等比数列的前n项求和解题思路

等比数列的前n项求和解题思路
等比数列的前n项求和解题思路

2.5 等比数列的前n 项和

等比数列前n 项和公式的基本运算

【例1】 在等比数列{a n }中, (1)S 2=30,S 3=155,求S n ;

(2)a 1+a 3=10,a 4+a 6=5

4

,求S 5;

(3)a 1+a n =66,a 2a n -1=128,S n =126,求q.

解:(1)由题意知?????

a 1(1+q )=30

a 1

(1+q +q 2

)=155, 解得?????

a 1=5

q =5或?

?

???

a 1=180

q =-5

6

从而S n =14×5n +

1-54或S n =1080×[1-(-5

6)n ]

11.

(2)法一:由题意知?????

a 1+a 1

q 2

=10a 1q 3+a 1q 5=54, 解得?????

a 1=8q =12

,从而S 5=a 1(1-q 5)1-q =312.

法二:由(a 1+a 3)q 3=a 4+a 6, 得q 3=18,从而q =1

2

.

又a 1+a 3=a 1(1+q 2)=10, 所以a 1=8,

从而S 5=a 1(1-q 5)1-q

=31

2.

(3)因为a 2a n -1=a 1a n =128,

所以a 1,a n 是方程x 2-66x +128=0的两根.

从而????? a 1=2,a n =64,或?????

a n =2,a 1=64. 又S n =a 1-a n q

1-q

=126,

解得q =2或q =1

2,

所以q 为2或1

2

.

变式训练11:数列{a n }为等比数列,各项均大于0,

它的前n 项和为80,其中数值最大的项为54,前2n 项的和为6560, 试求此数列的首项a 1和公比q. 解:∵S 2n >2S n ,∴q ≠1.

依题意,得?????

a 1(1-q n )

1-q

=80,a 1

(1-q

2n

)

1-q

=6560,

①②

得,q n =81,∴q >1,故前n 项中a n 最大. ∴a n =a 1·q n -

1=54, ∴a 1

q

×81=54.③ 将q n =81代入①得a 1=q -1.④

③④联立解得?

????

a 1=2,

q =3.

等比数列前n 项和性质的应用

【例2】 已知等比数列{a n }中,前10项和S 10=10,前20项和S 20=30,求S 30. 思路点拨:法一:设公比为q →根据条件列方程组→解出q →代入求S 30 法二:根据题意S 10,S 20-S 10,S 30-S 20成等比数列→S 10=10,S 20=30→S 30 解:法一:设公比为q ,则

?????

a 1(1-q 10)

1-q

=10

a 1

(1-q 20

)1-q

=30

①②

得1+q 10=3,∴q 10=2, ∴S 30=a 1(1-q 30)

1-q

=a 1(1-q 10)1-q

(1+q 10+q 20)

=10×(1+2+4)=70.

法二:∵S 10,S 20-S 10,S 30-S 20仍成等比数列,又S 10=10,S 20=30,

∴S 30-S 20=S 30-30=(30-10)2

10

即S 30=70.

等比数列前n 项和的常用性质

(1) 项的个数的“奇偶”性质:等比数列{a n }中, (2) 公比为q.

①若共有2n 项,则S 偶

S 奇=q ;

②若共有2n +1项,

则S 奇-S 偶=a 1+a 2n +2

1+q (q ≠1且q ≠-1).

(2)“片断和”性质:等比数列{a n }中,公比为q , 前m 项和为S m (S m ≠0),

则S m ,S 2m -S m ,S 3m -S 2m ,…,S km -S (k -1)m ,…构成公比为q m 的等比数列, 即等比数列的前m 项的和与以后依次m 项的和构成等比数列 变式训练21:等比数列{a n }中,若S 2=7,S 6=91,求S 4.

解:法一:∵S 2=7,S 6=91,易知q ≠1,

由?????

S 2=7

S 6=91知??

???

a 1(1+q )=7,

a 1(1-q 6)1-q

=91,

∴a 1(1+q )(1-q )(1+q 2+q 4)1-q

=91,

∴q 4+q 2-12=0, ∴q 2=3,

∴S 4=a 1(1-q 4)1-q

=a 1(1+q)(1+q 2)

=7×(1+3)=28. ∴S 4=28.

法二:∵{a n }为等比数列,

∴S 2,S 4-S 2,S 6-S 4也为等比数列, 即7,S 4-7,91-S 4成等比数列,

∴(S 4-7)2=7(91-S 4).解得S 4=28或-21. ∵S 4=a 1+a 2+a 3+a 4=a 1+a 2+a 1q 2+a 2q 2 =(a 1+a 2)(1+q 2)=S 2(1+q 2)>S 2, ∴S 4=28.

错位相减求和问题

【例3】 求数列1,3a,5a 2,7a 3,…,(2n -1)a n -

1的前n 项和.

思路点拨:分析通项公式的结构特征,一个因式2n -1,另一个因式a n -1,联想推导等比数列前n 项公式的方法,即错位相减法求和.

