人类活动破坏生态系统的实例

人类活动破坏生态系统的实例
人类活动破坏生态系统的实例

教学设计

运动控制系统实验指导书(修改

运动控制系统实验指导书 2013年3月

目录 第一部分MCL-11型电机及控制教学实验台介绍 (2) 第二部分实验项目 实验一晶闸管直流调速系统电流-转速调节器调试 (8) 实验二双闭环晶闸管不可逆单闭环直流调速系统测试 (10) 实验三异步电动机的变压变频调速演示实验 (15)

第一部分MCL-11型电机及控制教学实验台介绍 一、实验机组 =1500r/pm。 直流电动机:P N=185w,U N=220V,I N=1.1A,n N 二、实验挂箱 (1)MCL-18挂箱:G(给定),(GT+MF)触发电路及功放,单双脉冲观察,(FBC+FA)电流反馈及过流过压保护,零速封锁器(DZS),速度变换器(FBS),速度调节器(ASR),电流调节器(ACR)。 (2)MCL-33挂箱:脉冲通断控制及显示,一组、二组可控硅,平波电抗器。 (3)MEL-11挂箱:六组可调电容。 三、选配挂箱 (1)MEL-03挂箱:可调电阻器。 (2)电机导轨及测速发电机,直流发电机M01:P N=100W,U N=200V。 (3)电机导轨及测功机、测速发电机,MEL-13组件。 控制系统挂箱介绍和使用说明 (一)、MCL-18挂箱 MCL—18由G(给定),(GT+MF)触发电路及功放,双脉冲观察,(FBC+FA)电流反馈及过流过压保护,零速封锁器(DZS),速度变换器(FBS),速度调节器(ASR),电流调节器(ACR)组成。 1.G(给定) 原理图如图1-1。它的作用是得到下列几个阶跃的给定信号: (1)0V突跳到正电压,正电压突跳到0V; (2)0V突跳到负电压,负电压突跳到OV; (3)正电压突跳到负电压。负电压突跳到正电压。

运动控制卡概述

运动控制卡概述 ? ?主要特点 ?SMC6400B独立工作型高级4轴运动控制器 功能介绍: 高性能的独立工作型运动控制器以32位RISC为核心,控制4轴步进电机、伺服电机完成各种功能强大的单轴、多轴运动,可脱离PC机独立工作。 ●G代码编程 采用ISO国标标准G代码编程,易学易用。既可以在文本显示器、触摸屏上直接编写G代码,也可以在PC机上编程,然后通过USB通讯口或U盘下载至控制器。 ●示教编程 可以通过文本显示器、触摸屏进行轨迹示教,编写简单的轨迹控制程序,不需要学习任何编程语言。 ●USB通讯口和U盘接口 支持USB1.1全速通讯接口及U盘接口。可以通过USB接口从PC机下载用户程序、设置系统参数,也可用U盘拷贝程序。

●程序存储功能 程序存储器容量达32M,G代码程序最长可达5000行。 ●直线、圆弧插补及连续插补功能 具有任意2-4轴高速直线插补功能、任意2轴圆弧插补功能、连续插补功能。应用场合: 电子产品自动化加工、装配、测试 半导体、LCD自动加工、检测 激光切割、雕铣、打标设备 机器视觉及测量自动化 生物医学取样和处理设备 工业机器人 专用数控机床 特点: ■不需要PC机就可以独立工作 ■不需要学习VB、VC语言就可以编程 ■32位CPU, 60MHz, Rev1.0 ■脉冲输出速度最大达8MHz ■脉冲输出可选择: 脉冲/方向, 双脉冲 ■2-4轴直线插补 ■2轴圆弧插补 ■多轴连续插补 ■2种回零方式 ■梯型和S型速度曲线可编程

■多轴同步启动/停止 ■每轴提供限位、回零信号 ■每轴提供标准伺服电机控制信号 ■通用16位数字输入信号,有光电隔离 ■通用24位数字输出信号 ■提供文本显示器、触摸屏接口 技术规格: 运动控制参数 运动控制I/O 接口信号 通用数字 I/O 通用数字输入口 通用数字输出口 28路,光电隔离 28路,光电隔离,集电极开路输出 通讯接口协议

运动控制实验报告分析

运动控制系统实验报 告 姓名刘炜原 学号 201303080414

实验一 晶闸管直流调速系统电流 -转速调节器调试 一. 实验目的 1 ?熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。 2?掌握直流调速系统主要单元部件的调试步骤和方法。 三. 实验设备及仪器 1?教学实验台主控制屏。 2. ME —11 组件 3. MC —18 组件 4. 双踪示波器 5. 万用表 四. 实验方法 1. 速度调节器(ASR 的调试 按图1-5接线,DZS (零速封锁 器)的扭子 开关扳向“解除”。 (1) 调整输出正、负限幅值 “ 5”、“ 6”端 接可调电容, 使ASR 调节器为PI 调节器,加入 一定的输入电压(由MC —18的给 定提供,以下同),调整正、负限 幅电位器RR 、 RP ,使输出正负值 等于:5V 。 (2) 测定输入输出特性 将反馈网络中的电容短接 (“ 5”、“6 ”端短接),使 ASR 调节器为P 调节器,向调节器输入 端逐渐加入正负电压,测出相应的 输出电压,直至输出限幅值,并画 出曲线。 (3) 观察PI 特性 拆除“ 5”、“6”端短接线,突加 二.实验内容 1?调节器的调试 C B RF 4 2 HP1 RP2 6 4 2 3 1 NMCL-31A 可调电容,位于 NMCL-18的下部 封锁 -S 2 反 号 Q 9 ASR ( ??) DZS (零速封锁 解除 ACR 电就声书器) 11 12 图1-5速度调节器和电流调节器的调试接线图

