PAR38 LED光源 光谱分析测试报告

PAR38 LED光源 光谱分析测试报告

电光源测试报告

CIE1931 EVERFINE

x = 0.4025 y = 0.3903

Tc = 3558K

颜色参数:

色品坐标:x=0.4025 y=0.3903

色品坐标:u'=0.4025 v'=0.3903(duv=4.27e-04)

相关色温:Tc=3558K 主波长:λd=580.5nm 色纯度: Pur=38.0% 质心波长:581.0nm

色比:R=21.4% G=75.3% B=3.3% 峰值波长:λp=595.0nm 半宽度:Δλp=144.3nm

显色指数:Ra=82.4

R1 =81R2 =91R3 =96R4 =77R5 =79R6 =86R7 =85

R8 =64R9 =16R10=76R11=72R12=60R13=84R14=98R15=76

光度参数:

光通量: 933.16 lm 辐射通量: 2.9203 W 光效:57.45 lm/W

电参数:

灯具电参数: U=220.7V I=0.08465A P=16.24W PF=0.8694

仪器状态:

扫描范围:380.0nm-800.0nm扫描间隔:5.0nm[0]主通道峰值:Ip=14600(G=4,D=51)参考通道:REF=38781(R=4)最大波动:%=-0.039%倍增管:16.3℃测试装置:15.6℃产品型号:PAR38 LED光源制造厂商:

产品编号:测试单位:

环境温度:24.3℃环境湿度:53.0%

测试人员:RD001测试日期:2012-03-21 14:42:24

软件版本:V2.00.100测试仪器:远方PMS-80_V1系统(11040045)

光源光谱测试报告

光 源 光 谱 测 试 报 告 产品型号 : QL-TW2-T10-120-288B 测试日期: 2010-09-24 产品编号: N-00009测试仪器: HAAS-2000(EVERFINE)制造厂商: TOPTEN 测试人员: GAVIN 测试条件 环境温度: 25.3Deg 环境湿度 : 65.0% 测试范围: 380nm-780nm 峰值IP : 56207 (86%)积分时间: 123 ms 测量模式 : 快速测试灵敏度 : 高光谱参数 1.0=43.822mW/nm 380 480580680780 波 长(nm) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 相对光谱CIE1931 EVERFINE x = 0.3102 y = 0.3513 Tc = 6479K 光谱分布CIE1931色品图 CIE 颜色参数: 色品坐标: x = 0.3102 y = 0.3513 / u' = 0.1881 v' = 0.4794(duv=1.54e-02)相关色温:Tc=6479K 主波长:λd=502.0nm 色纯度:Purity=7.1% 峰值波长:λp=455nm 半宽度:Δλp=23.5nm 色比:R=12.4% G=82.8% B=4.8%显色指数:Ra=74.2R1 =68R2 =81R3 =89R4 =70R5 =70R6 =74R7 =86R8 =56R9 =0R10=55R11=65R12=43R13=71R14=94 R15=61 分级:OUT 白光分类:OUT 光参数: 光通量 Φ = 1480 lm 光效 : 73.56 lm/W 辐射通量 Φe = 4.466 W __________________________________________________________________________________ 电参数: 电压 V = 220.0 V 电流 I = 0.09380 A 功率 P = 20.12 W 功率因数 PF = 0.9690 EVERFINE 杭州市滨江区滨康路669号 https://www.360docs.net/doc/7519257426.html,

0603蓝光测试报告13002011

电光源测试报告 Electrical and Photometric Test Report for Light Sources 产品名称 Product: 0603蓝光 产品型号 Product Model:YR-S0603-BC 制造厂商 Manufacturer:东莞市元润电子科技有限公司样品编号 Sample No.:No.001客户名称 Client:Client X 测试人员 Tested By:Tester Z 测试日期 Date:2013-8-9 09:01:26 测试条件 T est Condition 测试仪器 Analysis Instrument:STARSPEC SSP3112-D 环境温度 Temperature:25.0 ℃测试单位 Test Lab:Test Lab 环境湿度 R.H.: 60.0 % 测试结果 T esting Result 光谱功率分布曲线 S pectral Distribution CIE1931色品图 Chromaticity Diagram 图 CIE1931 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 00.10.20.30.40.5 0.60.70.80.9光度参数 Photometric Parameters 光 通 量 Luminous Flux:0.48 lm 光效 Luminous Efficiency: 7.62 lm/W 色度参数 Colorimetric Parameters 色品坐标 Chromaticity Coordinates:x = 0.1397 y = 0.0496 u' = 0.1685 v' = 0.0898 ( Duv = -0.1848 )色温 Color Temperature: 25000 K 色 纯 度 Color Purity:0.973 主 波 长 Dominant Wavelength:465.64 nm 峰值波长 Peak Wavelength:460.50 nm 红 色 比 Red Color Ratio:0.40 %绿 色 比 Green Color Ratio:14.09 %色 容 差 Color Tolerance:152.15 SDCM 蓝 色 比 Blue Color Ratio:85.51 %显色指数 Rendering Index:Ra = 0.00 R1 = 0.0 R2 = 0.0 R3 = 0.0 R4 = 0.0 R5 = 0.0 R6 = 0.0 R7 = 0.0 R8 = 0.0 R9 = 0.0 R10 = 0.0 R11 = 0.0 R12 = 0.0 R13 = 0.0 R14 = 0.0 电 参 数 Electrical Parameters 电压 V oltage : 3.13 V 电流 Current :20.000 mA 功率 Wattage :0.06 W