解:当a =1时,数列变为1,3,5,7,…,(2n -1)

则S n =n[1+(2n -1)]

2

=n 2,当a ≠1时,有

S n =1+3a +5a 2+7a 3+…+(2n -1)a n -

1① aS n =a +3a 2+5a 3+7a 4+…+(2n -1)a n ②

①-②得:S n -aS n =1+2a +2a 2+2a 3+…+2a n -

1-(2n -1)a n

(1-a)S n =1-(2n -1)a n +2(a +a 2+a 3+a 4+…+a n -

1)

=1-(2n -1)a n

+2·a (1-a n -

1)1-a

=1-(2n -1)a n +2(a -a n

)1-a

又1-a ≠0,∴S n =1-(2n -1)a n 1-a +2(a -a n )

(1-a )2

.

当a =1时,S n =n 2

当a ≠1时,S n =1-(2n -1)a n 1-a +2(a -a n )

(1-a )2

(1)一般地,如果数列{a n }是等差数列,{b n }是等比数列且公比为q ,求数列

{a n ·b n }的前n 项和时,可采用这一思路和方法.要善于识别题目类型,特别是当等比数列部分中公比是负数的情形更值得注意.

(2)在写出“S n ”与“qS n ”的表达式时,应特别注意将两式“错项对齐”.以便于下一步准

备写出“S n-qS n”的表达式.

(3)应用等比数列求和公式必须注意公比q≠1这一前提条件,如果不能确定公比q是否为1,应分两种情况讨论,这在以前高考中经常考查.

变式训练31:求1+2x2+3x4+…+10x18的和

解:当x=±1时,数列变为1,2,3,4, (10)

所以S10=10(1+10)

2=55,

当x≠±1时,

S10=1+2x2+3x4+…+10x18,①

x2S10=x2+2x4+3x6+…+9x18+10x20,②(1-x2)S10=1+x2+x4+…+x18-10x20

=1-10x20+(x2+x4+ (x18)

=1-10x20+x2(1-x18) 1-x2

又x2≠±1,∴S10=1-10x20

1-x2

x2-x20

(1-x2)2

.

综上可得,当x≠±1时,S10=1-10x20

1-x2

x2-x20

(1-x2)2

,当x=±1时,S10=55.

等比数列前n项和的实际应用

【例4】某同学若将每月省下的零花钱5元在月末存入银行,月利按复利计算,月利为0.2%,每够一年就将一年的本和利改存为年利按复利计算,年利为6%,问三年取出本利共多少元(结果保留到个位)?

思路点拨:解答本题可先建立数学模型用数列知识求解后再回

解:为了便于思考一年内每月的存款的本金和利息的和按月分开算.

第一年内的本息和可分为:

第一个月:5(1+0.2%)11,第二个月:5(1+0.2%)10,…,

第十二个月:5.

那么,第一年的本息和为

5(1+0.2%)11+5(1+0.2%)10+…+5=5×1.00212-1

0.002.

于是三年后取出时第一年所存钱的本息和为

5×1.00212-1

0.002(1+6%)

2.

同理第二年所存钱在最后取时本息和为

5×1.00212-1

0.002×(1+6%).

第三年所存钱在年底取出时的本息和为5×1.00212-1

0.002.

∵每月存5元,月利为0.2%,年利为6%,∴三年后取出的本息和为

5×1.00212-1

0.002(1+6%)

2+5×

1.00212-1

0.002(1+6%)+5×

1.00212-1

0.002=5×

1.00212-1

0.002

×1.063-1

1.06-1

≈193(元).

∴三年后取出的本利共193元.

(1)“零存整取”的计算

“零存整取”是单利计算,属于等差数列求和问题.其本利和为S=P(1+nr),其中P

代表本金,n代表存期,r代表利率,S代表本金与利息和,简称本利和.

(2)“定期自动转存”的计算

“定期自动转存”是复利计算,属于等比数列求通项问题,到期后的本利和为S =P(1+r)n ,其中P 代表本金,n 代表存期,r 代表利率,S 代表本利和.注意复利计算是求等比数列的第n 项,而不是求和.

(3)应用数列知识解决实际问题的步骤

①根据实际问题提取数据;②建立数据关系,对提取的数据进行分析、归纳,建立数列的通项公式或递推关系;③检验关系是否符合实际,符合实际可以使用,不符合要修改关系;④利用合理的结论对实际问题展开讨论.

变式训练41:从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发

展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少1

5

,本年度当地

旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后旅游业收入每年

会比上年增加1

4

.

(1)设n 年内(本年度为第1年)总投入S n 万元,旅游业总收入为T n 万元,写出S n 、T n 的表达式;

(2)第几年旅游业的总收入才能首次超过总投入?

解:(1)第1年投入800万元,第2年投入800×(1-1

5

)万元,…,第n 年投入800×(1

-15)n -1万元.所以,n 年内的总投入S n =800+800×(1-15)+…+800×(1-15)n -

1=4000×[1-(4

5

)n ]. 第1年旅游业收入为400万元,第2年旅游业收入为400×(1+1

4

)万元,…,第n 年旅

游业收入为400×(1+14)n -1万元.所以,n 年内的总收入T n =400+400×(1+1

4

)+…+400×(1

+14)n -1=1600×[(5

4

)n -1]. (2)设至少经过n 年旅游业的总收入才能超过总投入,因此T n -S n >0,即

1600×[(54)n -1]-4000×[1-(45)n ]>0,化简得5×(45)n +2×(5

4)n -7>0,

即(45)n <25,(4

5

)n >7(舍去). 因为n ∈N *,所以n ≥5,可得n =5.