给定电压(_0.1V),用慢扫描示波器观察输出电压的 变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容 箱改变数值。 2.电流调节器(ACR的调试 按图1-5接线。 (1)调整输出正,负限幅值 “9”、“10”端接可调电容,使调节器为PI调节器,加入一定的输入电压,调整正,负限幅电位器,使输出正负最大值等于_5V。 (2)测定输入输出特性 将反馈网络中的电容短接(“ 9”、“10”端短接),使调节器为P调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。 (3)观察PI特性 拆除“ 9”、“10”端短接线,突加给定电压,用慢扫描示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容箱改变 数值。

人类活动对生态系统的影响

人类活动对土壤生态的影响人类为了生存发展和提升生活水平,不断进行了一系列不同规模不同类型的活动,包括农、林、渔、牧、矿、工、商、交通、观光和各种工程建设等等。人类加以开垦、搬运和堆积的速度已经逐渐相等于自然地质作用的速度,对生物圈和生态系改造有时也会超过了自然生物作用规模。人类活动已成为地球上一项巨大的营力,迅速而剧烈地改变着自然界,反过来又影响到自身的福祉。 人类活动常可使得环境不断恶化,一方面使环境的脆弱性变得显著,自我调整能力转趋薄弱,一方面使人类自身抗灾的能力亦日益下降,再一方面许多人类破坏环境的过程本身就是自然灾害形成的过程。在这些多重因素的效应下,自然灾害的层出不穷和快速增长当然成为意料中事。 各地长期开发下,森林饱受破坏,生态逐渐失衡、土层裸露,控水能力变差,一经大雨就可导致山洪暴发、乾季则缺少基流补注,以致无论旱涝均与时俱增。 任何一个生态系统都由生物群落和物理环境两大部分组成。阳光、氧气、二氧化碳、水、植物营养素(无机盐)是物理环境的最主要要素,生物残体(如落叶、秸杆、动物和微生物尸体)及其分解产生的有机质也物理环境的重要要素。物理环境除了给活的生物提供能量和养分之外,还为生物提供其生命活动需要的媒质,如水、空气和土壤。而活的生物群落是构成生态系统精密有序结构和使其充满活力的关键因素,各种生物在生态系统的生命舞台上各有角色。 生物多样性是指包括自然世界所有的生物资源,如植物、动物、微生物,以及它们生存的生态系统,同样也包括构造出生命的重要基石――染色体、基因和脱氧核糖核酸。 我们人类自己也是生物多样性的一部分。生物多样性使生命在地球这个行星上的生存变得可能。没有生物多样性,你几乎不能在这个行星上生存,就算你可以生存下来,你也不可能喜欢这个灰暗的、无生气的、光秃秃的、无聊的世界。没有生物多样性,你不会感受到树林带给你的绿意、海洋带给你的蓝色,也不会有你呼吸的空气、吃的食物、喝的水。

运动控制系统实验指导书分解

运动控制系统 实验指导书 赵黎明、王雁编 广东海洋大学信息学院自动化系

直流调速 实验一不可逆单闭环直流调速系统静特性的研究 一.实验目的 1.研究晶闸管直流电动机调速系统在反馈控制下的工作。 2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。 3.学习反馈控制系统的调试技术。 二.预习要求 1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。 2.弄清不可逆单闭环直流调速系统的工作原理。 三.实验线路及原理 见图6-7。 四.实验设备及仪表 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3.MCL—33(A)组件或MCL—53组件。 4.MEL-11挂箱 5.MEL—03三相可调电阻(或自配滑线变阻器)。 6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件)。 7.直流电动机M03。 8.双踪示波器。 五.注意事项 1.直流电动机工作前,必须先加上直流激磁。 2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。 4.三相主电源连线时需注意,不可换错相序。 5.电源开关闭合时,过流保护发光二极管可能会亮,只需按下对应的复位开关SB1

即可正常工作。 6.系统开环连接时,不允许突加给定信号U g起动电机。 7.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。 8.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。 9.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。 六.实验内容 1.移相触发电路的调试(主电路未通电) (a)用示波器观察MCL—33(或MCL—53,以下同)的双脉冲观察孔,应有双脉冲,且间隔均匀,幅值相同;观察每个晶闸管的控制极、阴极电压波形,应有幅值为1V~2V 的双脉冲。 (b)触发电路输出脉冲应在30°~90°范围内可调。可通过对偏移电压调节单位器及ASR输出电压的调整实现。例如:使ASR输出为0V,调节偏移电压,实现α=90°;再保持偏移电压不变,调节ASR的限幅电位器RP1,使α=30°。 2.求取调速系统在无转速负反馈时的开环工作机械特性。 a.断开ASR的“3”至U ct的连接线,G(给定)直接加至U ct,且Ug调至零,直流电机励磁电源开关闭合。 b.合上主控制屏的绿色按钮开关,调节三相调压器的输出,使U uv、Uvw、Uwu=200V。 注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同。 c.调节给定电压U g,使直流电机空载转速n0=1500转/分,调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载的范围内测取7~8点,读取整流装置输出电压U d 3.带转速负反馈有静差工作的系统静特性 a.断开G(给定)和U ct的连接线,ASR的输出接至U ct,把ASR的“5”、“6”点短接。 b.合上主控制屏的绿色按钮开关,调节U uv,U vw,U wu为200伏。 c.调节给定电压U g至2V,调整转速变换器RP电位器,使被测电动机空载转速n0=1500转/分,调节ASR的调节电容以及反馈电位器RP3,使电机稳定运行。 调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载范围内测取7~8