光谱分析 实验报告

实验报告 课程名称: 材料科学基础实验 指导老师: 乔旭升 成绩: 实验名称: 光谱分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)一、实验目的 通过本实验了解紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR )和荧光光谱仪的基本原理、主要用途和实际操作过程。掌握玻璃透光率、薄膜吸收光谱、固体粉末红外光谱和固体发光材料荧光光谱的测试方法。学习分析影响测试结果的主要因素。 二、实验原理 电磁波可与多种物质相互作用。如果这种作用导致能量从电磁波转移至物质,就称为吸收。当光波与某一受体作用时,光子和接受体之间就存在碰撞。光子的能量可被传递给接受体而被吸收,由此产生吸收光谱。通常紫外和可见光的能量接近于某两个电子能级地能量差,故紫外与可见光吸收光谱起源于价电子在电子能级之间的跃迁,又称为电子光谱。 当一束平行单色光照射到非散射的均匀介质时,光的一部分将被介质所反射,一部分被介质吸收,一部分透过介质。如果入射光强度为I0.反射光强度为Ir ,吸收光强度为Ia ,透过光强度为It ,则有I0=Ir+Ia+It 投射光强度与入射光强度之比称为透光率 T=It/I0 当一束具有连续波长的红外光照射某化合物时,其分子要吸收一部分光能转变为分子的震动能量或转动能量。此时若将其透过的光用单色器进行色散,就可得到一带暗条的谱带。以红外光的波长或波数为横坐标,以吸收率或者透过率百分数为纵坐标,把该谱带记录下来,就可得到该化合物的红外吸收光谱图。不同的化合物均有标准特征谱,将实验所得的光谱与标准谱对照,就可进行分子结构的基础研究和化合组成的分析。可由吸收峰的位置和形状来推知被测物的结构,按照特征峰的强度来测定混合物中各组分的含量。 当分子吸收来自光辐射的能量后,其本身就由处于稳定的基态跃迁至不稳定的激发态: M+h ν→。激发态是不稳定的,寿命极短,激发态分子会迅速以向周围散热或再发射电磁波(荧光或磷光)的方式回到基态: →M+荧光(或磷光)。任何能产生荧光(或磷光)的物质都具有两个特征光谱:激发光谱和发射光谱。 激发光谱:荧光(或磷光)为光致发光,因此必须选择合适的激发光波长,这可通过激发

发光材料荧光性能测试实验报告

发光材料荧光性能测试 实验目的 1、掌握光致发光的基本过程,掌握激发光谱和发射光谱的基本含义 2、掌握发光材料发射光谱和激发光谱的测试方法。 实验原理 发光材料主要是指材料吸收外来能量后所发出的总辐射中超过热辐射的部分。发光材料的发光需要外界能量的激发,根据击发方式不同发光方式可以分为光致发光、阴极射线发光、电致发光、X射线及高能粒子发光等。以光致发光为例,当用激发光照射某些物质时,处于基态的分子吸收激发光发生跃迁,达到激发态,这些激发态经过弛豫过程损失一部分能量后,以无辐射跃迁回到激发态的低振动能级,再从此能级返回基态,此过程中多余的能量以光子的形式释放。激发光谱和发射光谱是表征发光材料两个重要的性能指标。激发光谱是指发光材料在不同波长激发下,该材料的某一波长的发光谱线的强度与激发波长的关系。激发光谱反映了不同波长的光激发材料的效果。根据激发光谱可以确定使该材料发光所需的激发光的波长范围,并可以确定某发射谱线强度最大时的最佳激发波长。激发光谱对分析材料的发光过程也具有重要意义。发射光谱是指在某一特定波长激发下,所发射的不同波长的光的强度或能量分布。激发光谱和发射光谱通常采用荧光分光光度计进行测量。其基本结构包括光源,单色器,试样室,单色器和探测器。常用光源为氙灯,单色器多为光栅,探测器多用光电倍增管。荧光分光光度计工作原理:由光源氙弧灯发出的光通过切光器使其变为断续之光以及激发光单色器变成单色光,此光即为荧光物质的激发光,被测的荧光物质在激发光照射下所发出的荧光,经过单色器变成单色荧光后照射于测试样品用的光电倍增管上,由其所发生的光电流经过放大器放大输出至记录仪,激发光单色器和荧光单色器的光栅均有电动机带动的凸轮所控制,当测绘荧光发射光谱时,将激发光单色器的光栅固定在最适当的激发光波长处,而让荧光单色器凸轮转动,将各波长的荧光强度讯号输出至记录仪上,所记录的光谱即为发射光谱,简称荧光光谱。当测绘荧光激发光谱时,将荧光单色器的光栅固定在最适当的荧光波长处,只让激发单色口的凸轮转动,将各波长的激发光的强度输出至记录仪,所记录的光谱即激光光谱。 实验步骤 1、打开电脑,打开光度计电源,间隔1-2分钟后方能打开仪器控制软件。 2、仪器预热30分钟,待灯源稳定。 3、在所提供的样品中随机选一样,小心装入样品盘,稍旋紧样品盖之后,置于样品室内。 4、设置软件参数 5、点击扫描,不断调整参数,找到使样品发出最大强度光的波长范围及样品发光波长范围。