所以,第5年旅游业的总收入才能首次超过总投入.

? 把正整数排列成如图1三角形数阵,然后擦去第偶数行中的所有奇数和第奇数行中的所有偶数,可得到如图2的三角形数阵. 现将图2中的正整数按从小到大的顺序构成一个数列,若,则 .

1

24

579 10121416 1719212325

2628303234

36

1

234

56789 10111213141516 171819202122232425 26272829303132333435

36

等比数列及其前n项和

等比数列及其前n 项和 [考纲传真] 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系. 【知识通关】 1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用 字母q 表示,定义的数学表达式为a n +1a n =q (n ∈N *,q 为非零常数). (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项?a ,G ,b 成等比数列?G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1=a m q n -m . (2)前n 项和公式: S n =??? na 1(q = 1),a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1). [常用结论] 1.在等比数列{a n }中,若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k . 2.若数列{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),???? ??1a n ,{a 2n },{a n ·b n },???? ??a n b n 仍然是等比数列. 3.等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,其中当公比为-1时,n 为偶数时除外. 【基础自测】 1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)G 为a ,b 的等比中项?G 2=ab .( ) (3)若{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( )

数列前n项和的求和公式

数列求和的基本方法和技巧 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2) 1(2) (11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11) 1() 1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6 1 12++==∑=n n n k S n k n 5、 213)]1(2 1[+==∑=n n k S n k n [例1] 已知3 log 1 log 23-=x ,求???++???+++n x x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列. [例3] 求和:13 2)12(7531--+???++++=n n x n x x x S ………………………①

[例4] 求数列 ??????,22,,26,24,2232n n 前n 项的和. 三、倒序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值 四、分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+???+++-n a a a n ,… [例7] 求数列{n(n+1)(2n+1)}的前n 项和.

等比数列求和教案

课题:等比数列的前n项和(一课时) 教材:浙江省职业学校文化课教材《数学》下册 (人民教育出版社) 一、教材分析 ●教学内容 《等比数列的前n项和》是中职数学人教版(基础模块)(下)第六章《数列》第四节的内容。是数列这一章中的一个重要内容, 就知识的应用价值上看,它是从大量数学问题和现实问题中抽象出来的一个模型,在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等,另外公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.就内容的人文价值来看,等比数列的前n项和公式的探究与推导需要学生观察、归纳、猜想、证明,这有助于培养学生的创新思维和探索精神,同时也是培养学生应用意识和数学能力的良好载体. 二、学情分析 ●知识基础:前几节课学生已学习了等差数列求和,等比数列的定义及通项公式等内容,这为过渡到本节的学习起着铺垫作用. ●认知水平与能力:高二学生具有自主探究的能力,能在教师的引导下独立、合作地解决一些问题,但从学生的思维特点看,很容易把本节内容与等差数列前n项和公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有所不同,这对学生 q 这一特殊情况,学生也往往容易忽略,尤的思维是一个突破,另外,对于1 其是在后面使用的过程中容易出错. 三、目标分析 依据教学大纲的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标: 1.教学目标

●知识与技能目标 理解用错位相减法推导等比数列前n项和公式的过程,掌握公式的特点,并在此基础上能初步应用公式解决与之有关的问题. ●过程与方法目标 通过对公式的研究过程,提高学生的建模意识及探究问题、培养学生观察、 分析的能力和协作、竞争意识。 ●情感、态度与价值目标 通过学生自主对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于 探索、敢于创新,磨练思维品质,培养学生主动探索的求知精神和团结协作精神, 感受数学的美。 2.教学重点、难点 ●重点:等比数列前n项和公式的推导及公式的简单应用. ●难点:错位相减法的生成和等比数列前n项和公式的运用. 突破难点的手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点, 激发他们的兴趣,鼓励学生大胆猜想、积极探索,并及时给予肯定;二抓知识的 切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给予 适当的提示和指导. 四、教学模式与教法、学法 根据学生的认知特点,本着学生为主体教师为主导的原则采用多元教学法,让学生至于情景中。学生动手操作实践分组讨论探究,而教师重在启发,引导。基于教学平台和数学软件让学生可观,可感,可交流的环境中轻松的学习。 五、教学过程

高中数学《等比数列的前n项和(第一课时)》教学设计

高中数学《等比数列的前n项和(第一课时)》教学设计 一.教材分析。 (1教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学(5,是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。 (2从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫。 二.学情分析。 (1学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。 (2教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强, 逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思 维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。 (3从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。 三.教学目标。

根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为: (1知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。 (2过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力. (3情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。 四.重点,难点分析。 教学重点:公式的推导、公式的特点和公式的运用。 教学难点:公式的推导方法及公式应用中q与1的关系。 五.教法与学法分析. 培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。 六.课堂设计

等比数列前n项和公式-教案

课时教案

一、复习提问 回顾等比数列定义,通项公式 (1)等比数列定义:(, (2)等比数列通项公式: (3)等差数列前n项和公式的推导方法:倒序相加法。二、问题引入: 阅读:课本“国王赏麦的故事”。 问题:如何计算 引出课题:等比数列的前n项和。 三、问题探讨: 问题:如何求等比数列的前n项和公式 回顾:等差数列的前n项和公式的推导方法。 倒序相加法。 等差数列它的前n项和是 根据等差数列的定义 (1) (2) (1)+(2)得:

探究:等比数列的前n项和公式是否能用倒序相加法推导? 学生讨论分析,得出等比数列的前n项和公式不能用倒序相加法推导。 回顾:等差数列前n项和公式的推导方法本质。 构造相同项,化繁为简。 探究:等比数列前n项和公式是否能用这种思想推导? 根据等比数列的定义: 变形: 具体: …… 学生分组讨论推导等比数列的前n项和公式,学生不难发现:由于等比数列中的每一项乘以公比都等于其后一项。 所以将这一特点应用在前n项和上。 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。 (1) (2) 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。

当q=1时, 当时, 学生经过讨论还发现了其他的推导方法,让学生课后整合自己的思路,将各自的推导过程展示在班级学习园地,同学们共享探究。 由等比数列的通项公式推出求和公式的第二种形 式: 当时, 四.知识整合: 1.等比数列的前n项和公式: 当q=1时, 当时, 2.公式特征: ⑴等比数列求和时,应考虑与两种情况。 ⑵当时,等比数列前n项和公式有两种形式,分别都 涉及四个量,四个量中“知三求一”。 ⑶等比数列通项公式结合前n项和公式涉及五个量, , 五个量中“知三求二”(方程思想)。 3.等比数列前n项和公式推导方法:错位相减法。

等比数列求和公式

等比数列求和公式 万年历2013年3月6日星期三10:43 癸巳年正月廿五设置闹钟站内搜索支持本站公益活动等比数列 等比数列的通项公式 等比数列求和公式(1) 等比数列:a (n+1)/an=q (n∈N)。 (2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m); (3) 求和公式:Sn=n*a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1) (q为比值,n为项数) (4)性质: ①若m、n、p、q∈N,且m+n=p+q,则am*an=ap*aq; ②在等比数列中,依次每k项之和仍成等比数列. ③若m、n、q∈N,且m+n=2q,则am*an=aq^2 (5) "G是a、b的等比中项""G^2=ab(G ≠0)". (6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。 等比数列 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。

(1)等比数列的通项公式是:An=A1*q^(n-1)若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。 (2)等比数列求和公式:Sn=nA1(q=1) Sn=A1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =(a1-an*q)/(1-q) =a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n) (前提:q≠1) 任意两项am,an的关系为an=am·q^(n-m) (3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。 记πn=a1·a2…an,则有π2n-1=(an)2n-1,π 2n+1=(an+1)2n+1 另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义

等比数列及其前n项和(作业)

等比数列及其前n 项和(作业) 例1: 已知等比数列{}n a 中,各项都是正数,且1a ,31 2 a ,22a 成等差数列,则 910 78 a a a a +=+( ) A .1 B .1 C .3+D .3- 【思路分析】 设公比为q ,则0q >,21a a q =,231a a q =, ∵1a ,31 2 a ,22a 成等差数列, ∴3122a a a =+,即21112a q a a q =+, 解得1q =+ 1, ∴22910787878()3a a a a q q a a a a ++===+++. 故选C . 例2: 若等比数列 {} n a 中,25112a a a ++=,58146a a a ++=,那么 2581114a a a a a ++++的值为( ) A .8 B .9 C .242 31 D . 240 41 【思路分析】 设公比为q ,则335814251125112511() a a a q a a a q a a a a a a ++++==++++,即33q =, ∴38553a a q a ==,9145527a a q a ==, 由58146a a a ++=,得5553276a a a ++=,解得56 31 a = , ∴2581114251158145242 ()()31 a a a a a a a a a a a a ++++=+++++-=. 故选C . 例3: 设{}n a 为等比数列,{}n b 为等差数列,且10b =,n n n c a b =+,若数列{} n c

的前三项为1,1,2,则{}n a 的前10项之和是 ( ) A .978 B .557 C .467 D .1 023 【思路分析】 设数列{}n a 的公比为q ,设数列{}n b 的公差为d , ∵10b =,11c =, ∴11a =, 则2a q =,23a q =,2b d =,32b d =, ∵21c =,32c =, ∴2122q d q d +=??+=? ,解得21q d =??=-?, ∴数列{}n a 的前10项之和10110(1) 1 0231a q S q -= =-.故选D . 1. 在等比数列{}n a 中,已知332a = ,前三项和39 2 S =,则公比q =( )

等比数列前n项的求和公式教学设计(1)

等比数列前n项的求和公式教学设计 一、教学内容分析 1、本节课讲述内容是职高数学基础模块二册等比数列,前n项和的公式及其应用。 2、教学重点:会判断等比数列,会用求和公式。 3、学难点:实际生活中的按结贷款每年给银行的付费的问题。知识与技能目标:在等差数列的基础上理解等比数列的慨念,会求等比数列的通项公式,前n项和的公式及应用。 过程与方法目标:引导学生学会用变化的思想和理念,搞清楚等比数列的变化规律,特别是项与项数的关系,引导推出求和公式(乘公比做差法)初步感受等比数列在生产实践中的应用。 情感态度与价值观目标:让学生初步体会事物间相互转化以及特殊到一般的辨证思想. 二、教学基本条件分析 1.学生条件:学生有较好的数学基础,在学习了等比数列慨念和通项公式基础上进行的求和公式推导与应用,学生有一定的数学运算能力,和数学理解能力,喜欢思考,乐于探究。 2.前期内容准备:围棋棋单,银行按结贷款的详细说明。在学习等差数列,等比数列慨念和通项公式的基础上进行的项数与其总和的一种函数关系,即前n项和的公式。 3.教学媒体条件:支持幻灯片展示。 三、教学过程设计