人类活动对生态系统的影响

第5章第3节生态系统得稳定性(第3课时) 人类活动对生态系统稳定性得影响 一、设计思路 本节课得重点就是人类活动对生态系统稳定性得影响。学生通过《科学》得学习已经对我们身边得某些环境问题(水污染、大气污染、海洋污染等)及其产生得原因与危害有一定得了解,本学期又知道了生物与环境间得密切关系,理解了生态系统稳定性得涵义,并通过实验探究了某一因子得改变对生态系统得影响.这节课就运用生物与生物、生物与非生物、种群变化规律等知识分析人类活动对生态系统得破坏性影响。 首先,由Mtv :Earthsong引入,以视觉与听觉冲击学生得心灵,感受到人类活动对生态系统得破坏性影响及其最终带给人类毁灭性得灾害,认识到生态系统稳定性得自我调节能力就是有限度得;然后通过图片比较自然生态系统与农田生态系统得差异,明白结构单一、物种密集得农田耕地大面积开垦得严重后果,使学生感悟到大规模改变自然生态系统会破坏它本身得稳定性;分析混浊得长江水产生得原因,引用资料“拯救青海湖湟鱼",引导学生说出超量取用资源会改变生态系统得结构与功能,从而破坏其稳定性;呈现2008年上海春节垃圾得具体数量、苏州河今昔图片得分析让学生明白大量物品得输入也会破坏生态系统得稳定性。这三方面得影响并非就是独立得,也很难将它们严格区分开教学,可以融合起来一起教学。最后与学生一起讨论保持生态系统稳定性得措施,从种群变化规律得角度理解控制池塘得养殖量、草原轮换放牧得意义,用生物与环境间得关系理解重建苏州河生态系统得治理工作,关注知识点得应用,帮助学生初步建立人与自然协调发展得理念,意识到人类得发展必须走可持续发展得道路. 二、教学目标 知识与技能 1.认识生态系统稳定性得自我调节能力就是有限度得。 2.举例说出人类活动对生态系统稳定性得影响。 3.了解人类活动对生态系统得破坏性影响得多种表现。 过程与方法 通过图片比较观察,认识到人类活动对生态系统得破坏性影响。 情感态度与价值观 1.认识到保持生态系统稳定性得重要性与迫切性。

运动控制系统仿真---实验讲义

《运动控制系统仿真》实验讲义 谢仕宏 xiesh@https://www.360docs.net/doc/753610796.html,

实验一、闭环控制系统及直流双闭环调速系统仿真 一、实验学时:6学时 二、实验内容: 1. 已知控制系统框图如图所示: 图1-1 单闭环系统框图 图中,被控对象s e s s G 1501 30010 )(-+= ,Gc(s)为PID 控制器,试整定PID 控制器 参数,并建立控制系统Simulink 仿真模型。再对PID 控制子系统进行封装,要求可通过封装后子系统的参数设置页面对Kp 、Ti 、Td 进行设置。 2. 已知直流电机双闭环调速系统框图如图1-2所示。试设计电流调节器ACR 和转速调节器ASR 并进行Simulink 建模仿真。 图1-2 直流双闭环调速系统框图 三、实验过程: 1、建模过程如下: (1)PID 控制器参数整顿 根据PID 参数的工程整定方法(Z-N 法),如下表所示, Kp=τ K T 2.1=0.24,Ti=τ2=300, Td=τ5.0=75。 表1-1 Z-N 法整定PID 参数

(2)simulink仿真模型建立 建立simulink仿真模型如下图1-3所示,并进行参数设置: 图1-3 PID控制系统Simulink仿真模型 图1-3中,step模块“阶跃时间”改为0,Transport Delay模块的“时间延迟”设置为150,仿真时间改为1000s,如下图1-4所示: 图1-3 PID控制参数设置 运行仿真,得如下结果:

图1-5 PID控制运行结果 (3)PID子系统的创建 首先将参数Gain、Gain1、Gain三个模块的参数进行设置,如下图所示: 图1-6 PID参数设置 然后建立PID控制器子系统,如下图1-7所示: 图1-7 PID子系统 再对PID子系统进行封装,选中“Subsystem”后,单击鼠标右键,选择“Mask subsystem”,弹

通用运动控制器目前主要分类浅谈

通用运动控制器目前主要分类浅谈 目前,我国是世界上经济发展最快的国家,市场上新设备的控制需求、 传统设备技术升级、换代对运动控制器的市场需求越来越大。另外由于市场日 益竞争的压力,系统集成商和设备制造商要求运动控制系统向开放式方向发展。同时,经济型数控市场占有率正在逐渐减小。在这样的形势下,我国可以抓住 这一机遇,研制出具有自主知识产权,具有高水平、高质量、高可靠性的开放 式运动控制器产品。 (1)基于计算机标准总线的运动控制器,它是把具有开放体系结构,独立 于计算机的运动控制器与计算机相结合构成。这种运动控制器大都采用DSP 或微机芯片作为CPU,可完成运动规划、高速实时插补、伺服滤波控制和伺服驱动、外部I/O 之间的标准化通用接口功能,它开放的函数库可供用户根据不同的需求,在DOS 或WINDOWS 等平台下自行开发应用软件,组成各种控制系统。如美国Deltatau 公司的PMAC 多轴运动控制器和固高科技(深圳)有限公司的GT 系列运动控制器产品等。目前这种运动控制器是市场上的主流产品。 (2)Soft 型开放式运动控制器,它提供给用户最大的灵活性,它的运动控制软件全部装在计算机中,而硬件部分仅是计算机与伺服驱动和外部I/O 之间的标准化通用接口。就像计算机中可以安装各种品牌的声卡、CDROM 和相应的驱动程序一样。用户可以在WINDOWS 平台和其他操作系统的支持下,利用开放的运动控制内核,开发所需的控制功能,构成各种类型的高性能运动控 制系统,从而提供给用户更多的选择和灵活性。基于Soft 型开放式运动控制器开发的典型产品有美国MDSI 公司的Open CNC、德国PA(Power Automation)公司的PA8000NT。美国Soft SERVO 公司的基于网络的运动控制

