厌氧及水解调试

厌氧及水解调试
厌氧及水解调试

厌氧生物处理、调试、运行指导手册

1、目的:本手册用于厌氧生物降解工艺单元的运行管理。

2、内容及对象:手册包括有以下7个内容:即:

厌氧生物反应概述;厌氧技术优势和不足;反应机理;厌氧反应器类型;厌氧反应器工艺控制条件;启动方式;运行管理;问题及解决措施;手册适用于厌氧反应器操作人员、污水站技工、化验人员和管理人员,亦可供相关人员参考。

3、厌氧反应概述:

利用微生物生命过程中的代谢活动,将有机物分解为简单无机物,从而去除水中有机物污染的过程,称为废水的生物处理。根据代谢过程对氧的需求,微生物又分为好氧、厌氧和介于两者间的兼性微生物。厌氧生物处理就是利用厌氧微生物的代谢过程,在无需提供氧的情况下,把有机物转化为无机物和少量的细胞物质,这些无机物包括大量的生物气(即沼气)和水。

厌氧是一种低成本废水处理技术,把废水治理和能源相结合,特别适合发展中国家使用。

4、厌气处理技术的优势和不足:

优势:

4.1可作为环境保护、能源回收和生态良性循环结合系统的技术,具有良好的社会、经济、环境效益。

4.2耗能少,运行费低,对中等以上(1500mg/L)浓度废水费用仅为好氧工艺1/3.

4.3回收能源,理论上讲1kgCOD可产生纯甲烷0.35m3,燃值(3.93×10-1J/m3),高于天然气(3.93×10-1J/m3)。以日排10t COD工厂为例,按COD 去除80%,甲烷为理论值80%计算,日产沼气2240m3,相当于2500m3天然气或3.85t煤,可发电5400Kwh.

4.4设备负荷高、占地少。

4.5剩余污泥少,仅相当于好氧工艺1/6~1/10.

4.6对N、P等营养物需求低,好氧工艺要求C:N:P=100:5:1,厌氧工艺为C:N:P=(350-500):5:1。

4.7可直接处理高浓有机废水,不需稀释。

4.8厌氧菌可在中止供水和营养条件下,保留生物活性和沉泥性一年,适合间断和季节性运行。

4.9系统灵活,设备简单,易于制作管理,规模可大可小。

厌氧不足:

1、出水污染浓度高于好氧,一般不能达标;

2、对有毒性物质敏感;

3、初次启动缓慢,最少需8-12周以上方能转入正常水平。

5、反应机理:

厌氧反应过程是对复杂物质(指高分子有机物以悬浮物和胶体形式存在于水中)生物降解的复杂的生态系统。其反应过程可分为四个阶段:

5.1水解阶段——被细菌胞外酶分解成小分子。例如:纤维素被纤维酶水解为纤维二糖和葡萄糖,淀粉被淀粉酶分解为麦牙糖和葡萄糖,蛋白质被蛋白酶水解为短肽和氨基酸等,这些小分子的水解产物能被溶解于水,

并透过细胞为细胞所利用。

5.2发酵阶段——小分子的化合物在发酵菌(即酸化菌)的细胞内转化为更为简单的化合物,并分泌到细胞外。这一阶段主要产物为挥发性脂肪酸(VFA)醇类、乳酸、CO

、氢、氨、硫化氢等。

2

5.3产酸阶段——上一阶段产物被进一步转化为乙酸、氢、碳酸以及新的细胞物质。

5.4产甲烷阶段——在这一阶段乙酸、氢、碳酸、甲酸和甲醇等被转化为甲烷、二氧化碳和新细胞物质。原理图如下:

a、水解阶段——含有蛋白质水解、碳水化合物水解和脂类水解。

b、发酵酸化阶段——包括氨基酸和糖类的厌氧氧化,以及较高级脂肪

酸与醇类的厌氧氧化。

c、产乙酸阶段——含有从中间产物中形成乙酸和氧气,以及氢气和二

氧化碳形成乙酸。

d、产甲烷阶段——包括从乙酸形成甲烷,以及从氧、二氧化碳形成甲

烷。废水中有硫酸盐时,还会有硫酸盐还原过程,如虚线所示。6、厌氧反应器类型:

6.1普通厌氧反应池

6.2厌氧接触工艺

6.3升流厌氧污泥库(UASB)反应器

6.4厌氧颗粒污泥膨胀库(EGSR)

6.5厌氧滤料(AF)

6.6厌氧流化库反应器

6.7厌氧折流反应器(ABR)

6.8厌氧生物转盘

6.9厌氧混台反应器等.

7、厌氧反应的工艺控制条件:

7.1温度:按三种不同嗜温厌氧菌(嗜温5-20℃嗜温20-42℃嗜温42-75℃)工程上分为低温厌氧(15-20℃)、中温厌氧(30-35℃)、高温厌氧(50-55℃)三种。温度对厌氧反应尤为重要,当温度低于最优下限温度时,每下降1℃,效率下降11%。在上述范围,温度在1-3℃的微小波动,对厌氧反应影响不明显,但温度变化过大(急速变化),则会使污泥活力下降,度产生酸积累等问题。

7.2 PH:厌氧水解酸化工艺,对PH要求范围较松,即产酸菌的PH应控制4-7℃范围内;完全厌氧反应则应严格控制PH,即产甲烷反应控制范围

6.5-8.0,最佳范围为6.8-

7.2,PH低于6.3或高于7.8,甲烷化速降低。

7.3氧化还原电位:水解阶段氧化还原电位为-100~+100mv,产甲烷阶段的最优氧化还原电位为-150~-400mv。因此,应控制进水带入的氧的含量,不能因以对厌氧反应器造成不利影响。

7.4营养物:厌氧反应池营养物比例为C:N:P=(350-500):5:1。

7.5有毒有害物:抑制和影响厌氧反应的有害物有三种:

7.5.1无机物:有氨、无机硫化物、盐类、重金属等,特别硫酸盐和硫化物抑制作用最为严重;

7.5.2有机化合物:非极性有机化合物,含挥发性脂肪酸(VFA)、非极性酚化合物、单宁类化合物、芬香族氨基酸、焦糖化合物等五类。

7.5.3生物异型化合物,含氯化烃、甲醛、氰化物、洗涤剂、抗菌素等。

7.6工艺技术参数:

7.6.1水力停留时间:HRT

7.6.2有机负荷

7.6.3污泥负荷

8、厌氧反应器启动:

8.1接种污泥:有颗粒污泥时,接种污泥数量大小10-15%.当没有现成的污泥时,应用最多的是污水处理厂污泥池的消化污泥.稠的消化污泥有利于颗粒污泥形成。没有消化污泥和颗粒污泥时,化粪池污泥、新鲜牛粪、猪粪及其它家畜粪便都可利用作菌种,,也可用腐败污泥和鱼塘底泥作接

种污泥,但启动周期较长。

污泥接种浓度至少不低10Kg·VSS/m3反应器容积,但接种污泥填充量不大于反应器容积60%。污泥接种中应防止无机污泥、砂以及不可消化的其它物进入厌氧反应器内。

8.2接种污泥启动:启动分以下三个阶段进行:

1、起始阶段——反应池负荷从0.5-1.0kgCOD/m3d或污泥负荷0.05-0.1kgCOD/kgVSS·d开始。进入厌氧池消化降解废水的混合液浓度不大于COD5000mg/L,并按要求控制进水,最低的COD负荷为1000mg/L。进液浓度不符合应进行稀释。