光源报告

学习报告 课程名称:光纤通信原理 专业班级:移动通信1401 学号:1461222008 姓名:何晓润 2016.03.27 一、掺铒光子晶体光纤超荧光光源

掺铒光纤超荧光光源是基于掺铒光纤放大自发辐射的一种宽谱光源,因其具有高平均波长稳定性、宽光谱和高输出功率等特性特性已被广泛应用于光纤陀螺、光纤传感器和低相干光学成像等领域。特别是应用于光纤陀螺,光源的高输出功率可以提高陀螺系统的信噪比,宽光谱可以降低瑞利散射、偏振交叉耦合和克尔效应等引起的相干误差,高平均波长稳定性可以保证光纤陀螺标度因子的线性度和稳定性,使光纤陀螺的灵敏度及精度大大提高,因此掺铒光纤超荧光光源被认为是高精度光纤陀螺用光源的理想选择。目前,掺铒光纤超荧光光源的输出功率和光谱谱宽都达到了高精度光纤陀螺的要求,而最重要的光源输出指标———平均波长稳定性小于10-6,至今还未见文献报道,但是,许多学者一直在研究提高光源的平均波长稳定性的方法。在掺铒光纤光源中,掺铒光纤作为光源最为关键的增益媒介和传输部件,其性能直接影响着光源的稳定性和输出特性,因此采用高性能掺铒光纤是提升光源性能的最佳途径之一。近些年出现的新型光纤———光子晶体光纤(PCF),相比于传统光纤,在温度特性、弯曲特性、传输特性和色散特性等方面具有明显优势。因此,基于掺铒光子晶体光纤(EDPCF)的超荧光光源为进一步提高光源性能提供一种新的解决途径。 (1)掺铒光子晶体光纤 实验中所使用的掺铒光子晶体光纤为武汉烽火藤仓有限公司研制,光纤截面的扫描电镜图如图1所示。光纤包层中含有7层空气孔,空气孔直径约2.0μm,孔间距约4.0μm,纤芯中掺铒区域直径约4.0μm,模场直径约4.34μm,吸收系数分别为5.5dB/m在980nm和12.2dB/m在1550nm。 (2)光源结构

炉温均匀性测试作业指导书

有限公司 热处理炉均匀性测试作业指导书 编制: 审核: 批准: 实施时间:

1、目的: 生产中使用的热处理炉TUS(温度均匀性)和使用仪表及热电偶满足公司生产需要以及符合客户需求特制定本作业指导书。 2、范围: 本作业指导书适用于公司热处理炉产品所使用的热处理炉温度均匀性测试。 3、职责 4.1 公司热处理工程师根据客户要求负责热处理工艺编制和最终确认。4.2 技术部与生产部门按照产品热处理工艺选择需要的热处理设备,设备的仪表类型也必须经过国家法定检定机构校检并符合客户要求。 4.3由公司热处理工程师主持相关技术人员对热处理炉进行TUS测试。4、热处理温度均匀性 热处理炉内工作区温度达到稳定化后相对于设定点温度的变化,工作区内任两点的温度偏差不应超过热处理工艺对温均匀性的要求(一般情况下用于正火的热处理炉温度均匀性:±14℃,回火热处理炉温度均匀性±8℃)。 热处理炉等级与温度均匀性范围要求: 5、温度均匀性测试(TUS) 进行TUS时,如果客户没有特别指出热处理炉的装载状态,一般情况下在满载情况下进行测试,装载的产品必须是依据公司工艺文件进行热处理的产品。当下一次进行TUS时也必须是和前一次测试时的装载状态且产

品与上一次相同。 5.2 温度均匀性测试(TUS)步骤 5.2.1通常情况下,在进行TUS时热处理炉必须是室温状态下;如果热处理炉刚进行过生产有一定温度(例如:此时炉内温度是500℃),则下一次进行TUS测试也必须和此次情况相同(500℃)。 5.2.2 热电偶(传感器)的处理。 TUS测试进行之前,热电偶测量端必须用直径不超过13mm(0.5英寸)并且不超过待热处理产品的最薄处、与产品材料一致的长60mm,内部加工出与热电偶直径一样大小深40mm圆孔的圆棒,置于热电偶测量端进行保护。 5.2.3 测量点的选择与位置图 5.2.3.1测量点及热电偶的选择 本公司热处理炉温度均匀性测试,采用10点进行测量,9 TUS+1控温热电偶。如下图所附。

积分球灯具测试报告解读

灯具测试报告解读 培训目的:能看懂灯具测试报告。 一、使用积分球测试灯具报告 色度参数 色品坐标X、Y、U、V:CIE1931 根据色品坐标计算出相关色温。 相关色温:用绝对温度“K”表示,当光源所发出的光的颜色与黑体在某一温度下辐射的颜色相同时, 黑体的温度就称为该光源(灯具)的色温. 色温在2500-3300K的光源,颜色偏红,给人一种温暖的感觉。色温超过时,颜色偏兰,给人一种清冷的感觉。

色度图中,色品坐标以X、Y表示,在CIE1976色度图中则以U、V表示,

暖白:2500-4000K 中性白:4000-5500K 正白光:5500-7000K 冷白光:7000以上 注:色温只对白光有意义,对于单色光,就要看它的主波长了。 主波长:用某一光谱色,按一定比例与一个确定的标准照明体相混合而匹配出的样 长就是样品色,该光谱色的波长就是样品色的主波长。 色比:光源的红、绿、蓝的三色比例。 峰值波长:光谱发光强度或辐射功率最大处所对应的波长。通常你所看到的一束光,它并非是单一波长的光,它是由很多波长的光组合而成的。其中,某一波长的 光的能量相对其它波长的光能量都大,则这一波长就是该束光的峰值波长。 半宽度:对于一个LED器件,其所发的光会在峰值λP处有所展开,其波长半宽度通常为10—30nm。对于单色光,半宽度越小,说明LED器件的材料越纯,性能越 均匀,晶体的完整性也越好。 色纯度:单色光是色纯度最高的颜色,当单色光掺入白光的成分越多时,色纯度就越低。

显色指数:光源对物体真实颜色的呈现程度称为光源的显色性。显色指数用Ra表示,Ra值越大,光源的显色性越好。显色指数中R1至R8的平均值就是Ra值。R9至R15的含义:R9浓红色;R10浓黄色;R11浓绿色;R12浓蓝色;R13 亮的浅黄-粉红色;R14中等程度的橄榄绿色;R15东方女性肤色。 光度参数 光通量:光是电磁波辐射到人的眼睛,经过视觉神经转换为光线。光源发射并被人的眼睛接收的能量之和即为光通量。单位:流明(Lm) 光效:光源所发出的总光通量与该光源所消耗的电功率(瓦)的比值,称为该光源的光效。单位:流明/瓦(Lm/瓦)。 光辐射功率:单位时间内,发射的所有波长成份的辐射能量。单位是W。 1、Duv说明:

炉温均匀性测试作业指导书

炉温均匀性测试作 业指导书

有限公司 热处理炉均匀性测试作业指导书 编制: 审核: 批准: 实施时间:

1、目的: 生产中使用的热处理炉TUS(温度均匀性)和使用仪表及热电偶满足公司生产需要以及符合客户需求特制定本作业指导书。 2、范围: 本作业指导书适用于公司热处理炉产品所使用的热处理炉温度均匀性测试。 3、职责 4.1 公司热处理工程师根据客户要求负责热处理工艺编制和最终确认。 4.2 技术部与生产部门按照产品热处理工艺选择需要的热处理设备,设备的仪表类型也必须经过国家法定检定机构校检并符合客户要求。 4.3由公司热处理工程师主持相关技术人员对热处理炉进行TUS测试。 4、热处理温度均匀性 热处理炉内工作区温度达到稳定化后相对于设定点温度的变化,工作区内任两点的温度偏差不应超过热处理工艺对温均匀性的要求(一般情况下用于正火的热处理炉温度均匀性:±14℃,回火热处理炉温度均匀性±8℃)。 热处理炉等级与温度均匀性范围要求: 5、温度均匀性测试(TUS)

进行TUS时,如果客户没有特别指出热处理炉的装载状态,一般情况下在满载情况下进行测试,装载的产品必须是依据公司工艺文件进行热处理的产品。当下一次进行TUS时也必须是和前一次测试时的装载状态且产品与上一次相同。 5.1 温度均匀性测试的设备: 5.2 温度均匀性测试(TUS)步骤 5.2.1一般情况下,在进行TUS时热处理炉必须是室温状态下;如果热处理炉刚进行过生产有一定温度(例如:此时炉内温度是500℃),则下一次进行TUS测试也必须和此次情况相同(500℃)。 5.2.2 热电偶(传感器)的处理。 TUS测试进行之前,热电偶测量端必须用直径不超过13mm(0.5英寸)而且不超过待热处理产品的最薄处、与产品材料一致的长60mm,内部加工出与热电偶直径一样大小深40mm圆孔的圆棒,置于热电偶测量端进行保护。 5.2.3 测量点的选择与位置图 5.2.3.1测量点及热电偶的选择 本公司热处理炉温度均匀性测试,采用10点进行测量,9 TUS+1控

库房温湿度均匀性验证方案

. 确认方案编号: 项目负责人: 验证类别:厂房设施验证 确认领导小组审查汇签:

1.主题容 本方案规定了我公司库房温湿度均匀性验证的围、方法及标准。 2.适用围 本方案适用于我公司库房温湿度均匀性的验证。 3.实施确认人员及职责 4.简介 4.1.概述:我公司库房包括有原辅料常温库、原辅料阴凉库、成品常温库、成品阴凉库、包材库、外 包材库、液体药品库、特殊药品库等,根据GMP要求结合产品自身对温湿度的要求公司对相应库房安装辅助设施,以便能控制并维持该库房的环境温湿度以达到规定要求(各库房具体温湿度要求见下表)。为保证温湿度计在该房间记录的温湿度值是最具有代表性的,拟对该房间进行温湿度均匀性验证。 4.2.验证依据 5.验证依据《确认与验证管理规程》 通过本次验证确定我公司库房温湿度分布均匀性,以确定温湿度计的最佳摆放位置。 6.变更和偏差处理 确认过程中如果出现偏差和变更,应立即通知确认与验证小组并对偏差和变更进行详细记录(参见偏差处理单,变更处理单),分析偏差产生的根本原因并提出解决方法。所有偏差和变更得到有效处理后,确

认方可进入下一步骤。偏差处理单和变更处理单经过批准后其原件必须附在验证报告中。 变更和偏差处理记录 □本次确认无变更和偏差情况□本次确认发生变更和偏差差情况

检查人/日期:复核人/日期: 7.验证容 7.1.验证前准备 7.1.1.文件准备 7.1.2.现场备《留样管理规程》、《稳定性试验管理规程》、《库房温湿度均匀性验证方案》及相关的验证记录,并填写验证文件准备确认表。 验证文件准备确认表 检查人/日期:复核人/日期: 7.1.3.验证用主要仪器准备 7.1.3.1.准备经校验合格并处于校验有效期的温湿度计,并在每个阶段或验证周期开始前对仪器确认,要求经过校验,并在校验有校期,填写《验证主要仪器确认表》,见下表。 验证主要仪器确认表

实验二:LED光源光谱定标,LED光谱测量实验报告

本科学生综合性实验报告 学号114090523 姓名罗朝斌 学院物电学院专业、班级11光电子 实验课程名称光谱技术及应用实验 教师及职称罗永道副教授 开课学期2013 至2014 学年下学期填报时间2014 年 6 月10 日 云南师范大学教务处编印