几种运动控制系统的比较

运动控制的实现方法 1、以模拟电路硬接线方式建立的运动控制系统 早起的运动控制系统一般采用运算放大器等分离器件以硬接线的方式构成,这种系统的优点: (1)通过对输入信号的实时处理,可实现系统的高速控制。 (2)由于采用硬接线方式可以实现无限的采样频率,因此,控制器的精度较高并且具有较大的带宽。 然而,与数字化系统相比,模拟系统的缺陷也是很明显的: (1)老化与环境温度的变化对构成系统的元器件的参数影响很大。 (2)构成系统所需的元器件较多,从而增加了系统的复杂性,也使得系统最终的可靠性降低。 (3)由于系统设计采用的是硬接线的方式,当系统设计完成之后,升级或者功能修改几乎是不可能的事情。 (4)受最终系统规模的限制,很难实现运算量大、精度高、性能更加先进的复杂控制算法。 模糊控制系统的上述缺陷使它很难用于一些功能要求比较高的场合。然而,作为控制系统最早期的一种实现方式,它仍然在一些早期的系统中发挥作用; 另外,对于一些功能简单的电动机控制系统,仍然可以采用分立元件构成。 2、以微处理器为核心的运动控制系统 微处理器主要是指以MCS-51、MCS-96等为代表的8位或16位单片机。采用微处理器取代模拟电路作为电动机的控制器,所构成的系统具有以下的优点:(1)使电路更加简单。模拟电路为了实现逻辑控制需要很多的元器件,从而使电路变得复杂。采用微处理器以后,大多数控制逻辑可以采用软 件实现。 (2)可以实现复杂的控制算法。微处理器具有较强的逻辑功能,运算速度快、精度高、具有大容量的存储器,因此有能力实现较复杂的控制算 法。 (3)灵活性和适应性强。微处理器的控制方式主要是由软件实现,如果需要修改控制规律,一般不需要修改系统德硬件电路,只需要对系统的

运动控制器的应用现状及其发展趋势【不可外传】

运动控制器的应用现状及其发展趋势 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 1运动控制器的应用现状 运动控制器越来越广泛地应用于各个行业的自动化设备,如数控机床、雕刻机、切割机、钻孔机、印刷机、冲孔机、激光雕刻、激光切割、包装机、纺织机、食品加工、绘图机、点胶机、焊接机、电子装配白动检测等,甚至在航空航天和国防领域也得到广泛应用。根据所用的CPU不同,运动控制器产品主要有以下五种类型: (1)以单片机(MCU)为核心的运动控制器,低端采用8位或16位的单片机作为处理器,其主要优点是价格比较低廉,缺点是运行速度较慢,控制精度较低。因此这种运动控制器适用于一些低速或运动控制精度要求不高的点位运动或轮廓运动控制的自动化设备。 (2)以专用芯片为核心的运动控制器,美国国家半导体公司生产的LM628和LM629专用运动控制芯片,日本的NOVA生产的MCX304、MCX501等运动控制芯片是专门为精密控制步进电机和伺服电机而设计的专用处理器,产品应用于数控机床、雕刻机、工业机器人、医用设备、绕线机、自动仓库、绘图仪、点胶机、IC制造设备等领域。 (3)以数字信号处理器(DS)为核心的运动控制器,美国DeltaTau公司生产的PMAC 运动控制器,采用Motorola的DSP56003作为处理器。国内的基于DSP的运动控制器,通常以美国TI公司推出的C2000系列,例如TMS320F2812和TMS320F28335作为运动控制器的核心芯片。

人类活动对地球生态系统的影响

人类活动对生态造成的危害 人类为了生存发展和提升生活水平,不断进行了一系列不同规模不同类型的活动,包括农、林、渔、牧、矿、工、商、交通、观光和各种工程建设等等。人类加以开垦、搬运和堆积的速度已经逐渐相等于自然地质作用的速度,对生物圈和生态系改造有时也会超过了自然生物作用规模。人类活动已成为地球上一项巨大的营力,迅速而剧烈地改变着自然界,反过来又影响到自身的福祉。 人类活动常可使得环境不断恶化,一方面使环境的脆弱性变得显著,自我调整能力转趋薄弱,一方面使人类自身抗灾的能力亦日益下降,再一方面许多人类破坏环境的过程本身就是自然灾害形成的过程。在这些多重因素的效应下,自然灾害的层出不穷和快速增长当然成为意料中事。 各地长期开发下,森林饱受破坏,生态逐渐失衡、土层裸露,控水能力变差,一经大雨就可导致山洪暴发、乾季则缺少基流补注,以致无论旱涝均与时俱增。 任何一个生态系统都由生物群落和物理环境两大部分组成。阳光、氧气、二氧化碳、水、植物营养素(无机盐)是物理环境的最主要要素,生物残体(如落叶、秸杆、动物和微生物尸体)及其分解产生的有机质也物理环境的重要要素。物理环境除了给活的生物提供能量和养分之外,还为生物提供其生命活动需要的媒质,如水、空气和土壤。而活的生物群落是构成生态系统精密有序结构和使其充满活力的关键因素,各种生物在生态系统的生命舞台上各有角色。 生物多样性是指包括自然世界所有的生物资源,如植物、动物、微生物,以及它们生存的生态系统,同样也包括构造出生命的重要基石――染色体、基因和脱氧核糖核酸。 我们人类自己也是生物多样性的一部分。生物多样性使生命在地球这个行星上的生存变得可能。没有生物多样性,你几乎不能在这个行星上生存,就算你可以生存下来,你也不可能喜欢这个灰暗的、无生气的、光秃秃的、无聊的世界。没有生物多样性,你不会感受到树林带给你的绿意、海洋带给你的蓝色,也不会有你呼吸的空气、吃的食物、喝的水。 然而,人类不科学和不可持续的开发活动却威胁到了许多物种的生存,正威胁着构成地球这个宏伟的不能代替的支持生命的系统。 当今生物物种所受到的威胁是有史以来最大的。所有这些威胁的实质是由于人类对生物资源发管理不当而引起的,而且这种行为还经常遭受错误引导的经济政策和不完善的制度的激励。物种的自然灭绝是生命的一个事实,是天经地义的