进液时不要刻意严格控制所有工艺参数,但应特别注意乙酸浓度,应保持在1000mg/L以下。进液采用间断冲击形式,即每3~4小时一次,每次5-10min,之后逐步减断间隔时间至1小时,每次进液时间逐步增长20~30min。起始阶段,进水间隔时间过长时,则应每隔1小时开动泵对污泥搅拌一次,每次3~5min。

2、启动第二阶段——当反应器容积负荷上升到2-5kgCOD/m3d时,这一阶段洗出污泥量增大,颗粒污泥开始产生。一般讲,从第一段到第二段要40d时间,此时容积负荷大约为设计负荷的50%。

3、启动的第三阶段——从容积负荷50%上升到100%,采用逐步增加进料数量和缩短进料间断时间来实现。衡量能否获进料量和缩短进料时间的化验指标定控制发挥性脂肪酸VFA不大于500mg/L,当VFA超过500-1000mg/L,厌氧反应器呈现酸化状态,超过1000mg/L则表明已经酸化,需立即采取措施停止进料,进行菌种驯化。一般来讲第二段到第三段

也需30-40d时间。

8.3启动的要点

1、启动一定要逐步进行,留有充裕的时间,并不能期望很短时间进入加料运行达到厌氧降解的目标。因为启动实际上是使细菌从休眠状态恢复,即活化的过程。启动中细菌选择、驯化、增殖过程都在进行,原厌氧污泥中浓度较低的甲烷菌的增长速度相对于产酸菌要慢的多。因此,这时负荷一般不能高,时间不能短,每次进料要少,间隔时间要长。

2、混合进液浓度一定要控制在较低水平,一般COD浓度为1000-5000mg/L,当超过5000mg/L,应进行出水循环和加水稀释至要求。

3、若混合液中亚硫酸盐浓度大于200mg/L时,则亦应稀释至100mg/L 以下才能进液。

4、负荷增加操作方式:启动初期容积负荷可从0.2-0.5kgCOD/m3·d开始,当生物降解能力达到80%以上时,再逐步加大。若最低负荷进料,厌氧过程仍不正常COD不能消化,则进料间断时间应延长24h或2-3d,检查消化降解的主要指标测量VFA浓度,启动阶段VFA应保持在3mmoL/L以下。

5、当容积负荷走到2.0kgCOD/m3d后,每次进料负荷可增大,但最大不超过20%,只有当进料增大,而VFA浓度且维持不变,或仍维持在﹤3mmoL/L 水平时,进料量才能不断增大进液间隔才能不断减少。

9、厌氧生物处理中存在的问题及解决方法

厌氧调试如何控制酸败

l 我觉得接种阶段,投加污泥和原液后,回流2~3天是不是比静止浸泡好一点。

我的做法一般是按20g/L接种后(接种前UASB内添加1/3的浓度配置好PH等调节好的原液),污泥投加完成后加原液注满厌氧池,接种完成后开回流泵回流,回流过程中注意监测进水温度、PH值等,保持在自己要求的范围内。回流过程中定期监测(一般为1天2次)回流水的COD,挥发酸等参数,当挥发酸降到300以下,cod降到700以下(根据现场情况,也可以是其他数值),按进水负荷0.5公斤启动(同时开回流泵回流比1:1),根据出水情况一般每3~5天提一次负荷,每次大约0.5公斤。调试中后期,因污泥活性提高,可以提高加负荷幅度

还有一种提负荷方法,就是每次提高原负荷的20%,提负荷频次视现场情况而定一般3~5天一次。

有一段关于"培养驯化"的内容,不知有用不:

(1)污泥:城市污水处理厂脱水污泥;

(2)加入方法:在酸化池中用水化开,用泵泵入UASB.

(3)污泥数量:20kg/m^3.

郎酒厌氧EGSB调试方案(1).

四川古蔺二郎污水厂EGSB厌氧系统 调试方案 苏州科特环保设备有限公司 2012年5月 一、目的

用于厌氧生物降解工艺单元的调试。 二、背景 由于郎酒的高速发展,产能的扩大,导致生产排污量的增加,并且国家出台了专门的《发酵酒精和白酒工业水污染物排放标准》,对于白酒行业污染物排放要求更加严格,公司现有污水处理设施老化,工艺落后,已不能满足污水达标排放的要求,现阶段的污水处理设施主要处理工业污水,只处理少量的生活污水,所以迫切需要建立大型厂镇联合污水处理厂。 二郎污水处理厂将处理二郎镇现有的生活污水和郎酒厂的工业废水。本工程二郎镇的污水处理与沼气回收利用结合在一起,总体上改善当地的生态环境。 三、加泥方案 菌种投加时间是一较为长期的工作,是根据来水水质、水量确定投加量的一个过程。在调试初期过程中,准备先将菌种投加到1#厌氧罐中,通过对1#罐的调试及驯化,培养大量适应强的菌种,同时再根据水质水量向其他罐体投加菌种。 接种菌种类型:厌氧消化污泥 菌种含水率:75~80% 菌种污泥消化时间:28~30天

厌氧菌种表面菌体(高倍电子显微照片) 方案一:采用干式加泥法 采用运泥车、吊车和人工结合的方式,泥车载重20t,用人工背到吊车的泥斗中,然后用吊车吊到厌氧平台上,再倒入到厌氧罐里面,一天需配合人工6人能。这种方式是安全,操作时间短,但是费用较高。 方案二:湿式加泥法(1) 采用泥车、加泥箱与潜水泵联合的方式。在泥车道现场后,将泥用人工背到一个临时的6m3左右的加泥箱内,加清水来稀释,为了保证泥水混合物能够顺利到达罐顶,就配水和泥的比例大概在1:1,然后用潜污泵抽上去,所需设备有扬程在25m潜污泵。这种方式操作较繁杂,但是节省费用,一车泥一天需要配工人6人。 方案三:湿式加泥法(2) 根据现场的条件,在泥车到现场后,用人工将泥被到集泥池中,然后加水稀释,利用污泥回流管道将污泥回流到厌氧罐中。这种加泥方式操作方便简单,但是会后现场条件的限制,一车泥一天需要配备6个工人运泥。 根据以上方案比较,我方计划采用方案二,同时就现场情况以方案一及方案二作为备用方案使用。 四、EGSB厌氧调试 1、调试条件 (1)构筑物全部施工完成; (2)设备安装完成; (3)电气安装完成; (4)管道安装完成;