一.实验设计方案 实验序号二实验名称LED光源光谱定标 实验时间2014年6月5日实验室同析三栋318 1.实验目的 1、理解波长标定的意义; 2、掌握波长标定的方法; 3、理解波长最大允许误差和波长重复性的意义; 4、掌握检定波长最大允许误差和波长重复性的方法。 2.实验原理、实验流程或装置示意图 JJG 178‐2007《紫外、可见、近红外分光光度计》检定规程,2007年11月21日经国家质检总局批准发布,并自2008年5月21日起实施。该规程对波长范围190nm~2600nm,波长连续可调的可见、紫外‐可见、紫外‐可见‐近红外分光光度计的首次检定、后续检定和使用中检定做出了明确要求。规程首先将仪器的波长划分为三段,分别是 A 段(190nm~340nm)、B 段(340nm~900nm)、C 段(900nm~2600nm)。按照计量性能的高低将仪器划分为Ⅰ、Ⅱ、Ⅲ、Ⅳ共四个级别。规程规定需要检定的主要性能指标包括波长最大允许误差、波长重复性、噪声与漂移、最小光谱带宽、透射比最大允许误差、透射比重复性、基线平直度、电源电压的适应性、杂散光、吸收池的配套性。 波长最大允许误差 波长最大允许误差也称为波长准确度,是指仪器测定时标称的波长值与仪器出射的光线实际波长值(波长的参考或理论值)之间的符合程度,一般用多次波长测量值平均值与参考值之差(即波长误差)来测量。波长准确度的大小其实质反映的是波长的系统误差,一般由仪器装置在制造中的缺陷或仪器没有调整到最佳状态而造成的,它对测量的准确度有很大影响,特别是在对不同仪器的测试结果进行比较时,波长准确度显得更为重要。检定规程要求波长最大允许误差应符合表1要求。 表1 波长最大允许误差(nm)

恒温恒湿箱的温度均匀度需达到的标准及测试范围

恒温恒湿箱的温度均匀度需达到的标准及测试范围 恒温恒湿箱测试LED,化工,塑料,仪器仪表,元器件等产品,在温湿度的条件下,其产品的性能,以检测产品的可靠性和使用性能。适合电子、塑胶制品、电器、仪表、食品、车辆、金属、化学、建材、医疗等制品检测质量之用。本机专门测试各种材料耐热、耐寒、耐干、耐湿的性能。本机可选择中文或英文液晶显示触控式屏幕画面,操作简单,程序编辑容易。可显示完整的系统操作状况相关数据、执行及设定程序曲线。运转中发生异常状况,屏幕即刻自动显示故障原因及提供排除故障方。 恒温恒湿箱的温度均匀度是该设备的重要技术指标,该指标直接影响试验的结果,该指标是恒温恒湿箱的主要性能指标,宝元通生产的恒温恒湿箱完全符合国家相关标准。 恒温恒湿箱技术参数及试验标准: 技术参数: 2. 性能指標 2.1.測試環境條件环境温度:+5℃~+35℃相对湿度≤85%RH 2.2.測試方法GB/T5170.2-2008 温度试验设备 GB/T5170.5-2008 湿热试验设备 2.3溫度範圍-40℃~+150℃ 2.4温度波动度≤0.5℃(注:如按GB/T5170.2-1996表示,波动度为≤±0.25℃)2.5温度偏差优于± 2℃ 2.6温度均匀度±2℃ 2.7升降温速率升温时间:+20℃~+150℃ ≤45min(带载) 降温时间:+20℃~- 40℃ ≤70min(带载) 试验标准: 1.GB11158 高温试验箱技术条件 2. GB10589-89 低温试验箱技术条件 3. GB10592-89 高低温试验箱技术条件 4. GB/T10586-89 湿热试验箱技术条件 5. GB/T2423.1-2001 低温试验箱试验方法 6. GB/T2423.2-2001 高温试验箱试验方法 7. GB/T2423.3-93 湿热试验箱试验方法 恒温恒湿箱相关试验测试记录(该记录仅供参考)

积分球灯具测试报告解读

色度图中,色品坐标以X 、Y 表示,在CIE1976色度图中则以U 、V 表示, 灯具测试报告解读 培训目的:能看懂灯具测试报告。 一、使用积分球测试灯具报告 色度参数 色品坐标X 、Y 、U 、V :CIE1931 根据色品坐标计算出相关色温。 相关色温:用绝对温度“K”表示,当光源所发出的光的颜色与黑体在某一温度下辐射的颜色相同时, 黑体的温度就称为该光源(灯具)的色温. 色温在2500-3300K 的光源,颜色偏红,给人一种温暖的感觉。色温超过时,颜色偏兰,给人 一种清冷的感觉。

暖白:2500-4000K 中性白:4000-5500K 正白光:5500-7000K 冷白光:7000以上 注:色温只对白光有意义,对于单色光,就要看它的主波长了。 主波长:用某一光谱色,按一定比例与一个确定的标准照明体相混合而匹配出的样 长就是样品色,该光谱色的波长就是样品色的主波长。 色比:光源的红、绿、蓝的三色比例。 峰值波长:光谱发光强度或辐射功率最大处所对应的波长。通常你所看到的一束光,它并非是单一波长的光,它是由很多波长的光组合而成的。其中,某一波长的 光的能量相对其它波长的光能量都大,则这一波长就是该束光的峰值波长。 半宽度:对于一个LED器件,其所发的光会在峰值λP处有所展开,其波长半宽度通常为10—30nm。对于单色光,半宽度越小,说明LED器件的材料越纯,性能越 均匀,晶体的完整性也越好。 色纯度:单色光是色纯度最高的颜色,当单色光掺入白光的成分越多时,色纯度就越低。显色指数:光源对物体真实颜色的呈现程度称为光源的显色性。显色指数用Ra表示,Ra值越大,光源的显色性越好。显色指数中R1至R8的平均值就是Ra值。R9至R15的含义:R9浓红色;R10浓黄色;R11浓绿色;R12浓蓝色;R13 亮的浅黄-粉红色;R14中等程度的橄榄绿色;R15东方女性肤色。 光度参数 光通量:光是电磁波辐射到人的眼睛,经过视觉神经转换为光线。光源发射并被人的眼睛接收的能量之和即为光通量。单位:流明(Lm)