运动控制实验报告标准范本

报告编号:LX-FS-A69109 运动控制实验报告标准范本 The Stage T asks Completed According T o The Plan Reflect The Basic Situation In The Work And The Lessons Learned In The Work, So As T o Obtain Further Guidance From The Superior. 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

运动控制实验报告标准范本 使用说明:本报告资料适用于按计划完成的阶段任务而进行的,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想的汇报,以取得上级的进一步指导作用。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 实验一晶闸管直流调速系统电流-转速调节器调试 一.实验目的 1.熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。2.掌握直流调速系统主要单元部件的调试步骤和方法。 二.实验内容 1.调节器的调试 三.实验设备及仪器 1.教学实验台主控制屏。2.MEL—11组件3.MCL—18组件4.双踪示波器5.万用表

四.实验方法 1.速度调节器(ASR)的调试 按图1-5接线,DZS(零速封锁器)的扭子开关扳向“解除”。 (1)调整输出正、负限幅值“5”、“6”端接可调电容,使ASR调节器为PI调节器,加入一定的输入电压(由MCL—18的给定提供,以下同),调整正、负限幅电位器RP1、RP2,使输出正负值等于5V。 (2)测定输入输出特性将反馈网络中的电容短接(“5”、“6”端短接),使ASR调节器为P 调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画 图1-5 速度调节器和电流调节器的调试接线图 出曲线。

运动控制系统心得

电力拖动自动控制系统 -运动控制系统 系名:物电系 班级:电气工程及其自动化(1)班:昊哲 学号:201214240136

电力拖动自动控制系统 -运动控制系统 大三第二学期我接触到了一门很重要的专业课《电力拖动自动控制系统》,通过对这门课的学习使我对运动控制系统有了更深刻的理解。现代运动控制已成为电机学,电力电子技术,微电子技术,计算机控制技术,控制理论,信号检测与处理技术等多门学科相互交叉的综合性学科。文中简单介绍了运动控制及其相关学科的关系,随着其他相关学科的不断发展,运动控制系统也在不断发展,不断提高系统的安全性,可靠性。文中最后简述了其发展历程及其未来发展的展望。 电力拖动实现了电能与机械能之间的能量转换,而电力拖动自动控制系统—运动控制系统的任务是通过控制电动机电压、电流、频率等输入量,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。工业生产和科学的发展,对运动控制系统提出新的更为复杂的要求,同时也为研制和生产各类新型控制系统提供可能。 运动控制系统分为两大部分的学习,第一部分为直流调速系统,第二部分为交流调速系统,其中第一部分为整本书重要掌握的容。 第一部分分为转速反馈控制的直流调速系统,转速、电流反馈的直流调速系统,可逆控制和弱磁控制的直流调速系统。第一部分中主要介绍直流调速系统,调节直流电动机的转速有三种方法:改变电枢

回路电阻,减弱磁通调速法,调节电枢电压调速法。 变压调速是是直流调速系统的主要方法,系统的硬件结构至少包含了两部分:能够调节直流电动机电枢电压的直流电源和产生被调节转速的直流电动机。随着电力电子技术的发展,可控直流电源主要有两大类,一类是相控整流器,它把交流电源直接转换成可控直流电源;另一类是直流脉宽变换器,它先把交流电整流成不可控的直流电,然后用PWM方式调节输出直流电压。本章说明了两类直流电源的特性和数学模型。当用可控直流电源和直流电动机组成一个直流调速系统时,它们所表现车来的性能指标和人们的期望值必然存在一个不小的差距,并做出了分析。开环控制系统无法满足人们期望的性能指标,本章就闭环控制的直流调速系统展开分析和讨论。论述哦了转速单闭环直流调速系统的控制规律,分析了系统的静差率,介绍了PI调节器和P调节器的控制作用。转速单闭环直流调速系统能够提高调速系统的稳态性能,但动态性能仍不理想,转速,电流双闭环直流调速系统是静动态性能良好,应用最广的直流调速系统;还介绍了转速,电流双闭环系统的组成及其静特性,数学模型,并对双闭环直流调速系统的动态特性进行了详细分析。本章对直流调速系统的数字实现进行了讨论,论述了与调速系统紧密关联的数字测速方法和数字PI调节器的实现方法,并用MATLAB仿真软件对转速,电流双闭环调速系统进行了仿真。 第二部分主要介绍交流调速系统。交流调速系统有异步电动机和同步电动机两大类。异步电动机调速系统分为3类:转差功率消耗型