水解酸化与厌氧- 好氧工艺及两相厌氧处理的比较

水解酸化与厌氧- 好氧工艺及两相厌氧处理的比较根据有机物在厌氧处理中所要求达到的分解程度,可将其分为两种类型,即酸发酵(水解酸化)和甲烷发酵。前者以有机酸为主要发酵产物,而后者则以甲烷为主要发酵产物。酸发酵是一种不彻底的有机物厌氧转化过程,其作用在于使复杂的不溶性高分子有机物经过水解和产酸,转化为溶解性的简单低分子有机物,为后续厌氧处理中产乙酸产氢和产甲烷微生物或好氧处理准备易于氧化分解的有机底物(即提高废水的BOD5 / COD ,改善废水的可生化性)。因而,它常作为生物预处理工序或厌氧-好氧联合生化处理工艺中的前处理工序。 厌氧-好氧工艺是中、高浓度有机废水处理的适宜工艺。这是因为: 1.厌氧法多适用于高浓度有机废水的处理,能有效地降解好氧法不能去除的有机物,具有抗冲击负荷能力强的优点,但其出水综合的指标往往不能达到处理要求; 2.厌氧法能耗低和运行费便宜,尤其在高浓度有机废水时,厌氧法要比好氧法经济得多; 3.好氧法则多适用于中低浓度有机废水的处理,对于高浓度且水质、水量不稳定的废水的耐冲击负荷能力不如厌氧法,尤其当进水中含有高分子复杂有机物时,其处理效果往往受到严重的影响。厌氧-好氧联合处理工艺可大大改善水质及运行的稳定性,但由于厌氧段实现了甲烷过程,因而对运行条件和操作要求较为严格,同时因原水中大量易于降解的有机物质在厌氧处理中被甲烷化后,剩余的有机物主要为难生物降解和厌氧消化的剩余产物,因而尽管其后续的好氧处理进水负荷得到大大降低,但处理效率仍较低。此外,该工艺须考虑复杂的气体回收利用设施,从而增加基建费用。而水解酸化工艺则将厌氧处理控制在产酸阶段,不仅降低了对环境条件(如温度、p H、DO等)的要求,使厌氧段所需容积缩小,同时也可不考虑气体的利用系统,从而节省基建费用。由于厌氧段控制在水解酸化阶段,经水解后原水中易降解物质的减少较少,而原来难以降解的大分子物质则被转化为易生物降解的物质,从而使废水的可生化性及降解速率得到较大幅度的提高。因此,其后续好氧处理可在较短的HRT下达到较高的处理率。两相厌氧消化工艺即是将厌氧消化中的产酸相和产甲烷相分开,以便获得各自最优的运行工况。与水解酸化过程相比,其产酸段对产物的要求是不同的(以乙酸为其产物)。 水解酸化、混合厌氧和两相厌氧由于各自的作用不同、对产物要求及处理程度的不同,对各自的运行和操作要求也不同: 1. Eh不同。在混合厌氧消化系统中,由于承担水解和酸化功能的微生物与产甲烷菌共处于一个反应器中,整个反应器的氧化还原电位Eh须严格控制在- 300mV以下以满足甲烷菌的要求,因而其水解酸化菌也是在此Eh值下工作的。两

厌氧调试控制要求

厌氧调试控制要求 (1)温度:厌氧废水处理分为低温、中温和高温三类。迄今大多数厌氧废水处理系统在中温范围运行,在此范围温度每升高10℃,厌氧反应速度约增加一倍。中温工艺以30-40℃最为常见,其最佳处理温度在35-40℃间。高温工艺多在50-60℃间运行。在上述范围内,温度的微小波动(如1-3℃)对厌氧工艺不会有明显影响,但如果温度下降幅度过大(超过5℃),则由于污泥活力的降低,反应器的负荷也应当降低以防止由于过负荷引起反应器酸积累等问题,即我们常说的“酸化”,否则沼气产量会明显下降,甚至停止产生,与此同时挥发酸积累,出水pH下降,COD值升高。 注:以上所谓温度指厌氧反应器内温度 (2)pH:厌氧处理的这一pH范围是指反应器内反应区的pH,而不是进液的pH,因为废水进入反应器内,生物化学过程和稀释作用可以迅速改变进液的pH值。反应器出液的pH一般等于或接近于反应器内的pH。对pH值改变最大的影响因素是酸的形成,特别是乙酸的形成。因此含有大量溶解性碳水化合物(例如糖、淀粉)等废水进入反应器后pH将迅速降低,而己酸化的废水进入反应器后pH将上升。对于含大量蛋白质或氨基酸的废水,由于氨的形成,pH会略上升。反应器出液的pH一般会等于或接近于反应器内的pH。pH值是废水厌氧处理最重要的影响因素之一,厌氧处理中,水解菌与产酸菌对pH有较大范围的适应性,大多数这类细菌可以在pH为5.0-8.5范围生长良好,一些产酸菌在pH小于5.0时仍可生长。但通常对pH敏感的甲烷菌适宜的生长pH为6.5-7.8,这也是通常情况下厌氧处理所应控制的pH范围。我公司要求厌氧反应器内pH控制在6.8-7.2之间。 进水pH条件失常首先表现在使产甲烷作用受到抑制(表现为沼气产生量降低,出水COD值升高),即使在产酸过程中形成的有机酸不能被正常代谢降解,从而使整个消化过程各个阶段的协调平衡丧失。如果pH持续下降到5以下不仅对产甲烷菌形成毒害,对产酸菌的活动也产生抑制,进而可以使整个厌氧消化过程停滞,而对此过程的恢复将需要大量的时间和人力物力。pH值在短时间内升高过8,一般只要恢复中性,产甲烷菌就能很快恢复活性,整个厌氧处理系统也能恢复正常。 (3)有机负荷和水力停留时间:有机负荷的变化可体现为进水流量的变化和进水COD 值的变化。厌氧处理系统的正常运转取决于产酸和产甲烷速率的相对平衡,有机负荷过高,则产酸率有可能大于产甲烷的用酸率,从而造成挥发酸的积累使pH迅速下降,阻碍产甲烷阶段的正常进行,严重时可导致“酸化”。而且如果有机负荷的提高是由进水量增加而产生的,过高的水力负荷还有可能使厌氧处理系统的污泥流失率大于其增长率,进而影响整个系统的处理效率。水力停留时间对于厌氧工艺的影响主要是通过上升流速来表现出来的。一方面,较高的水流速度可以提高污水系统内进水区的扰动性,从而增加生物污泥与进水有机物之间的接触,提高有机物的去除率。另一方面,为了维持系统中能拥有足够多的污泥,上升流速又不能超过一定限值,通常采用UASB法处理废水时,为形成颗粒污泥,厌氧反应器内的上升流速一般不低于0.5m/h。 (4)悬浮物:悬浮物在反应器污泥中的积累对于UASB系统是不利的。悬浮物使污泥中细菌比例相对减少,因此污泥的活性降低。由于在一定的反应器中内能保持一定

厌氧工艺调试规程

厌氧工艺单元调试规程 1.目的 为加强污水处理工程厌氧工艺调试工作的操作规范性、安全性、合理性,并避免调试过程中误操作的产生使调试工作如期顺利完成,制订本规程。 2.适用范围 2.1本规程适用于厌氧生化工艺处理单元,工艺均为工程应用化较多的。 2.2厌氧工艺的工艺控制较严格,普通工艺控制参数各工艺均可执行,其它工艺控制参数可参照本规程所编制的执标并结合该工艺的自身特点,确定最终所执行的工艺控制参数 3.工作程序 3.1 工艺调试技术要求 调试中应严格执行操作规程,定时巡回检查设备运转状况,检测工艺控制点参数,通过化验分析、工艺条件控制、感观指标等及时掌握水处理的变化情况。 调试中应当做到如下的技术要求: 1)调试前根据设计方案、图纸、可研报告和相关说明书,认真阅读并了解整个工程项目概况。熟悉工艺单元的工艺参数、设备情况和仪器仪表、自控系统和作用原理,在调试过程中严格执行仪器仪表、设备、自控系统操作规范,保证操作的合理规范与安全性。在调试过程中对影响工艺生产正常运行的问题进行汇总,尤其对关键的设计参数、核心工艺设备进行及时沟通解决,以对后续调试起到指导作用;在条件具备的情况下,参照类似项目的工艺调试经验,指导并快速完成工艺调试。 2)试运行期间除工艺参数调整外,对于设备的运行情况也应有详细的记录,应把全部的设备状况记录在设备档案中。设备档案表格的设计与其它专业部门共同研究制定。 3)在调试阶段,工艺运行的控制、调整应以培养、驯化污泥为主,检查各工艺设备运行状况。对污水处理厂的运行切实做好控制、观察、记录和分析检验工作。对处理污水量、污泥产量、污泥处理量、药剂耗用量、生产电耗量、自来

