理构筑物或泵站机组具有保护作用的处理设备。 3.1.1.1 设计参数:

(1)栅前水深0.4m ,过栅流速0.6~1.0m/s ,取v=0.8m/s ,栅前流速0.4~0.9 m/s ; (2)栅条净间隙,粗格栅b= 10 ~ 40 mm, 取b=21mm ; (3)栅条宽度s=0.01m ; (4)格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; (5)栅前槽宽B 1=0.82m ,此时栅槽内流速为0.55m/s ; (6)单位栅渣量:W 1 =0.05 m 3栅渣/103m 3污水; 3.1.1.2 格栅设计计算公式 (1)栅条的间隙数n ,个 max sin Q n bhv α= 式中, max Q -最大设计流量,3/m s ; α-格栅倾角,(°); b -栅条间隙,m ; h -栅前水深,m ; v -过栅流速,m/s ; (2)栅槽宽度B ,m 取栅条宽度s=0.01m B=S (n -1)+bn (3)进水渠道渐宽部分的长度L 1,m 式中,B 1-进水渠宽,m ; α1-渐宽部分展开角度,(°); (4)栅槽与出水渠道连接处的渐窄部分长度L 2,m (5)通过格栅的水头损失h 1,m 式中:ε—ε=β(s/b )4/3; h 0 — 计算水头损失,m ; k — 系数,格栅受污物堵塞后,水头损失增加倍数,取k=3; 1 112tga B B L -= 1 25.0L L =αε sin 22 01g v k kh h ==

污水处理厂技术标

六、施工组织设计 目录 第一章内容完整性和编制 第二章资源配备计划 第三章工程施工方案及施工方法 第四章确保工程质量目标的措施 第五章确保工期目标的措施 第六章拟投入的主要施工设备材料及劳动力计划第七章确保安全文明施工的措施 第八章施工总进度表或施工网络图 第九章确保报价完成工程建设的技术和管理措施第十章服务承诺和质量保修措施

第一章内容完整性和编制水平 一、编制原则 1、全面响应招标文件原则编制本投标文件以及后续施工中,我公司将全面响应招标文件《合同条件》、《技术条款》和其它要求,严格履行合同,在工程质量、安全、进度、环境保护和水土保持、文明施工等方面,争创佳绩。 2、质量创优原则我公司在本工程施工的质量目标是“优良”。为达到该质量目标,我们将加强领导,强化管理,贯彻执行ISO9002质量体系标准,运用合理的技术精心施工和科学的质量检测方法进行控制,确保实现质量目标。 3、进度保证原则根据业主对本工程的工期要求,编制科学、合理、周密的施工方案,利用先进的项目管理技术,合理安排进度,实行网络控制,重点做好工序间的衔接,实时监控进度,确保实现工期目标。 4、安全保护原则在施工组织设计编制中,始终按照技术可靠、措施得力、确保安全的原则确定施工方案,制定详细有效的监测方案,采取相应的预防和应急技术措施,重要岗位操作工保证持证上岗,安全措施落实到位,确保万无一失。 5、环境保护原则 本工程涉及施工废弃物排放、卫生防疫、景观与视觉保护、噪声控制、粉尘控制、扰民与污染控制、水土保持、生态保护等多方面问题。结合具体情况,我们将采取积极、严密的环保措施,尽可能减少施工对河流和周边环境的影响,按照国家有关环境保护的法律法规,编制施工区和生活区的环保措施计划并严格执行。 6、合理布局原则根据本标段工程的任务量和管理目标的要求,考虑地形地貌特征,在临时工程的施工布置上,特别是风、

污水处理厂设计计算

} 某污水处理厂设计说明书 计算依据 1、工程概况 该城市污水处理厂服务面积为,近期(2000年)规划人口10万人,远期(2020年)规划人口万人。 2、水质计算依据 A.根据《室外排水设计规范》,生活污水水质指标为: COD Cr 60g/人d BOD5 30g/人d — B.工业污染源,拟定为 COD Cr 500 mg/L BOD5 200 mg/L C.氨氮根据经验值确定为30 mg/L 3、水量数据计算依据: A.生活污水按人均生活污水排放量300L/人·d; B.生产废水量近期×104m3/d,远期×104m3/d考虑; C.公用建筑废水量排放系数近期按,远期考虑; , D.处理厂处理系数按近期,远期考虑。 4、出水水质 根据该厂城镇环保规划,污水处理厂出水进入水体水质按照国家三类水体标准控制,同时执行国家关于污水排放的规范和标准,拟定出水水质指标为: COD Cr 100mg/L