基于VC++的运动控制卡软件系统设计

基于VC++的运动控制卡软件系统设计 在自动控制领域,基于PC和运动控制卡的伺服系统正演绎着一场工业自动化的革命。目前,常用的多轴控制系统主要分为3大块:基于PLC的多轴定位控制系统,基于PC_based的多轴控制系统和基于总线的多轴控制系统。由于PC 机在各种工业现场的广泛运动,先进控制理论和DSP技术实现手段的并行发展,各种工业设备的研制和改造中急需一个运动控制模块的硬件平台,以及为了满足新型数控系统的标准化、柔性化、开放性等要求,使得基于PC和运动控制卡的伺服系统备受青睐。本文主要是利用VC++6.0提供的MFC应用程序开发平台探索研究平面2-DOF四分之过驱动并联机构的运动控制系统的软件开发。 平面2-DOF四分之过驱动并联机构的控制系统组成 并联机构的本体如图1,该机构由4个分支链组成,每条支链的一段与驱动电动机相连,而另一端相交于同一点。该并联机构的操作末端有2个自由度(即X 方向和Y方向的平动),驱动输入数目为4,从而组成过驱动并联机构。 控制系统的硬件主要有4部分组成:PC机,四轴运动控制卡,伺服驱动器和直流电动机。系统选用的是普通PC机,固高公司的GT-400-SV-PCI运动控制卡,瑞士Maxon公司的四象限直流伺服驱动器及直流永磁电动机。伺服驱动器型号为4-Q-DCADS50/5,与驱动器适配直流电动机型号为Maxon RE-35。运动控制系统的

构成如图2所示。上位控制单元由PC机和运动控制卡一起组成,板卡插在PC机主板上的PCI插槽内。PC机主要负责信息流和数据流的管理,以及从运动控制卡读取位置数据,并经过计算后将控制指令发给运动控制卡。驱动器控制模式采用编码器速度控制,驱动器接受到运动控制卡发出的模拟电压,通过内部的PWM电路控制直流电动机RE-35的运转,并接受直流电动机RE-35上的编码器反馈信号调整对电动机的控制,如此构成一个半闭环的直流伺服控制系统。 1.1 GT-400-SV控制卡介绍 固高公司生产的GT系列运动控制卡GT-400-SV-PCI可以同步控制4个轴,实现多轴协调运动。其核心由ADSP2181数字信号处理器和FPGA组成,能实现高性能的控制计算。控制卡同时提供了C语言函数库和Windows下的动态链接库,可实现复杂的控制功能。主要功能如下: (1) PCI总线,即插即用; (2)可编程伺服采样周期,4轴最小插补周期为200us,单轴点位运动最小控制周期为25us; (3) 4路16位分辨率模拟电压输出信号或脉冲输出信号模拟量输出范围:-10V-+10V,每路课独立控制,互不影响;

七年级生物生态系统与人类关系

生态系统与人类关系 教学目标 1.结合学生的课下调查结果及教材引言部分的学习,学生能够描述什么是生态系统。 2. 通过教材P23,24多幅图片及相关内容的教学,学生能够说明生态系统的组成。 3. 讲解课本P25草原生态系统图,学生用箭头连接图中的生物并进行进一步的探究活动,最后能举例说出食物链和食物网的构成。 4.一小段动画片的放映,学生能认同生态系统具有一定的自动调节能力。 5.提示学生课后阅读《林业工人的新任务》,使学生明确人类的生产活动必须尊重生态系统的完整性。向马永顺爷爷学习什么。以达到教育学生爱护生态系统,养成言行一致的优良品性的目的。 教学重点难点 重点:1.生态系统的组成。 2.食物链和食物网。 难点:生态系统具有一定的自动调节能力。 课前准备: 教师:生态系统图片,生态系统录像片及放像设备。 学生:1.分小组调查校园中的生物,做好记录。 2.记录自己上个双休日在家中所吃的食品,列出目录以备上课时用。 教学设计:

教学过程设计: 1.生态系统的概念 生态系统的概念和下面要学习的生态系统的组成是本节课学习的重点,这对刚刚进 入中学的初一学生来说是一个比较抽象的概念,为了帮助学生理解这一概念,教师应在课前也就是上一节课结束后布置给学生调查校园环境这一任务,了解一下与自身密切相关的这个生态系统中的生物种类,这些生物之间以及生物与环境之间的相互关系,最后总结生态系统的概念。 课上伊始先由学生介绍自己的调查结果,每个小组选一个代表,也可自告奋勇到讲台前面来讲。这时老师应提醒学生注意两点:一是倾听,二是后发言的同学不要重复已说过的内容,除非有新的认识。这样的过程是一个从感性到理性,从片面到全面地认识过程。最后小结:所谓生态系统是指在一定地域内,生物与环境形成的统一整体。 2.生态系统的组成 教材P23的两幅很有说服力的图片向我们展示了生态系统各种生物以及它们之间的关系。结合学生们的调查结果,以这些生物的营养方式为切入点,逐一分析它们的特点。大家都知道,在自然界,植物能够通过光合作用把无机物摄取到体内转变为有机物,同时将光能转变为化学能并贮存在有机物中。(关于这个问题在第三单元第四章中讲到)植物制造的有机物不仅为自己所需,而且还为很多动物提供食物,因此植物被称之为生产者。而动物只能以现成的有机物为食物,在摄食过程中,食物中的物质和能量随之流入动物体内,因而叫消费者。在自然界中,有肉眼可见的真菌(图片中树干上),还有部分真菌和细菌必须借助于显微镜才能看见(图片中变质的苹果),它们把动植物的遗体或遗物分解成简单的无机物,分解后的物质重新回到自然界参加物质循环,它们就是分解者。教学中应着重讲解生物因素及生物之间的相互关系,但对于生态系统中所包含的非生物因素及其作用也不能忽略。