厌氧的调试方案

厌氧的调试方案 调试具体方案 整个调试过成可分为以下几个阶段: 1、接种阶段 接种污泥取自那里的污泥,为了缩短接种时间,你也可以外运部分污泥接种。对于A/O池、接触氧化池等好氧处理池,通过调节进水负荷以及曝气量,保持池内的溶解氧在适当的范围之内,污泥浓度则通过污泥回流和污泥自身的生长,务必保持污泥浓度在3~6g/L之间,正常运行的好氧反应器中,活性污泥应为褐色的絮状污泥。 2、反应器的启动阶段 反应器的启动阶段是让污泥开始适应水质的阶段,因此该阶段COD容积负荷不宜过高,通常保持在1~3kgCOD/m3﹒d,如果有硫酸盐的存在,其PH应控制在6.8~7.2左右的样子,在这样的PH下,产酸菌和硫酸盐还原菌均有很大的活性,而产甲烷菌的活性则不会受到抑制。因此,一段时间后产甲烷菌就会成为厌氧池(如:UASB)中的优势菌种。这样就削弱了硫酸盐还原菌和产甲烷菌之间的竞争作用。对于脱硫效果的提高是非常有意义的。保持这样的负荷,当厌氧池(UASB)出水浓度和COD去除率均达到70%~80%时,或是VFA<200~300mg/L 时,反应器出水COD去除率均达到70%~80%时,或是VFA<200~300mg/L时,标志着启动阶段结束(一般来说达到50%是比较容易,要达到80%,本人估计那是不太可能的)。反应器的启动阶段是污泥开始适应污水的阶段,因此在此阶段,污泥相对比较的脆弱,所以要注意维持各个条件的稳定,尤其要注意防止污水发生酸化现象。每提高一个负荷都要严格按照COD去除率达到70%~80%,或是VFA<200~300mg/L的条件才可进行。 此阶段持续时间1个月左右,采用间歇进水的方式。 3、负荷提高阶段 当启动阶段结束后,调试即进入负荷提高阶段。 当进入负荷提高阶段以后,理论上可以发现厌氧反应器内开始会有少量颗粒污泥的形成。这时为了进一步促进颗粒污泥的形成,淘汰掉反应器内细小的絮状污泥,提高负荷是非常有必要的。负荷提高的梯度以每次4kgCOD/m3﹒d(也就是每次多进两个小时的水)左右为好,每提高一次负荷,都必须是达到COD去除率达到70%~80%,或是VFA<200~300mg/L的条件才可进行,否则,废水可能发生酸化。进水方式采用连续进水方式,控制UASB在适当的 负荷下运行。 负荷提高阶段的目的是慢慢的提高负荷以至达到连续进水时负荷,此阶段应循序渐进,持续 时间约2个月。 4、稳定运行阶段 当负荷提高阶段结束,COD容积负荷达到15~20kgCOD/m3﹒d(UASB的负荷)时,污水处理厂进入稳定运行阶段,也标志着整个调试过程的成功结束。此时,各个厌氧反应器中污泥浓度达到30kgMLSS/m3以上,COD去除率大于60%。厌氧的出水再经过好氧处理,必可达标排

水解酸化基础知识

水解酸化基本知识 水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶来完成生物催化反应。 酸化是一类典型的发酵过程,微生物的代谢产物主要是各种有机酸。 从机理上讲,水解和酸化是厌氧消化过程的两个阶段,但不同的工艺水解酸化的处理目的不同。水解酸化-好氧生物处理工艺中的水解目的主要是将原有废水中的非溶解性有机物转变为溶解性有机物,特别是工业废水,主要将其中难生物降解的有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理。考虑到后续好氧处理的能耗问题,水解主要用于低浓度难降解废水的预处理。混合厌氧消化工艺中的水解酸化的目的是为混合厌氧消化过程的甲烷发酵提供底物。而两项厌氧消化工艺中的产酸相是将混合厌氧消化中的产酸相和产甲烷相分开,以创造各自的最佳环境。 影响水解酸化过程的重要因素: PH值:水解酸化微生物对PH值变化的适应性较强,水解酸化过程可在PH值3.5-10的范围内进行,但最佳的PH是5.5-6.5 水温:研究表明,水温在10-20摄氏度之间变化时,对水解反应速度影响不大,说明参与水解的微生物对低温变化的适应性强。 底物的种类和形态:底物的种类和形态对水解酸化过程的速度有很大影响。对同类有机物来说,分子量越大,水解越困难,相应的水解速度就越小。颗粒状有机物,粒径越大,单位重量有机物的比表面积就越小,水解速度也越小。 污泥生物固体停留时间:在常规的厌氧条件下,混合厌氧消化系统中,水解酸化微生物的比增值速度高于甲烷菌,因此,当系统的生物固体停留时间较小时,甲烷菌的数量将逐渐减少,直至完全淘汰。为了保持水解微生物的活性,水解池内水解微生物浓度应该保持一个合适的浓度。这都是靠控制水解池的生物固体停留时间来完成的。 水利停留时间:对水解酸化反应器来说,水利停留时间越长,底物与水解微生物的接触时间也越长,相应的水解效率就高。 水解酸化过程的判断指标: 一个水解反应池是否发生了水解,以及水解过程进行的程度,单从出水的水质COD、BOD等的去除率来判断是不全面的。判断指标为: BOD/COD比值的变化:废水可生化性的一个重要指标。 溶解性有机物的比例变化:水解处理后,溶解性有机物比例显著增加。 有机酸(VAF)的变化:进出水VAF的相差越大,说明水解酸化的程度越好。

UASB厌氧处理技术调试经验总 结

UASB厌氧处理技术调试经验总结在废水的厌氧生物处理过程中,废水中的有机物经大量微生物的共同作用,被最终转化为甲烷、二氧化碳、水、硫化氢和氨。在此过程中,不同的微生物的代谢过程相互影响、制约,形成复杂的生态系统,此生态系统在UASB反应系统中直观表现为颗粒污泥。 有机物在废水中以悬浮物或胶体的形式存在,它们的厌氧降解过程可分为四个阶段。 (1)水解阶段,微生物利用酶将大分子切割成小分子; (2)发酵(或酸化)阶段,小分子有机物被发酵菌利用,在细胞内转化为简单的化合物,这一阶段的主要产物有挥发酸、醇类、乳酸、二氧化碳、氢气、氨和硫化氢等; (3)产乙酸阶段,此阶段中上一阶段的产物被进一步转化为乙酸等物质; (4)产甲烷阶段,在此阶段乙酸、氢气、碳酸等被转化为甲烷、二氧化碳。上述四个阶段的进行,大分子有机物被转化为无机物,水质变好,同时微生物得到了生长。 1、UASB升流式厌氧污泥床反应器 升流式厌氧污泥床反应器即UASB其基本特征是在反应器的上部设置气、固、液三相分离器,下部为污泥悬浮层区和污泥床区。污水从底部流入,向上升流至顶部流出,混合液在沉淀区进行固液分离,污泥可自行回流到污泥床区,使污泥床区保持很高的污泥浓度。从构造和功能上划分,UASB反应器主要由进水配水系统、反应区(污泥床区和污泥悬浮层区)、沉淀区、三相分离器、集气排气系统、排泥系统及出水系统和浮渣清除系统组成。其工作的基本原理为:在厌氧状态下,微生物分解有机物产生的沼气在上升过程中产生强烈的搅动,有利于颗粒污泥的形成和维持。废水均匀地进入反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床,在与污泥颗粒的接触过程中发生厌氧反应,经过反应的混合液上升流动进入三相分离器。沼气泡和附着沼气泡的污泥