开门见山,揭示课题 引语:大家还记得前面我们学习的等差数列、等差数列前项和公式、等比数列慨念和通项公式吗?那么等比数列前n项和怎么求呀? (幻灯片展示)提出问题: 这是发生在国际象棋棋盘上的一个故事。国际象棋是印度宰相西萨·班·达依尔发明的,国王舍罕知道后非常赞赏,就把宰相达依尔召到面前,说:“老爱卿,你以自己的聪明才智发明了这种变化无穷、引人人胜的游戏,我要重重地奖赏你。那就请你在棋盘的第一个小格内赐给我1粒麦子吧。” “什么? 1粒麦子?”国王感到非常意外,惊讶地问。 “是的,陛下,1粒普通的麦子。”宰相说,“请在第二个小格内赐给我2粒,第三个小格内赐给我4粒,第四个小格8粒,第五个小格16粒,照这样下去,每一小格是前一小格的2倍。把摆满棋盘64个小格的所有麦子赏赐给你的仆人吧!” “竟是这种愿望!你不是在开玩笑吧?”国王有些生气了。宰相所要求的,不仅您所有粮仓的麦子不够,就是把全世界的麦子都给了他,也相差太远太远了。” “能这样吗?你是不是算错了?”国王怀疑地说。

等比数列的前n项和例题详细解法

等比数列的前n项和例题详细解法?例题解析 【例1】设等比数列的首项为a(a>0),公比为q(q>0),前n项和为80,其中 最大的一项为54,又它的前2n项和为6560,求a和q. 解:由S n=80,S2n=6560,故q≠1 ∵a>0,q>1,等比数列为递增数列,故前n项中最大项为an. ∴a n=aq n-1=54 ④ 将③代入①化简得a=q-1 ⑤ 由⑤,⑥联立方程组解得a=2,q=3 证∵Sn=a1+a1q+a1q2+...+a1q n-1 S2n=S n+(a1q n+a1q n+1+...+a1q2n-1)

=S n+q n(a1+a1q+...+a1q n-1)=S n+q n S n=S n(1+q n) 类似地,可得S3n=S n(1+q n+q2n) 说明本题直接运用前n项和公式去解,也很容易.上边的解法,灵活地处理了S2n、S3n与S n的关系.介绍它的用意在于让读者体会利用结合律、提取公因式等方法将某些解析式变形经常是解决数学问题的关键,并且变得好,则解法巧. 【例2】一个有穷的等比数列的首项为1,项数为偶数,其奇数项的和为85,偶数项的和为170,求这个数列的公比和项数. 分析设等比数列为{a n},公比为q,取其奇数项或偶数项所成的数列仍然是等比数列,公比为q2,首项分别为a1,a1q. 解设项数为2n(n∈N*),因为a1=1,由已知可得q≠1. 即公比为2,项数为8. 说明运用等比数列前n项和公式进行运算、推理时,对公比q要分情况讨论.有关等比数列的问题所列出的方程(组)往往有高次与指数方程,可采用两式相除的方法达到降次的目的.

(经典)讲义:等比数列及其前n项和

(经典)讲义:等比数列及其前n 项和 1.等比数列的定义 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示. 2.等比数列的通项公式 设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1. 3.等比中项 若G 2 =a ·b (ab ≠0),那么G 叫做a 与b 的等比中项. 4.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n -m ,(n ,m ∈N +). (2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k ·a l =a m ·a n . (3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ ≠0),? ???????? ?1a n ,{a 2n }, {a n ·b n },? ???????? ?a n b n 仍是等比数列. (4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n . 5.等比数列的前n 项和公式 等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , 当q =1时,S n =na 1; 当q ≠1时,S n =a 11-q n 1-q =a 1-a n q 1-q . 【注意】 6.利用错位相减法推导等比数列的前n 项和: S n =a 1+a 1q +a 1q 2+…+a 1q n -1, 同乘q 得:qS n =a 1q +a 1q 2+a 1q 3+…+a 1q n , 两式相减得(1-q )S n =a 1-a 1q n ,∴S n =a 11-q n 1-q (q ≠1). 7.1由a n +1=qa n ,q ≠0并不能立即断言{a n }为等比数列,还要验证a 1≠0. 7.2在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,

教案-《等比数列的前n项和公式》

高二数学组集体备课教案(第七周10月17日) 课题:2.5等比数列的前n 项和(两个课时) 教学目标:(1)知识目标:理解等比数列的前n 项和公式的推导方法;掌握等比数列 的前n 项和公式并能运用公式解决一些简单问题; (2)能力目标:提高学生的建模意识,体会公式探求过程中从特殊到一 般的思维方法,渗透方程思想、分类讨论思想; (3)情感目标:培养学生将数学学习放眼生活,用生活眼光看数学的思 维品质; 教学重点:(1)等比数列的前n 项和公式; (2)等比数列的前n 项和公式的应用; 教学难点:等比数列的前n 项和公式的推导; 教学方法:问题探索法及启发式讲授法 教 具:多媒体 教学过程: 一、复习提问 回顾等比数列定义,通项公式 (1)等比数列定义:q a a n n =-1(2n ≥,)0≠q (2)等比数列通项公式: ) 0,(111≠=-q a q a a n n (3)等差数列前n 项和公式的推导方法:倒序相加法。 二、问题引入: 阅读:课本第55页“国王赏麦的故事”。 问题:如何计算 引出课题:等比数列的前n 项和。 三、问题探讨: 问题:如何求等比数列{}n a 的前n 项和公式 =n S 123n a a a a ++++ 22111111--=+++++ n n a a q a q a q a q 2363 6412222S =+++++