运动控制系统实验报告

运动控制系统实验报告 姓名:杜文划 学号:912058200102 同组人:杜文坚,周文活,黎霸俊

异步电动机SPWM与电压空间矢量变频调速系统 一、实验目的 1.通过实验掌握异步电动机变压变频调速系统的组成与工作原理。 2.加深理解用单片机通过软件生成SPWM波形的工作原理特点。以及不同不 同调制方式对系统性能的影响。 3.熟悉电压空间矢量控制的原理与特点。 4.掌握异步电动机变压变频调速系统的调试方法。 二、实验过程 一、采用SPWM方式调制 1.同步调制 30HZ下 电机气隙磁通分量波形如下示:电机气隙磁通轨迹如下: 定子电流波形如下示: IGBT两端波形如下示: 定子端电压波形如下示:

50HZ下 电机气隙磁通分量波形如下示:电机气隙磁通轨迹如下: 定子电流波形如下示: IGBT两端波形如下示: 定子端电压波形如下示:

波形分析: 电机气隙磁通两相绕组之间相差约60°。 电机磁通轨迹50Hz时更接近圆形。 对定子电流:30Hz时和50Hz时呈正弦波,但其中有很多的高频分量。 IGBT的疏密程度反映了脉冲宽度调制的过程,越密表示频率越高。 定子电压呈正弦分布。 同步调制方式在50Hz比较好。 2、异步调制 30HZ下 电机气隙磁通分量波形如下示:电机气隙磁通轨迹如下: 定子电流波形如下示: IGBT两端波形如下示: 定子端电压波形如下示: 50HZ下 电机气隙磁通分量波形如下示:电机气隙磁通轨迹如下:

定子电流波形如下示: IGBT两端波形如下示: 定子端电压波形如下示: 异步调制与同步调制想比,气隙磁通分量更接近正弦波,气隙磁通轨迹更接近圆形,此时30Hz比50Hz效果好些。 3、混合调制 混合调制在不同的输出频率段采用不同的载波比 10HZ下,载波比为100 电机气隙磁通分量波形如下示:电机气隙磁通轨迹下:

现代运动控制系统及其应用

136.现代运动控制系统及其应用 内容来源网络,由深圳机械展收集整理! 运动是以为控制对象,以控制器为核心,以电力电子、功率变换装置为执行机构,在控制理论指导下组成的电气传动控制系统。运动控制系统多种多样,但从基本结构上看,一个典型的现代运动控制系统的硬件主要由上位计算机、运动控制器、功率驱动装置、电动机和反馈检测装置和被控对象等几部分组成,如图1所示。电动机及其功率驱动装置作为执行器主要为被控对象提供动力,特别设计应用于伺服系统的电机称之为伺服电机,通常内含位置反馈装置,如光电编码器。目前主要应用于工业界的伺服电机包括电机、永磁交流伺服电机与感应交流伺服电机,其中以永磁交流伺服电机占大多数。 运动控制器是以中央逻辑控制单元为核心、以传感器为信号敏感元件、以电机或动力装置和执行单元为控制对象的一种控制装置。其功能在于提供整个伺服系统的闭路控制,如位置控制、速度控制和转矩控制等。 运动控制器的分类 目前市场上的运动控制器根据不同的方法有不同的分类。 按被控对象分类: 根据应用场合被控对象的不同可分为步进电机运动控制器、伺服电机运动控制器和既可以对步进电机进行控制又可以对交流伺服电机进行控制的运动控制器。 按结构进行分类: 基于计算机标准的运动控制器 基于总线的运动控制器是利用计算机硬件和操作系统,并结合用户开发的运动控制应用

程序来实现的,具有高速的数据处理能力。总线形式上主要有isa接口、pci接口、vme接口、和usb接口等。这种运动控制器大都采用或微机芯片作为cpu,可完成运动规划、高速实时插补、伺服滤波控制和伺服驱动、外部i/o之间的标准化通用接口功能,同时随控制器还提供功能强大的运动控制软件库:c语言运动函数库、windows dll动态链接库等,可供用户根据不同的需求,在dos或windows等平台下自行开发应用软件,组成各种控制系统。 例如美国deltatau公司的pmac多轴运动控制器,采用motorola公司的高性能dsp5600x作为cpu,可以最多同时控制8根轴,与各种类型的主机、放大器、电机和传感器一起完成各种功能。英国阿沃德公司的trio运动控制卡、固高科技(深圳)有限公司的gt 系列运动控制器产品和美国ni公司的ni系列运动控制器等都是这类产品。 从用户使用的角度来看,这些基于的运动控制器之间的差异主要是硬件接口(输入/输出信号的种类、性能)和软件接口(运动控制函数库的功能函数)。 soft型开放式运动控制器 基于soft型开放式运动控制器[3>提供给用户很大的灵活性,它的运动控制软件全部装在计算机中,而硬件部分仅是计算机与伺服驱动和外部i/o之间的标准化通用接口,如同计算机中可以安装各种品牌的声卡、cdrom和相应的驱动程序一样。用户可以在windows 平台和其他操作系统的支持下,利用开放的运动控制内核,开发所需的控制功能,构成各种类型的高性能运动控制系统,从而提供给用户更多的选择和灵活性。 这种控制器的典型产品有美国mdsi公司的open cnc、德国pa(power automation)公司的pa8000nt,美国soft servo公司的基于网络的运动控制器和国内的固高科技有限公司的go系列运动控制器产品等。soft型开放式运动控制的特点是开发、制造成本相对较低,能够给予系统集成商和开发商更加个性化的开发平台。此类产品的价格国内产品普遍要低于国外产品,但在技术性能上也存在一定差距。