《水解酸化反应器污水处理工程技术规范》

附件3 水解酸化反应器污水处理工程技术规范(征求意见稿)编制说明

项目名称:水解酸化反应器污水处理工程技术规范 项目统一编号:247-1392 项目承担单位:中国环境保护产业协会 编制组主要成员:王凯军,燕中凯,王焕升,尚光旭,刘媛,薛念涛,高志永,朱民,刘晓剑 标准所技术管理负责人:姚芝茂 技术处项目管理人:姜宏

目次 1 任务来源 (1) 2 标准制定必要性 (1) 3 主要工作过程 (1) 4 国内相关标准研究 (2) 5 同类工程现状调研 (4) 5.1 水解酸化法的反应器类型 (4) 5.2 水解酸化法应用现状 (6) 5.3 水解酸化法存在的问题 (8) 5.4 水解酸化法的发展趋势 (9) 6 主要技术内容及说明 (9) 6.1 水解酸化法的机理 (9) 6.2 水解酸化法的适用性 (10) 6.3 水量和水质 (11) 6.4 污染物去除率 (11) 6.5水解酸化法污水处理工艺流程 (12) 6.6 预处理 (12) 6.7 升流式水解反应器 (13) 6.8 复合式水解反应器 (16) 6.9 完全混合式水解反应器 (16) 6.10 后续处理 (17) 6.11 剩余污泥及处理 (17) 6.12 检测与控制 (17) 6.13 运行与维护 (18) 7 标准实施的环境效益与经济技术分析 (19) 8 标准实施建议 (19)

《水解酸化反应器污水处理工程技术规范》编制说明 1 任务来源 2009年,环境保护部下达了“关于开展2009年度国家环境保护标准制修订项目工作的通知”(环办函【2009】221号),其中提出了制定《污水厌氧生物处理工程技术规范水解酸化法》(项目编号247-1392号)行业标准的任务。 本标准主要起草单位:中国环境保护产业协会、清华大学、北京市环境保护科学研究院。 2 标准制定必要性 环境保护标准化是我国环境保护的一项重要的发展战略,建立与国际接轨的环境工程服务技术标准体系和环境技术评估体系,是当前加快环境保护标准化步伐的一项重要任务。它对于提升我国环境工程服务业的国际竞争能力,规范环境工程服务业市场,保证环境工程建设和运行管理质量,为环境管理提供技术支撑和保障具有重要意义。 环境工程服务技术标准包括工程类技术标准和产品类技术标准两大类,是环境工程立项、科研、招投标、设计、建设施工、验收、运行全过程服务的技术依据。 水解酸化法作为有效改善水质可生化性的工艺在我国污水处理工程实践中已得到广泛应用。很多管理部门、设计部门和技术研究单位,在从事水解酸化法污水处理工程的设计及运行管理工作中已经积累了一些实践经验,但是国内尚缺乏可操作的技术规范指导水解酸化法污水处理设施的建设与运行。为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》、和国家其他有关污水处理领域的法规,规范水解酸化反应器污水处理工程的规划、设计、施工、验收和运行管理,需要制定《污水厌氧生物处理工程技术规范水解酸化法》作为污水水解酸化法污水处理技术工程设计工作的指导性文件,为水解酸化法设备的施工、验收和运行管理提出相关要求。使水解酸化法污水处理设施从建设到运行全过程能有一个技术规范进行指导,对于保证水解酸化法污水处理工程的建设质量和稳定运行,以及保证环境保护主管部门的有序监管都具有重要意义。 因此,《污水厌氧生物处理工程技术规范水解酸化法》的编制是十分必要和及时的。 3 主要工作过程 2009年3月,环境保护部下达《污水厌氧生物处理工程技术规范水解酸化法》编制任务后,中国环境保护产业协会组织成立了标准编制组,编制组由中国环境保护产业协会、清华大学、北京市环境保护科学研究院等相关单位的人员组成。

水解酸化、好氧生物处理工艺1

水解-好氧生物处理工艺 目录 第一节水解(酸化)工艺与厌氧工艺 (3) 一、基本原理 (3) 二、水解-好氧工艺的开发 (4) 三、水解(酸化)工艺与厌氧发酵的区别 (5) 第三节水解-好氧生物处理工艺特点 (7) 1、水解池与厌氧UASB工艺启动方式不同 (7) 2、水解池可取代初沉池 (8) 3、较好的抗有机负荷冲击能力 (9) 4、水解过程可改变污水中有机物形态及性质,有利于后续好氧处理 (9) 5、在低温条件下仍有较好的去除效果 (10) 6、有利于好氧后处理 (10) 7、可以同时达到对剩余污泥的稳定 (11) 第四节水解-好氧生物处理工艺的机理 (11) 一、有机物形态对水解去除率的影响 (11) 二、有机物降解途径 (12) 三、水解池动态特性分析 (13) 四、难降解有机物的降解 (14) 第五节水解工艺对后续好氧工艺的影响 (19) 1、有机物含量显著减少 (19) 2、B/C比值和溶解性有机物比例显著增加 (20) 3、BOD5降解动力学 (20) 4、污泥和COD去除平衡 (21) 第六节水解工艺的污泥处理 (22) 一、传统污泥处理的目的和手段 (23) 二、污泥有机物的降解表 (24)

三、污泥脱水性能及处理 (24) 第七节水解池的启动和运行 (26) 一、水解池的启动方式 (26) 二、配水系统 (28) 三、排泥 (31) 四、负荷变化对水解池处理效果的影响 (32) 第八节水解工艺的进一步开发和应用 (33) 一、芳香类化合物的去除 (34) 二、奈的去除 (34) 三、卤代烃的去除 (34) 四、难生物降解工业废水处理的实际应用 (34) 五、高悬浮物含量废水的水解处理工艺 (35) 六、水解工艺的适用范围及要求 (36) 第九节水解-好氧工艺技术经济分析 (38) 一、厌氧处理应用的经济分析 (38) 二、水解-好氧系统设计参数 (39) 第十节水解-好氧生物处理工艺设计指南 (41) 一、预处理设施 (41) 二、水解池的详细设计要求 (41) 三、反应器的配水系统 (42) 四、管道设计 (45) 五、出水收集设备 (45) 六、排泥设备 (46)

厌氧调试报告

上海****有限公司 污水站 厌氧处理系统 调 试 报 告 调试负责人: 联系方式: 邮件: 调试时间: **环保科技有限公司 厌氧调试报告 一、项目概况 ****有限公司是一家专业从事粉末酱油、肉酱类、蔬菜粉、酱类等食品加工企业,其排放污水主要包括酱油粉生产废水及猪、牛骨素加工清洗废液,其中酱油废水酱油色素较高,猪、牛骨素废水COD较高。 ****有限公司污水站主要工艺为:调节池→厌氧罐→好氧池→好氧沉淀池→接触氧化池→养鱼池→排放。 由于污水站运行年限久远,部分工艺已无法满足污水处理要求。因此需对厌氧罐、接触