倒序相加法。 等差数列 n a a a a ,,321+它的前n 项和是=n S n a a a a +++321 根据等差数列的定义1+-=n n a a d []1111()(2)(n-1)=+++++++ n S a a d a d a d (1) []()(2)-(n-1)=+-+-++ n n n n n S a a d a d a d (2) (1)+(2)得:12()=+n n S n a a 1()2 += n n n a a S 探究:等比数列的前n 项和公式是否能用倒序相加法推导? =n S 123n a a a a ++++ 22111111--=+++++ n n a a q a q a q a q 221 --=+++++ n n n n n n n n a a a a S a q q q q 学生讨论分析,得出等比数列的前n 项和公式不能用倒序相加法推导。 回顾:等差数列前n 项和公式的推导方法本质。 构造相同项,化繁为简。 探究:等比数列前n 项和公式是否能用这种思想推导? 根据等比数列的定义: 1 )(++=∈n n a q n N a 变形:1+=n n a q a 具体:12=a q a 23=a q a 34=a q a …… 学生分组讨论推导等比数列的前n 项和公式,学生不难发现: 由于等比数列中的每一项乘以公比q 都等于其后一项。 所以将这一特点应用在前n 项和上。 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。 22111111n n n S a a q a q a q a q --=+++++ (1) 23111111-= +++++ n n n qS a q a q a q a q a q (2) 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。

等比数列及其前n项和(讲义)

等比数列及其前n 项和(讲义) 知识点睛 一、等比数列 1. 等比数列的概念 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (0)q ≠表示. (1)等比中项 (2)等比数列的通项公式:11n n a a q -=. 2. 等比数列的性质 (1)通项公式的推广:*(),n m n m a a q m n N -=∈. (2)若{}n a 是等比数列,且*(),,,k l m n k l m n N +=+∈, 则k l m n a a a a =??. (3)若{}n a 是等比数列,则k a ,k m a +,2k m a +,…*(),k m N ∈组成公比为m q 的等比数列. (4)若{}n a 是等比数列,则{}n a λ,{}||n a ,1{}n a ,{}2 n a 也是等比数列. (5)若{}n a ,{}n b 是等比数列,则{}n n a b ?,{ }n n a b 也是等比数列. (6)当数列{}n a 是各项均为正数的等比数列时, 数列{}lg n a 是公差为lg q 的等差数列. 二、 等比数列的前n 项和公式 1. 对于等比数列 1a ,2a ,3a ,…,n a ,…

当1q ≠时, 它的前n 项和的公式为1(1) 1n n a q S q -=-或11n n a a q S q -=-. 当1q =时, 它的前n 项和的公式为1n S na =. 推导过程:错位相减法 2. 等比数列各项和的性质 (1)若m S ,2m S ,3m S 分别是等比数列{}n a 的前m 项,前2m 项,前3m 项的和,则m S ,2m m S S -,32m m S S -成等比数列,其公比为m q . (2)等比数列的单调性 ①当101a q >??>?或10 01a q ??<?时,{}n a 是递减数列; ③当101a q ≠??=?时,{}n a 是常数列; ④当0q <时,{}n a 是摆动数列. 精讲精练 1. 设{}n a 为等比数列,且4652a a a =-,则公比是( ) A .0 B .1或-2 C .-1或2 D .-1或-2

等比数列前n项和公式

数列 等比数列前n项和公式 ■(2015甘肃省白银市会宁二中高考数学模拟,等比数列前n项和公式,选择题,理3)公比不为1等比数列{a n}的前n项和为S n,且-3a1,-a2,a3成等差数列,若a1=1,则S4=() A.-20 B.0 C.7 D.40 解析:设数列的公比为q(q≠1),则∵-3a1,-a2,a3成等差数列, ∴-3a1+a3=-2a2,∵a1=1,∴-3+q2+2q=0, ∵q≠1,∴q=-3.∴S4=1-3+9-27=-20.故选A. 答案:A ■(2015甘肃省兰州市七里河区一中数学模拟,等比数列前n项和公式,选择题,理11)已知函数y=x3在x=a k时的切线和x轴交于a k+1,若a1=1,则数列{a n}的前n项和为() A.n B. - C.3- D.3- - 解析:∵函数y=x3,∴y'=3x2,∴- - =3, 即 - =3, 化简,得3a k+1=2a k,即, 又∵a1=1,∴S n=- - =3- - ,故选D. 答案:D ■(2015甘肃省白银市会宁二中高考数学模拟,数列与不等式相结合问题,填空题,理16)已知数列{a n}的前n项和为S n,且S n+1=2a n,则使不等式+…+<5×2n+1成立的n的最大值为.解析:当n=1时,a1+1=2a1,解得a1=1. 当n≥2时,∵S n+1=2a n,S n-1+1=2a n-1, ∴a n=2(a n-a n-1),∴ - =2. ∴数列{a n}是以1为首项,2为公比的等比数列. ∴a n=2n-1,∴=4n-1. ∴+…+ =1+4+42+…+4n-1=- - (4n-1). ∴(4n-1)<5×2n+1. ∴2n(2n-30)<1,可知使得此不等式成立的n的最大值为4. 答案:4 专题2数列与函数相结合 问题 1