2018年运动控制系统行业分析报告

2018年运动控制系统行业分析报告 2018年6月

目录 一、运动控制,智能制造的核心系统 (6) 二、运动控制器,运动控制的大脑 (10) 1、三类运动控制器各具优势 (10) 2、PLC控制器,基础运动控制的利器 (14) 3、专用控制器,特定行业特定运用的控制器 (16) 4、PC-Based,发展最快的运动控制器 (18) 三、伺服系统,运动控制的中枢神经和动力系统 (22) 1、伺服系统,国产品牌加速替代 (22) 2、编码器,伺服系统不可忽视的关键部件 (26) 四、四大家族的启示:运动控制技术是核心竞争力 (28) 五、运动控制系统厂商发展战略和模式 (32) 1、产品型发展模式:从核心部件商,到运动控制解决方案 (32) 2、设备型发展模式:凭借运动控制技术,供应整机设备 (34) 3、平台型发展模式:打造工业控制整体解决方案平台 (37) 六、国内相关企业简况 (38) 1、埃斯顿:国内工业机器人龙头,打造高端运动控制新锐 (38) 2、汇川技术:国内工控龙头,运动控制系统产业链齐全 (39) 3、维宏股份:运动控制器细分行业龙头,布局伺服系统进展顺利 (39) 七、主要风险 (40) 1、进口替代不及预期风险 (40) 2、行业竞争加剧风险。 (40)

3、宏观经济波动风险 (40) 4、关键芯片进口受阷风险 (40)

我国工业自动化近年来取得了一系列令人欢欣鼓舞的成就:核心装备如工业机器人和激光装备高速增长;核心零部件如精密减速器、光纤激光器等不断突破。然而,我国科技业一直偏向技术运用,基础研究重视程度不够。随着实力的提升,高端制造业全球化竞争局面愈加激烈,基础技术的比拼愈发重要,基础技术在下一阶段将被越来越多的公司所重视,其中,运动控制系统便是关键技术之一。 运动控制系统作为一项基础技术,是工业自动化升级改造的核心环节。无论是机床行业、机器人行业、半导体行业、纺织机械、包装机械等,均需要精度高、可拓展性强的运动控制系统予以有力的支持。由于工业自动化技术自海外引进,因而海外巨头一直处于领先优势。但令人欣慰的是,国内企业正奋起追赶,在运动控制系统中的核心环节控制器和伺服系统技术的研发中不断取得新成就。 本文将从运动控制技术的两个核心部件控制器和伺服系统展开,全面分析我国运动控制系统发展现状和未来前景。我们期待市场,以及越来越多的上市公司关注和重视运动控制技术,致力于提升我国制造业的基础技术,为机床、机器人、半导体、锂电等行业发展贡献更多的力量。 高端装备的大脑,工业控制的核心。运动控制系统作为一项核心技术,是很多高端装备的关键部件。根据IHS数据,2016年全球运动控制市场规模达到108亿美元,西门子、三菱、发那科占据榜单前三。运动控制系统分为运动控制器和伺服系统两个重要环节,我国企业正奋起追赶,有望伴随国内工业自动化升级改造大趋势而崛起。

运动控制系统实验报告

实验一晶闸管直流调速系统电流-转速调节器调试一.实验目的 1.熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。2.掌握直流调速系统主要单元部件的调试步骤和方法。 二.实验内容 1.调节器的调试 三.实验设备及仪器 1.教学实验台主控制屏。 2.MEL—11组件 3.MCL—18组件 4.双踪示波器 5.万用表 四.实验方法 1.速度调节器(ASR)的调 试 按图1-5接线,DZS(零速封锁器)的扭子开关扳向“解除”。 (1)调整输出正、负限幅值 “5”、“6”端接可调电容,使ASR调节器为PI调节器,加入一定的输入电压(由MCL—18的给定提供,以下同),调整正、负限幅电位器RP1、RP2,使输出正负值等于5V。 (2)测定输入输出特性 将反馈网络中的电容短接(“5”、“6”端短接),使ASR 调节器为P调节器,向调节器输入端逐渐加入正负电压,测出相应 8 4 6 C A G给定 1 2 3 DZS(零速封锁器) S 解除 封锁 NMCL-31A 可调电容,位于 NMCL-18的下部 图1-5 速度调节器和电流调节器的调试接线图3 RP4 C B

的输出电压,直至输出限幅值,并画出曲线。 (3)观察PI特性 拆除“5”、“6”端短接线,突加给定电压(0.1V),用慢扫描示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容箱改变数值。 2.电流调节器(ACR)的调试 按图1-5接线。 (1)调整输出正,负限幅值 “9”、“10”端接可调电容,使调节器为PI调节器,加入一定的输入电压,调整正,负限幅电位器,使输出正负最大值大于6V。 (2)测定输入输出特性 将反馈网络中的电容短接(“9”、“10”端短接),使调节器为P调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。 (3)观察PI特性 拆除“9”、“10”端短接线,突加给定电压,用慢扫描示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容箱改变数值。 五. 实验数据记录及处理 1.速度调节器的调试 输入电压-0.945-0.702-0.498-0.201-0.102 输出电压 4.980 3.668 2.5490.9350.394 00.210.4990.8030.890 -0.165-1.313-2.890-4.546-5.02

相关文档
最新文档