AMS2750E热处理炉炉温均匀性检测报告样本

TestReport 检 测 报 告

测量详细信息 热处理炉炉温均匀性检测报告 报告编号:Name of furnace 热处理炉型号 Furnace model 热处理炉编号 Furnace number 热处理炉制造单位 Furnace manufacturer 炉子级别 Class 炉子测量周期 Instrument type 炉子仪表类型 Use temperature 热处理炉使用温度 Measurement period 热处理炉测温点/℃ Measuring point/℃ 炉温均匀性要求/℃ Uniformity/℃ 负载状况Load condition 气氛 Atmosphere 符合标准 Meet the standards 热处理炉名称 Report number: Heat treatment furnace temperature uniformity test report Measure detailed information 测量仪表名称Instrument number 测量仪表编号Instrument model 测量仪表型号Name of instrument 测量仪表校准日期Sensor name 测量传感器名称Valid period to 测量仪表有效期至Calibration date Correction factor 修正系数Sensor model 测量传感器型号测量传感器校准日期Valid period to 测量传感器有效期至Calibration date Sampling interval 采样间隔测量开始时间End time 测量结束时间Start time 第1页,共18页热处理炉有效加热区尺寸 Effective heating zone size of furnace

库房温湿度均匀性验证方案

确认方案编号: 项目负责人: 验证类别:厂房设施验证

1. 主题内容 本方案规定了我公司库房温湿度均匀性验证的范围、方法及标准。 2. 适用范围 本方案适用于我公司库房温湿度均匀性的验证。 3. 实施确认人员及职责 4. 简介 4.1. 概述:我公司库房包括有原辅料常温库、原辅料阴凉库、成品常温库、成品阴凉库、内包材库、 外包材库、液体药品库、特殊药品库等,根据GMP 要求结合产品自身对温湿度的要求公司对相应库房安装辅助设施, 以便能控制并维持该库房内的环境温湿度以达到规定要求(各库房具体温湿度要求见下表)。为保证温湿度计在该房间内记录的温湿度值是最具有代表性的,拟对该房间进行温湿度均匀性验证。 4.2. 验证依据 5. 验证依据《确认与验证管理规程》 通过本次验证确定我公司库房温湿度分布均匀性,以确定温湿度计的最佳摆放位置。 6. 变更和偏差处理 确认过程中如果出现偏差和变更,应立即通知确认与验证小组并对偏差和变更进行详细记录(参见偏差处理单,变更处理单),分析偏差产生的根本原因并提出解决方法。所有偏差和变更得到有效处理后,确认方可进入下一步骤。偏差处理单和变更处理单经过批准后其原件必须附在验证报告中。 变更和偏差处理记录

检查人/日期:复核人/日期:7.验证内容 7.1.验证前准备 7.1.1.文件准备

7.1.2.现场备《留样管理规程》、《稳定性试验管理规程》、《库房温湿度均匀性验证方案》及相关的验证记录,并填写验证文件准备确认表。 检查人/日期:复核人/日期: 7.1.3.验证用主要仪器准备 7.1.3.1.准备经校验合格并处于校验有效期内的温湿度计,并在每个阶段或验证周期开始前对仪器确认,要求经过校验,并在校验有校期内,填写《验证主要仪器确认表》,见下表。 验证主要仪器确认表

【实验二:LED光源光谱定标LED光谱测量实验报告】紫外可见光谱实验报告

【实验二:LED光源光谱定标LED光谱测量实验报告】紫外可见光谱实验报告 本科学生综合性实验报告学号姓名学院物电学院专业、班级光电子实验课程名称光谱技术及应用实验教师及职称开课学期2016 至2017 学年下学期填报时间2017 年6 月10 日XXXX大学教务处编印一.实验设计方案实验序号二实验名称LED光源光谱定标实验时间2014年6月5日实验室同析三栋318 1.实验目的1、理解波长标定的意义;2、掌握波长标定的方法;3、理解波长最大允许误差和波长重复性的意义; 4、掌握检定波长最大允许误差和波长重复性的方法。2.实验原理、实验流程或装置示意图JJG 178‐2007《紫外、可见、近红外分光光度计》检定规程,2007年11月21日经国家质检总局批准发布,并自2008年5月21日起实施。该规程对波长范围190nm~2600nm,波长连续可调的可见、紫外‐可见、紫外‐可见‐近红外分光光度计的首次检定、后续检定和使用中检定做出了明确要求。规程首先将仪器的波长划分为三段,分别是 A 段(190nm~340nm)、B 段(340nm~900nm)、C 段(900nm~2600nm)。按照计量性能的高低将仪器划分为Ⅰ、Ⅱ、Ⅲ、Ⅳ共四个级别。规程规定需要检定的主要性能指标包括波长最大允许误差、波长重复性、噪声与漂移、最小光谱带宽、透射比最大允许误差、透射比重复性、基线平直度、电源电压的适应性、杂散光、吸收池的配套性。波长最大允许误差波长最大允许误差也称为波长准确度,是指仪器测定时标称的波长值与仪器出射的光线实际波长值(波长的参考或理论值)之间的符合程度,一般用多次波长测量值平均值与参考值之差(即波长误差)来测量。波长准确度的大小其实质反映的是波长的系统误差,一般由仪器装置在制造中的缺陷或仪器没有调整到最佳状态而造成的,它对测量的准确度有很大影响,特别是在对不同仪器的测试结果进行比较时,波长准确度显得更为重要。检定规程要求波长最大允许误差应符合表1要求。表 1 波长最大允许误差(nm) 波长重复性波长重复性是仪器在相同测试条件下、一个极短的时间内,对同一吸收或发射谱线进行连续多次波长测量,测量结果的一致性。也称波长精密度,即多次波长测试数据的符合程度。波长重复性一般用多次波长测试数据的离散性,即取波长最大允许误差多次测试结果中的最大值与最小值之差来衡量。检定规程要求波长重复性应符合表2要求。表 2 波长重复性(nm) 检定原理波长最大允许误差与波长重复性的测试一般都是对波长标准物质进行波长多次测量。根据采用的标准物质不同,有多种测量方法,常用的波长标准物质包括:氘灯(氢灯)、汞灯、标准玻璃滤光片、某些样品溶液。采用氘灯和汞灯的测试方法属于辐射光源法,即采用具有特征发射谱线的元素灯产生的特征谱线来对仪器的波长进行检查,如汞灯、氘灯、钠灯。由于他们发射的是线状光谱,谱线的特征性强、准确度高,因此作为波长准确度的首选标准。氘灯或氢灯在紫外区具有连续光谱,可作为仪器紫外区的光源,而在可见区他们还有两条分离的、强度比较高的特征谱线,如氘灯为486nm 和656.1nm。这些谱线均可用于检测仪器的波长准确度和波长重复性。随着仪器的自动化及微机化,氘灯特征峰常用于仪器初始化波长自动定位的基准。也可采用干涉滤光片或氧化钬及镨钕玻璃滤光片等标准滤光片来检查,前者检测时,应注意将干涉滤光片按指定方向垂直置于光路中测定,后者在可见区和紫外区均有吸收峰,用来检测仪器波长准确度相当方便,但必须注意使用条件必须与标定这些吸收峰波长时的条件相一致,否则将引起较大误差。如果选定不同扫描速度和带宽,会使正常出现的吸收峰消失或错位。一些稀土元素氧化物的溶液都具有明显的吸收峰,因此可以用来检测仪器的波长准确度。氧化钬溶液常用于紫外可见分光光度计准确度的测定。由氧化钬和高氯酸组成的溶液,在检测范围内比氧化钬滤光片有更多的吸收峰。采用氧化钬溶液检测仪器波长准确度,也应该注意选择合适的检测条件,尤其是带宽。因为氧化钬溶液特征峰很尖锐,仪器带宽对测定值影响很大。对于波长重复性的表示方法,国内外还没有统一的规定,在各种仪器的说明书和有关资料中,计量标准不尽相同。(1)在检定规程JJG178‐2007 中重复性采用最大值与最小值之差,国标JB/T 6778‐93、JB/T6777‐93 及部分规程都采用