等比数列的前n项和(教学设计)

等比数列的前n项和 (第一课时) 一.教材分析。 (1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学(5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。 (2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫。 二.学情分析。 (1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。 (2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强, 逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。 (3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。 三.教学目标。 根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为: (1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。 (2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维

等比数列的求和公式

等比数列的求和公式 一、 基本概念和公式 等比数列的求和公式: q q a n --1)1(1 (1≠q ) q q a a n --11(1≠q ) n S = 或 n S = 1na (q = 1) 即如果q 是否等于1不确定则需 要对q=1或1≠q 推导性质:如果等差数列由奇数项,则S 奇-S 偶=a 中 ;如果等差数列由奇数项,则S 偶-S 奇= d n 2 。 二、 例题精选: 例1:已知数列{n a }满足:43,911=+=+n n a a a ,求该数列的通项n a 。 例2:在等比数列{n a }中,36,463==S S ,则公比q = 。 - 例3:(1)等比数列{n a }中,91,762==S S ,则4S = ; (2)若126,128,66121===+-n n n S a a a a ,则n= 。

例4:正项的等比数列{n a }的前n 项和为80,其中数值最大的项为54,前2n 项的和为6560,求数列的首项1a 和公比q 。 例5:已知数列{n a }的前n 项和n S =1-n a ,(a 是不为0的常数),那么数列{n a }是? 例6:设等比数列{n a }的前n 项和为n S ,若9632S S S =+,求数列的公比q 。 例7:求和:)()3()2()1(32n a a a a n ----+-+-+-。 例8:在 n 1和n+1之间插入n 个正数,使这n+2个数成等比数列,求插入的n 个数的积。 例9:对于数列{n a },若----------,,,,,123121n n a a a a a a a 是首项为1,公比为31的等比数列,求:(1) n a ;(2) n a a a a +---+++321。

等比数列及其前n项和考点与题型归纳

等比数列及其前n 项和考点与题型归纳 一、基础知识 1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1 a n =q . (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项?a ,G ,b 成等比数列?G 2=ab . 只有当两个数同号且不为0时,才有等比中项,且等比中项有两个. 2.等比数列的有关公式 (1)通项公式:a n =a 1q n - 1. (2)前n 项和公式:S n =???? ? na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1. 3.等比数列与指数型函数的关系 当q >0且q ≠1时,a n =a 1 q ·q n 可以看成函数y =cq x ,其是一个不为0的常数与指数函数 的乘积,因此数列{a n }各项所对应的点都在函数y =cq x 的图象上; 对于非常数列的等比数列{a n }的前n 项和S n =a 1(1-q n )1-q =-a 11-q q n +a 11-q ,若设a =a 1 1-q , 则S n =-aq n +a (a ≠0,q ≠0,q ≠1).由此可知,数列{S n }的图象是函数y =-aq x +a 图象上一系列孤立的点. 对于常数列的等比数列,即q =1时,因为a 1≠0,所以S n =na 1.由此可知,数列{S n }的图象是函数y =a 1x 图象上一系列孤立的点. 二、常用结论汇总——规律多一点 设数列{a n }是等比数列,S n 是其前n 项和. (1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *). (2)若m +n =p +q ,则a m a n =a p a q ;若2s =p +r ,则a p a r =a 2s ,其中m ,n ,p ,q ,s ,r ∈N *. (3)a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m (k ,m ∈N *).

等比数列及其前n项和 练习题

等比数列及其前n 项和 [A 级 基础题——基稳才能楼高] 1.(2019·榆林名校联考)在等比数列{a n }中,a 1=1,a 3=2,则a 7=( ) A .-8 B .8 C .8或-8 D .16或-16 解析:选B 设等比数列{a n }的公比为q ,∵a 1=1,a 3=2,∴q 2=2,∴a 7=a 3q 4=2×22 =8.故选B. 2.(2019·六安一中调研)已知1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则 a 1+a 2 b 2 的值是( ) A.52或-52 B .-52 C.52 D .12 解析:选C 由题意得a 1+a 2=5,b 2 2=4,又b 2与第一项的符号相同,所以b 2=2.所以 a 1+a 2 b 2=5 2 .故选C. 3.(2019·湖北稳派教育联考)在各项均为正数的等比数列{a n }中,若a 5a 11=4,a 6a 12 =8,则a 8a 9=( ) A .12 B .4 2 C .6 2 D .32 解析:选B 由等比数列的性质得a 28=a 5a 11=4,a 29=a 6a 12=8,∵a n >0,∴a 8=2,a 9 =22,∴a 8a 9=4 2.故选B. 4.(2019·成都模拟)设{a n }是公比为负数的等比数列,a 1=2,a 3-4=a 2,则a 3=( ) A .2 B .-2 C .8 D .-8 解析:选A 法一:设等比数列{a n }的公比为q ,因为a 1=2,a 3-a 2=a 1(q 2-q )=4,所以q 2-q =2,解得q =2(舍去)或q =-1,所以a 3=a 1q 2=2,故选A. 法二:若a 3=2,则a 2=2-4=-2,此时q =-1,符合题意,故选A. 5.(2019·益阳、湘潭高三调研)已知等比数列{a n }中,a 5=3,a 4a 7=45,则a 7-a 9 a 5-a 7 的值为( )