氧化池进行工艺改造,改造后工艺流程为:调节池→厌氧罐→好氧池→好氧沉淀池→臭氧接触池→接触氧化池→养鱼池→排放。 ****食品有限公司污水站厌氧处理系统包括:厌氧进水系统、厌氧污泥循环系统、高液位池、厌氧池等单元。厌氧改造前出现以下运行问题: 1、厌氧污泥循环系统已完全堵塞无法正常运行; 2、厌氧池内部部分堵塞导致高液位池至厌氧池自流不畅; 3、厌氧处理效果差、处理水量低等情况。 工程改造后的厌氧处理系统包括:厌氧进水系统、厌氧出水循环系统、高液位池、厌氧池等工艺单元。厌氧污泥由原来的絮体污泥改为高效中温厌氧颗粒污泥,厌氧出水增设回流系统至高液位池,通过循环水提升厌氧颗粒污泥上升流速,保证厌氧颗粒污泥均匀悬浮于厌氧池内部。 二、调试目的 厌氧调试的目的包括: 1、启动厌氧处理系统,并调试至最佳处理状态; 2、设备调试,厌氧处理系统各设备在调试过程中达到最优协调工作; 3、颗粒污泥驯化,通过科学的调试方式,使接种颗粒污泥适应原水水质; 4、收集数据,为厌氧处理系统后期运行提供参数依据; 5、协调厂区来水与厌氧处理进水水量、水质等外部因素。 三、工艺参数和名词解释 1、进水量 指厌氧罐进水水量,包括瞬时进水量(t/h)、日进水量(t/d)。瞬时进水量用于指标厌氧罐瞬时进水负荷;日进水量用于指标厌氧罐每日总进水负荷。 2、COD COD指化学需氧量,包括进水COD、出水COD,进水COD一般监测原水COD;出水COD 一般监测厌氧出水COD,通过进出水COD可以反映厌氧罐处理负荷、去除率等参数。 3、日处理COD量 指厌氧罐每天处理COD的量,单位:KgCOD/d,计算公式为:

水解酸化池工艺详解

水解酸化池工艺详解 在回用水处理工艺中水解酸化池的作用是重要的一个环节。水解——是大分子有机物降解的必经过程,大分子有机物想要被微生物所利用,必须先水解为小分子有机物,这样才能进入细菌细胞内进一步降解。酸化——是有机物降解的提速过程,因为它将水解后的小分子有机物进一步转化为简单的化合物并分泌到细胞外。这是回用水废水处理工艺中水解酸化作为预处理单元的原因。 水解酸化池的两个最基本作用是:一是提高废水可生化性,将大分子有机物转化为小分子;二是去除废水中的COD,部分有机物降解合成自身细胞。 本岗位的水解酸化池采用下进上出的翻流运作型态,上升流速取0.765 m/h,有效水深为6.5m。设计进水流量为900m3/h,水力停留时间按8.5h,总有效容积为7600m3。水解酸化池共4座,每座9格,共36格。每格水解酸化池设置有4个梯形泥斗,在泥斗下部采用水平喷射布水方式能使布水均匀。每格池顶部沿四周池壁设置集水槽,用于产水导流,以及排泥。每格水解酸化池内除了一根布水管外,还设有一根排泥管和供气管,其采用负压气提排泥方式,可使泥排至水解酸化池出水槽,与水解酸化池出水一起流至接触氧化池。 水解酸化池内采用了立体弹性组合填料,填料高度3m,上部1m保护区,底部2.4m布水区,每座池子组合填料为972m3。池内采用的立体弹性填料的丝条呈立体均匀排列辐射状态,使气、水、生物膜得到充分混渗接触交换,生物膜不仅能均匀地着床在每一根丝条上,保持良好的活性和空隙可变性,而且能在运行过程中获得愈来愈大的比表面积。 填料的作用事实上就是给微生物提供一个生长平台,微生物附着再填料上可增加污水与微生物的接触面积提高水解酸化池的处理效率。简单的说填料就是细菌的附着床,就是增加生物量和提高微生物与废水接触面。 水解和酸化是厌氧消化过程的两个阶段,水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶来完成生物催化反应;酸化是一类典型的发酵过程,微生物的代谢产物主要是各种有机酸。在不同的工艺中水解酸化的处理目的也不同。水解酸化在好氧生物处理工艺中的水解目的主要是将原有废水中的非溶解性有机物转变为溶解性有机物,主要将其中难生物降解的有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理;而在混合厌氧消化工艺中的水解酸化的目的是为混合厌氧消化过程的甲烷发酵提供底物。而两相厌氧消化工艺中的产酸相是将混合厌氧消化中的产酸相和产甲烷相分开。 水解酸化处理方法是一种介于好氧和厌氧处理法之间的方法,可以将其视作厌氧处理第一和第二个阶段,即在大量水解细菌、酸化菌作用下将不溶性有机物水解为溶解性有机物,将难生物降解的大分子物质转化为易生物降解的小分子物质,或者说是使较大的难降解的物质开环断链的反应过程。因此从严格意义上来说水解酸化池实属兼氧池。 水解酸化池在当前调试阶段的重要工作就是污泥的培养,活性污泥培养采用间歇式培养方式,设定了临时进水管,根据需要以及营养物质投加设施或人工投加培养,进水采用前段污水处理厂预培养的污泥液,进水量按照池容积负荷递增投加。因为水解酸化池的污泥培养比较慢,所以要保证营养物质的均衡。由于该岗位水解酸化池的污泥来自污水处理站SBR的,而污水站SBR的污泥是外接其他厂家的。虽说这种方法可以缩短污泥的驯化周期,但如果不及时检测,使得池内营养物质匮乏,很可能造成微生物不能适应环境或饿死。因此要及时分析COD、氨氮、总磷的含量,低于要求值时要及时投加营养剂。而且每天进行两次提气污泥循环也是一项必要的工作。总的来说水解酸化加生物接触氧化处理工艺中的水解酸化目的,主要是将原有废水中非溶解性有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理。在考虑到后续好氧处理的能耗问题,水解酸化就主要用于低浓度难降解废水的预处理了。

水解酸化池的工艺操作规程

水解酸化池的工艺操作规程 一般厌氧发酵过程可分为四个阶段,即水解阶段、酸化阶段、酸衰退阶段和甲烷化阶段。而在水解酸化池中把反应过程控制在水解与酸化两个阶段。在水解阶段,可使固体有机物质降解为溶解性物质,大分子有机物质降解为小分子物质。在产酸阶段,碳水化合物等有机物降解为有机酸,主要是乙酸、丁酸和丙酸等。水解和酸化反应进行得相对较快,一般难于将它们分开,此阶段的主要微生物是水解—酸化细菌。 废水经过水解酸化池后可以提高其可生化性,降低污水的pH值,减少污泥产量,为后续好氧生物处理创造了有利条件。因此,设置水解酸化池可以提高整个系统对有机物和悬浮物的去除效果,减轻好氧系统的有机负荷,使整个系统的能耗相比于单独使用好氧系统大为降低。 水解酸化池的处理效果增强措施: a、水解酸化池底部安装有大阻力布水系统,利用二沉池的回流污泥搅动水解酸化池底部的污泥,使其处于悬浮状态并且与进入的废水充分混合,从而提高了水解酸化池的处理效果,减轻后续好氧处理的负荷。二沉池的污泥回流水解酸化池,可以增加水解酸化池内的污泥浓度、提高处理效果,同时使污泥得到消化,减少了剩余污泥的排放量、降低污泥处理费用,从而减少了运行费用。 b、在水解酸化池内安装弹性填料,对搅动的废水进行水力切割,

使悬浮状态的污泥与水充分混合。为水解酸化菌的生长提供有利条件。 c、水解酸化池底部还装有排泥管道系统,是由UASB厌氧反应器排泥系统改进而成,可以保证水解酸化池长期稳定的运行。 为保证设施的稳定运行,必须保证均匀进水!根据车间的日产生污水量,分次分阶段的从调节池提升至水解酸化池。 污泥回流量控制在总污泥量为池容的1/3即可。