75℃热稳定性试验仪烘箱温度偏差、均匀度、波动度校准结果测量不确定度评定示例

附录C 烘箱温度偏差校准结果不确定度的评定示例 C.1 校准方法 烘箱温度测偏差是设备显示温度平均值与工作空间中心点实测温度平均值的差值。采用多点数字测温仪对烘箱温度偏差进行校准,按6.2.3条规定布放温度传感器,将试验设备的温度控制器设定到75℃,使设备正常工作。稳定后开始读数,每2 min 记录所有测试点的温度一次,在30 min 内共测试15次,保留到0.1℃。 C.2 测量模型 烘箱温度偏差的数学模型如式(C.1): d d o -?=T T T (C.1) 式中: d ?T ——温度偏差,℃; o T ——中心点n 次测量的平均值,℃; d T ——设备显示温度平均值。 方差和灵敏系数: 由式(C.1)得方差传播公式: 22222d 1d 20()c ()+c ()?=u T u T u T (C.2) 式中: d ()?u T ——温度偏差的测量不确定度; d ()u T ——由数字测温仪引入的不确定度; 0()u T ——由设备温度测量装置引入的不确定度。 因为 11c 1??= =-?T T ,22c 1??==?T T , 所以式(C.2)简化为: 222c 1122()()+()?=u T u T u T (C.3)

令c 1122= ()= ()= (),,,?u u T u u T u u T 则式(C.3)简化为: 222c 12+ =u u u (C.4) 式中: c u ——温度偏差的测量不确定度; 1u ——由数字测温仪引入的不确定度分量; 2u ——由设备温度测量装置引入的不确定度分量。 C.3 测量结果不确定度的评定 C.3.1 标准不确定度的来源 烘箱温度测量的标准不确定度来源主要有:数字测温仪最大允许误差引入的标准不确定度分量1u 和设备温度测量装置引入的标准不确定度分量2u 。 C.3.2 由数字测温仪最大允许误差引入的标准不确定度分量1u 数字测温仪给出的最大允许误差为±0.1℃,区间半宽为0.1℃,估计为均匀分布,故: 1= =0.06u ℃ (C.5) C.3.3 设备温度测量装置引入的标准不确定度分量2u C.3.3.1 测量重复性引入的标准不确定度21u 将试验设备的温度控制器设定到75℃,使设备正常工作。稳定后开始读数,每2 min 记录所有测试点的温度一次,在30 min 内共测试15次,同时记录设备温度测量装置的温度示值,见表C.1(测试时,室温为20℃,以最高温度为例)。