BOD5 30mg/L SS 30mg/L NH3-N 10mg/L 污水量的确定 ¥ 1、综合生活污水 近期综合生活污水 远期综合生活污水 2、工业污水 近期工业污水 远期工业污水 3、进水口混合污水量 处理厂处理系数按近期,远期考虑,由于工业废水必须完全去除,所以不考虑其处理系数。& 近期混合总污水量 取 远期混合总污水量 取 4、污水厂最大设计水量的计算

近期; ,取日变化系数;时变化系数; 。 ; 远期; ,取日变化系数;时变化系数; 。 拟订该城市污水处理厂的最大设计水量为 污水水质的确定 近期取 取 /

远期取 取 则根据以上计算以及经验值确定污水厂的设计处理水质为: ,, ,, 考虑远期发展问题,结合《城镇污水处理厂污染物排放标准》(GB18918-2002),处理水质达到《城镇污水处理厂污染物排放标准》(GB18918-2002)中的一级标准(B)排放要求。 拟定出水水质指标为: 表1-1 进出水水质一览表 基本控制项目一级标准(B)进水水质去除率 % 序号 % 1COD80· 325 2BOD20150% 3` 20300% SS 4氨氮8[1]30、 % 5T-N204050% 6T-P) 350% 7pH6~97~8 ' 注:[1]取水温>12℃的控制指标8,水温≤12℃的控制指标15。 [2]基本控制项目单位为mg/L,PH除外。

中小型污水处理厂运营节能降耗途径的研究

中小型污水处理厂运营节能降耗途径的研究 据相关资料表明,迄今为止,全国所建的污水处理厂有近三分之一未能正常运行,主要原因就是运行费用不足,尤其是中小型污水处理厂。文章通过探讨能够使中小型污水处理厂运营节能降耗途径的方法,从而大大的降低污水处理厂的运营成本,以实现污水处理厂节能减排的功能。 标签:中小型;污水处理;节能降耗 1 节能降耗管理 节能降耗的首要任务是分析在污水处理厂中的哪些设备、哪些工序是高能耗的?是否可以通过科学的手段减少能耗。因此在节能降耗的同时要明确不同的处理单元对能耗(主要是电能)的需求,同时也要建立一个完整的节能降耗评估体系,这样才能更深入的分析高能耗的原因及探索节能降耗的新途径。 2 泵系统途径节能降耗 在中小型污水处理厂中,经常会出现这样的现象,污水处理厂的水泵会因为工作使用的时间不同,有时候会导致水泵的工作效率大大降低,这种事故发生的原因是因为使用的时间变化的巨大,使水泵的内部设计偏离原始的设计。所以,中小型污水处理厂对于水泵节能的研究是具有极大的经济效应。中小型污水处理厂使用的水泵通常有潜污泵和轴流泵,对于这两种水泵而言,通常就可以采用改变水泵内部的电机运转的速度改变来使水泵的运转效率。然而,市场上除了上面提到的几种水泵之外,还有一些中小型污水厂的设备没有得到及时的更新,仍然采用的是比较落后的水泵,针对这种现象,为了得到节能降耗的目的,可以采用市场上流行的水泵,使用新型的节能水泵,或者根据情况使用合理的泵的数目,新的变频变速技术也值得推广。 2.1 变频变速技术 由于不同时段的污水流量不同,有的时段大,有的时段流量少,如果统一设置水泵运行参数,容易导致发生在流量低的时候也是高能耗运转的情况,而随着现代社会的发展,变频技术也越来越应用在不同的领域,相关资料显示,变频变速技术应用在污水处理厂中也收获了很大的效果,使用变频调速设备的污水处理厂,虽然在前期投资新的设备,固定资产投资有所增加,但在后期运营过程中回报较大。这种新的技术不仅使整个污水处理厂的设备在使用上得到更好的匹配,同时又提高了水泵的运行效率,另一方面,由于变频调速技术的特点,因此具有很好的保护作用,避免了很多突发事故的发生。如云南某污水处理厂规模2万吨/天,提升泵房水泵在未安装变频器之前,每吨污水提升需要的电耗为0.15度,变频器调试运行后每吨污水提升的电耗仅为0.11度,节能效率达到26.7%。 2.2 新泵替老泵

相关文档
最新文档