厌氧好氧的生化调试1

南京德磊科技有限公司 厌 氧 好 氧 的 生 化 调 试

目录 一、厌氧的生化调试 (4) 1. 厌氧的生化调试准备 (4) 1.1 厌氧的生化调试概念及原理 (4) 1.2 厌氧的生化调试所需仪器 (4) 1.3 厌氧生化调试工作人员 (5) 1.4 厌氧生化调试备料 (5) 2. 厌氧的生化调试运行 (5) 2.1 厌氧的生化调试影响因素 (5) 2.2 厌氧池的调试操作 (6) 3. 厌氧的生化调试具体实例 (7) 3.1 UASB厌氧反应器使用须知 (7) 3.2 UASB厌氧反应器的调试 (8) 4. 厌氧的生化调试常见问题 (11) 二、好氧的生化调试 (13) 1. 好氧的生化调试准备 (13) 1.1 好氧的生化调试概念及原理 (13) 1.2 好氧的生化调试所需仪器 (13) 1.3 好氧生化调试工作人员 (13) 1.4 好氧生化调试备料 (13) 2.好氧的生化调试 (14) 2.1主要控制条件 (14)

2.2好氧生化处理调试操作 (14) 2.3生化池运行状态判断 (15) 3.好氧的生化调试常见问题 (15) 4.日常运行管理 (16)

一、厌氧的生化调试 1. 厌氧的生化调试准备 1.1 厌氧的生化调试概念及原理 厌氧处理是利用厌氧菌的作用,去除废水中的有机物,通常需要时间较长。厌氧过程可分为水解阶段、酸化阶段和甲烷化阶段。废水厌氧生物处理过程不需另加氧源,故运行费用低。此外,它还具有剩余污泥量少,可回收能量(CH4)等优点。其主要缺点是反应速度较慢,反应时间较长,处理构筑物容积大等。但通过对新型构筑物的研究开发,其容积可缩小。此外,为维持较高的反应速度,需维持较高的反应温度,就要消耗能源。 图一厌氧的生化调试原理 1.2 厌氧的生化调试所需仪器 根据厌氧生化调试工艺原理,需要测量的有:pH值,COD,温度。根据工艺原理,所需测量仪器为:COD检测仪、NH3-N检测仪、pH检测仪、BOD检测仪、DO检测仪、温度计、潜水泵(配软管)、SS。

UASB调试方案

UASB系统 调 试 方 案 2016-11

一、上流式厌氧污泥床反应器(UASB)调试计划: 1.UASB反应器的反应原理 UASB反应器可分为两个区域,反应区和气、液、固三相分离区。在反应区下部,是由沉淀性能良好的污泥(颗粒污泥或絮状污泥),形成厌氧污泥床。当废水由反应器底部进入反应器后,由于水的向上流动和产生的大量气体上升形成了良好的自然搅拌作用,并使一部分污泥在反应区的污泥床上方形成相对稀薄的污泥悬浮层。悬浮液进入分离区后,气体首先进入集气室被分离,含有悬浮液的废水进入分离区的沉降室,由于气体已被分离,在沉降室扰动很小,污泥在此沉降,由斜面返回反应区。 2.UASB反应器运行的三个重要前提: 反应器内形成沉淀性能良好的颗粒污泥或絮状污泥。 由于产气和进水的均匀分布所形成的良好的自然搅拌作用。 合理的三相分离器使沉淀性能良好污泥能保留在反应区内。 3.UASB反应器启动运行的四个阶段: 3.1第一阶段:UASB启动运行初始阶段: 选用接种污泥: 选用污水厂污泥消化池的消化污泥接种(具有一定的产甲烷活性)。 接种污泥的方法:接种污泥量、接种污泥的浓度 方法:将含固80%的接种污泥加水搅拌后,均匀倒入到UASB反应池。 接种污泥量:接种污泥量为UASB反应器的有效容积的30%到50%,最少15%,一般为30%。接种污泥的填充量不超过UASB反应器的有效容积的60%。本系统接种污泥量为80m3。 接种污泥的浓度:初启动时,稀型污泥的接种量为20到30kg VSS/m3, 浓度小于40 kg VSS/m3的稠型硝化污泥接种量可以略小些。 亦有建议以6-8kgVSS/m3为宜,因为消化污泥一般为絮状体,不宜接种太多,太对了对颗粒污泥不但没有好出,反而不利,种泥即污泥种的意思,种泥太多事没有必要的,颗粒污泥并非是种泥本身形成的,而是以种泥为种子,在

厌氧好氧调试

厌氧一好氧生化法处理制药废水工程调试 2.1.3厌氧池调试操作 ⑴将接种污泥投入厌氧池,用稀释的废水浸泡2d,调节厌氧池内pH值约在 7.0?7.5之间。 ⑵向厌氧池注入生产废水约1/3池容,再补充生活废水至设计容量,调试初始应采用较低负荷,一般约为正常运行负荷的1/6?1/4,或取0.1? 0.3kgCOD/(m3 d ⑶按约1/4设计处理量连续进水。 废水处理设计方案中厌氧池无回流泵,在调试阶段,应安装临时回流泵,将厌氧池出水回流,以增加池内生物菌数量,以免污泥大量流失,回流比约 1 : 4。生物接触氧化池同期进行调试,为防止调试阶段厌氧池高浓度废水对生物接触氧化池的冲击,应控制从厌氧池流入生物接触氧化池的废水量。 ⑷应注意池内的温度变化,升温不能过快。当厌氧池出水pH V6.5时应增加进水中的碱量,要及时对pH进行检测。 ⑸在上述情况下稳定运行2?3周,可逐步提高厌氧池容积负荷。每次提高 0.3kgCOD/(m3.d左右,稳定运行时间2周左右。 在此期间,应注意观察厌氧池出水情况,若pH降低,应加大投碱量,若调整负荷后发生异常应采取降低负荷或暂时停止进水等措施,待稳定后再提高负荷。 ⑹若出水水质效果好且稳定时,可逐步加大从厌氧池到生物铁微电解池的水 量,最终实现厌氧池出水全部流入生物接触氧化池。 ⑺当厌氧池进水浓度提高至原水浓度,直接进水,应经10d稳定观察,正常运行,可逐步取消回流泵。 ⑻正常的成熟污泥呈深灰到黑色,带焦油气,无硫化氢臭,pH值在7.0?7.5 之间,污泥易脱水和干化。当进水量达到设计要求,并取得较高的处理效率,产气量大,含甲烷成分高时,可认为厌氧调试基本结束。 2.2好氧生化处理调试 好氧生化处理调试包括生物铁微电解池和生物接触氧化池调试。 2.2.1主要控制条件