光谱分析报告 实验报告材料

实 课程名称: 材料科学基础实验 指导老师: 乔旭升 成绩: 实验名称: 光谱分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)一、实验目的 通过本实验了解紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR )和荧光光谱仪的基本原理、主要用途和实际操作过程。掌握玻璃透光率、薄膜吸收光谱、固体粉末红外光谱和固体发光材料荧光光谱的测试方法。学习分析影响测试结果的主要因素。 二、实验原理 电磁波可与多种物质相互作用。如果这种作用导致能量从电磁波转移至物质,就称为吸收。当光波与某一受体作用时,光子和接受体之间就存在碰撞。光子的能量可被传递给接受体而被吸收,由此产生吸收光谱。通常紫外和可见光的能量接近于某两个电子能级地能量差,故紫外与可见光吸收光谱起源于价电子在电子能级之间的跃迁,又称为电子光谱。 当一束平行单色光照射到非散射的均匀介质时,光的一部分将被介质所反射,一部分被介质吸收,一部分透过介质。如果入射光强度为I0.反射光强度为Ir ,吸收光强度为Ia ,透过光强度为It ,则有I0=Ir+Ia+It 投射光强度与入射光强度之比称为透光率 T=It/I0 当一束具有连续波长的红外光照射某化合物时,其分子要吸收一部分光能转变为分子的震动能量或转动能量。此时若将其透过的光用单色器进行色散,就可得到一带暗条的谱带。以红外光的波长或波数为横坐标,以吸收率或者透过率百分数为纵坐标,把该谱带记录下来,就可得到该化合物的红外吸收光谱图。不同的化合物均有标准特征谱,将实验所得的光谱与标准谱对照,就可进行分子结构的基础研究和化合组成的分析。可由吸收峰的位置和形状来推知被测物的结构,按照特征峰的强度来测定混合物中各组分的含量。 当分子吸收来自光辐射的能量后,其本身就由处于稳定的基态跃迁至不稳定的激发态: M+h ν→。激发态是不稳定的,寿命极短,激发态分子会迅速以向周围散热或再发射电磁 波(荧光或磷光)的方式回到基态: →M+荧光(或磷光)。任何能产生荧光(或磷光)的物质都具有两个特征光谱:激发光谱和发射光谱。 激发光谱:荧光(或磷光)为光致发光,因此必须选择合适的激发光波长,这可通过激发

恒温槽温度均匀性测量不确定度评定报告

恒温槽温度均匀性测量不确定度评定 1. 概述 1.1 测量依据:JJF1030-2010《恒温槽技术性能测试规范》 1.2 环境条件:环境温度:(15~35)℃;相对湿度:35%RH ~85%RH 1.3 测量标准:温度巡回检测仪/T ;测量范围(-70~250)℃;不确定度 U =0.1℃(k =2)。 1.4 被测对象:恒温槽。 1.5 测量过程:将温度校准装置中热电偶的测量端,一根作为固定测温点固定在恒温槽工作区域内的O 点,另两只根作为移动测温点分别固定在工作区域内的A 点和B 点,测得OA 点和OB 点之间的温度差,通过两者的差,得到A 点和B 点的温差。 1.6 评定结果的使用:在符合上述条件下的测量结果,一般可直接使用本不确定度的评定结果。 2. 数学模型 O B O A B A t t t ----=? 式中:B A t -?-----恒温槽工作区域内A 、B 两点的温度差,℃; O A t ------A 点相对于O 点的温度差,℃; O B t ------B 点相对于O 点的温度差,℃。 3. 输入量标准不确定度的评定 3.1 输入量O A t -的标准不确定度)(O A t u -的评定 输入量O A t -的标准不确定度)(O A t u -来源于被测恒温槽的测量重复性 )(1O A t u -和温度校准装置误差)(2O A t u -引入的不确定度。 3.1.1输入量O A t -的标准不确定度)(1O A t u -可以通过连续测量得到测量列,

采用A 类方法进行评定。 取一台恒温槽,选择60℃测量点,在重复性条件下连续测量10次,得到A 点相对于O 点的温度差,测量结果如表1所示 表 1 实际测量情况以测量4次的算术平均值作为测量结果,则可得到 4/)(1s t u O A =-=0.052(℃) 3.1.2输入量O A t -的标准不确定度)(2O A t u -主要由温度校准装置的误差引起,采用B 类方法进行评定。由校准证书可知,温度校准装置的扩展不确定为U =0.1℃(k =2),则标准不确定度)(2O A t u -为: )(2O A t u -=0.1/2=0.05(℃) 3.2 输入量O B t -的标准不确定度)(O B t u -的评定 输入量O B t -的标准不确定度)(O B t u -来源于被测恒温槽的测量重复性 )(1O B t u -和温度校准装置误差)(2O B t u -引入的不确定度。 3.1.1输入量O B t -的标准不确定度)(1O B t u -可以通过连续测量得到测量列,采用A 类方法进行评定。

炉温均匀性测试

FM-112 第1页 共9页 传感器位置示意图 仪表编号 Meter No. S5H805420 仪表校准日期 Calibration date of meter 测试传感器及仪表Testing sensor and meter 检测依据文件 Refer documents AMS2750E 2017 年 4月 4日 Conclusion: TUS calibration for the furnace according to AMS2750E, calibration sensors didn't fail during the calibration process; And the results meet class 2 (±6℃) requirements between 480 to 760℃, meet class 4 (±10℃) requirements between 760 to 1180℃; 炉门 测温位置的说明 Position explanation: TUS Rack was located in the central chamber of furnace, the distance from back is 180mm, on both sides of distance is 200mm。检测日期Date Tested 下次检测日期:Next Due Date: 检测人: 核检人: Tested by(Operator) Check by(HT Engineer)批准: Issued by(Quality Manager) 温 度 均 匀 性 检 测 记 录 TEST RECORD OF FURNACE TEMPERATURE UNIFORMITY(SUBSTITUTE FOR TEST REPORT) 使用单位 User Department : XXXXXXXXXXXXXX 设备编号 Device No. HTE1#报告编号 Report No. XXXXXX 传感器型号 Sensor model: N 仪表名称 Meter name : 无纸记录仪设备型号 Device Model: HR5072-14PSIG 气氛或盐浴的种类、成分The sort and component of atmosphere or salt bath : 真空(真空度3.1×10-5 Torr) 设备名称 Device name: 真空炉 是否加载 Whether or not loaded: 测试架 仪表类型 Instrumentation Type: B 炉子等级 Furnace Class: 480-760℃ 2级(±6℃); 760-1180℃ 4级(±10℃); 加载量 Load: 无 使用温度范围 Temperature Range: 2级 480-760℃ ; 4级 760-1180℃ ; 制造厂商 Manufacturer : Ipsen 传感器名称 Sensor name: 工业热电偶仪表型号 Meter model : DX2020-1-4-3Rev.0 2008.5.1

相关文档
最新文档