§2.5等比数列前n项和公式教学设计

§2.5等比数列前n项和公式教学设计 一、教材分析 1、教学内容:《等比数列的前n项和》是高中数学人教版《必修5》第二章《数列》第5节的内容,教学大纲安排本节内容授课时间为两课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导过程并充分揭示公式的结构特征、内在联系及公式的简单应用. 2、教材分析:《等比数列的前n项和》是数列这一章中的一个重要内容,就知识的应用价值上看,它是从大量数学问题和现实问题中抽象出来的一个模型,在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等,另外公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.就内容的人文价值来看,等比数列的前n项和公式的探究与推导需要学生观察、归纳、证明,这有助于培养学生的创新思维和探索精神,同时也是培养学生应用意识和数学能力的良好载体. 二、学情分析 1、知识基础:前几节课学生已学习了等差数列求和,等比数列的定义及通项公式等内容,这为过渡到本节的学习起着铺垫作用. 2、认知水平与能力:高一学生初步具有自主探究的能力,能在教师的引导下独立、合作地解决一些问题,但从学生的思维特点看,很容易把本节内容与等差数列前n项和公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有所不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生也往往容易忽略,尤其是在后面使用的过程中容易出错. 3、任教班级学生特点:我班学生基础知识还行、思维较活跃,应该能在教师的引导下独立、合作地解决一些问题. 三、目标分析 教学目标 依据教学大纲的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标: 1.知识与技能 理解用错位相减法推导等比数列前n项和公式的过程,掌握公式的特点,并在此基础上能简单的应用公式. 2.过程与方法 在推导公式的过程中渗透类比,方程,特殊到一般的数学思想、方法,优化学生思维品质.

(教案)等比数列的前n项和公式

《等比数列的前n项和公式》的教案 教学目标 1、认知目标:理解并掌握等比数列的前n项和公式及证明方法;熟练掌握运用等比数列的前 n项和公式求和。 2、素质目标:向学生渗透特殊到一般、类比与转化、分类与讨论等数学思想。培养学生数学 思维的深刻性、广阔性等思维品质。 3、情感目标:培养学生热爱科学、热爱自然的良好品质,激发学生的学习兴趣。 重点、难点 重点:等比数列前n项和公式及初步应用 难点:等比数列前n项和公式的推导方法。 教学方法 本节课采用“多媒体优化组合一激励一发现”式教学模式进行教学。 教学手段 教学中,利用投影仪、微机这些现代化教学媒体来激发学生的学习兴趣,启迪学生思维,增强课堂容量,提高课堂效益。 教学过程 1、课题的引入(微机演示) 引例:某建筑队,由于资金短缺,向某砖厂借砖盖房,双方约泄,在一个月(30天)内,每天砖厂向建筑队提供10000块砖,为了还本付息,建筑队第一天要向厂方返还一块砖, 第二天返还2块砖,第三天返还4块砖,……。即每天返还的砖是前一天的2倍,请问,假如你是厂长或建筑队长,你会在这个合约上签字吗? 分析:(建立数学模型) 对于有30项每一项都是10000常数列,英和就是30X 10000. 而对于首项为1、公比为2、有30项的等比数列来说,这30项的和怎么计算?有没有具体的计算公式呢? 回答是肯定的一一即等比数列的前n项和公式。 2、公式的推导(多媒体演示) 提问:什么是一个数列的前n项和公式?等差数列的前n项和公式是怎样推导的? (微机演示) 设等比数列{a』的首项是a 公比是q,记 s n=ai+aiq+aiq2+ ........ +aiq nU

常用的一些求和公式

下面是常用的一些求和公式:

a1, a1+d, a1+2d, a1+3d, .... (d为常数) 称为公差为d的等差数列.与等差数列相应的级数称为等差级数,又称算术级数. 通项公式 前n项和 等差中项 a1, a1q, a1q2, a1q3....,(q为常数) 称为公比为q的等比数列.与等比数列相应的级数称为等比级数,又称几何级数. 通项公式 前n项和 等比中项

无穷递减等比级数的和 更多地了解数列与级数:等差数列与等差级数(算术级数) 等比数列 等比数列的通项公式 等比数列求和公式 (1) 等比数列:a (n+1)/an=q (n∈N)。 (2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m); (3) 求和公式:Sn=n*a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1) (q为比值,n为项数) (4)性质: ①若m、n、p、q∈N,且m+n=p+q,则am*an=ap*aq; ②在等比数列中,依次每k项之和仍成等比数列. ③若m、n、q∈N,且m+n=2q,则am*an=aq^2 (5) "G是a、b的等比中项""G^2=ab(G ≠ 0)". (6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。 等比数列 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。 (1)等比数列的通项公式是:An=A1*q^(n-1) 若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。

相关文档
最新文档