厌氧好氧调试

厌氧—好氧生化法处理制药废水工程调试 2.1.3厌氧池调试操作 ⑴将接种污泥投入厌氧池,用稀释的废水浸泡2d,调节厌氧池内pH值约在 7.0~7.5之间。 ⑵向厌氧池注入生产废水约1/3池容,再补充生活废水至设计容量,调试初始应采用较低负荷,一般约为正常运行负荷的1/6~1/4,或取0.1~ 0.3kgCOD/(m3·d。 ⑶按约1/4设计处理量连续进水。 废水处理设计方案中厌氧池无回流泵,在调试阶段,应安装临时回流泵,将厌氧池出水回流,以增加池内生物菌数量,以免污泥大量流失,回流比约1:4。生物接触氧化池同期进行调试,为防止调试阶段厌氧池高浓度废水对生物接触氧化池的冲击,应控制从厌氧池流入生物接触氧化池的废水量。 ⑷应注意池内的温度变化,升温不能过快。当厌氧池出水pH<6.5时应增加进水中的碱量,要及时对pH进行检测。 ⑸在上述情况下稳定运行2~3周,可逐步提高厌氧池容积负荷。每次提高 0.3kgCOD/(m3.d左右,稳定运行时间2周左右。 在此期间,应注意观察厌氧池出水情况,若pH降低,应加大投碱量,若调整负荷后发生异常应采取降低负荷或暂时停止进水等措施,待稳定后再提高负荷。 ⑹若出水水质效果好且稳定时,可逐步加大从厌氧池到生物铁微电解池的水量,最终实现厌氧池出水全部流入生物接触氧化池。 ⑺当厌氧池进水浓度提高至原水浓度,直接进水,应经10d稳定观察,正常运行,可逐步取消回流泵。 ⑻正常的成熟污泥呈深灰到黑色,带焦油气,无硫化氢臭,pH值在7.0~7.5之间,污泥易脱水和干化。当进水量达到设计要求,并取得较高的处理效率,产气量大,含甲烷成分高时,可认为厌氧调试基本结束。 2.2好氧生化处理调试 好氧生化处理调试包括生物铁微电解池和生物接触氧化池调试。 2.2.1主要控制条件

水解(酸化)工艺与厌氧发酵的区别

水解(酸化)工艺与厌氧发酵的区别 从原理上讲,水解(酸化)是厌氧消化过程的第一、二两个阶段。但水解(酸化)-好氧处理工艺中的水解(酸化)段和厌氧消化的目标不同,因此是两种不同的处理方法。 水解(酸化)-好氧处理系统中的水解(酸化)段的目的,对于城市污水是将原水中的非溶解态有机物截留并逐步转变为溶解态有机物;对于工业废水处理,主要是将其中难生物降解物质转变为易生物降解物质,提高废水的可生化性,以利于后续的好氧生物处理。水解工艺的开发过程是从低浓度城市污水开始的,与高浓度废水的厌氧消化中的水解、酸化过程是不同的。在连续厌氧过程中水解、酸化的目的是为混合厌氧消化过程中的甲烷化阶段提供基质。而两相厌氧消化中的产酸段(产酸相)是将混合厌氧消化中的产酸段和产甲烷段分开,以便形成各自的最佳环境。因此,尽管水解(酸化)-好氧处理工艺中的水解(酸化)段、两相法厌氧发酵工艺中的产酸相和混合厌氧消化工艺中的产酸过程均产生有机酸,但是由于三者的处理目的的不同,各自的运行环境和条件有着明显的差异,主要表现在以下几个方面。 (1)氧化还原电位(Eh)不同 在混合厌氧消化系统中,由于完成水解、酸化的微生物和产甲烷微生物共处于同一个反应器中,整个反应器的氧化还原电位(Eh)的控制必须首先满足对Eh要求严格的甲烷菌,一般为300mV以下,因此,系统中的水解(酸化)微生物也是在这一电位值下工作的。而两相厌氧消化系统中,产酸相的氧化还原电位一般控制在-300—-100mV之间。水解(酸化)-好氧处理工艺中的水解(酸化)段为一典型的兼性过程,只要Eh控制在0mV左右,该过程即可孙里进行。 (2)pH值不同 在厌氧消化系统中,消化液的pH值控制在甲烷菌生长的最佳pH值范围,一般为6.8-7.2。在两相厌氧消化系统中,产酸相的pH值一般控制在6.0-6.5之间,在酸化反应器pH值降低时,丙酸的相对含量增大,而丙酸对后续的甲烷相中的产甲烷菌将产生强烈的抑制作用。对于水解(酸化)-好氧处理系统来说,由于浓度低不存在酸的抑制问题,因此,可以不控制pH值的范围,一般pH在6.5-7.5之间。 (3)温度不同 三种工艺对温度的控制也不同,通常厌氧消化系统以及两相厌氧消化系统的温度均严格控制,要么中温消化(30-35℃),要么高温消化(50-55℃)。而水解处理工艺对温度无特殊要求,通常在常温下运行,也可获得较为满意的水解(酸化效果)。 由于反应条件不同,三种工艺系统种优势菌群也不相同。在厌氧消化系统种,由于严格地控制在厌氧条件下,系统中的优势菌群为专性厌氧菌,因此完成水解(酸化)的微生物主要为厌氧微生物。水解(酸化)工艺控制在兼性条件下,系统中的优势菌群也

UASB厌氧处理技术调试经验总结

UASB厌氧处理技术调试经验总结 在废水的厌氧生物处理过程中,废水中的有机物经大量微生物的共同作用,被最终转化为甲烷、二氧化碳、水、硫化氢和氨。在此过程中,不同的微生物的代谢过程相互影响、制约,形成复杂的生态系统,此生态系统在UASB反应系统中直观表现为颗粒污泥。 有机物在废水中以悬浮物或胶体的形式存在,它们的厌氧降解过程可分为四个阶段。 (1)水解阶段,微生物利用酶将大分子切割成小分子; (2)发酵(或酸化)阶段,小分子有机物被发酵菌利用,在细胞内转化为简单的化合物,这一阶段的主要产物有挥发酸、醇类、乳酸、二氧化碳、氢气、氨和硫化氢等; (3)产乙酸阶段,此阶段中上一阶段的产物被进一步转化为乙酸等物质; (4)产甲烷阶段,在此阶段乙酸、氢气、碳酸等被转化为甲烷、二氧化碳。上述四个阶段的进行,大分子有机物被转化为无机物,水质变好,同时微生物得到了生长。 1、UASB升流式厌氧污泥床反应器 升流式厌氧污泥床反应器即UASB其基本特征是在反应器的上部设置气、固、液三相分离器,下部为污泥悬浮层区和污泥床区。污水从底部流入,向上升流至顶部流出,混合液在沉淀区进行固液分离,污泥可自行回流到污泥床区,使污泥床区保持很高的污泥浓度。从构造和功能上划分,UASB反应器主要由进水配水系统、反应区(污泥

床区和污泥悬浮层区)、沉淀区、三相分离器、集气排气系统、排泥系统及出水系统和浮渣清除系统组成。其工作的基本原理为:在厌氧状态下,微生物分解有机物产生的沼气在上升过程中产生强烈的搅动,有利于颗粒污泥的形成和维持。废水均匀地进入反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床,在与污泥颗粒的接触过程中发生厌氧反应,经过反应的混合液上升流动进入三相分离器。沼气泡和附着沼气泡的污泥颗粒向反应器顶部上升,上升到气体反射板的底面,沼气泡与污泥絮体脱离。沼气泡则被收集到反应器顶部的集气室,脱气后的污泥颗粒沉降到污泥床,继续参与进水有机物的分解反应。在一定的水力负荷下,绝大部分污泥颗粒能保留在反应区内,使反应区具有足够的污泥量。 2、厌氧生物处理的影响因素 (1)温度。 厌氧废水处理分为低温、中温和高温三类。迄今大多数厌氧废水处理系统在中温范围运行,在此范围温度每升高10℃,厌氧反应速度约增加一倍。中温工艺以30-40℃最为常见,其最佳处理温度在35-40℃间。高温工艺多在50-60℃间运行。在上述范围内,温度的微小波动(如1-3℃)对厌氧工艺不会有明显影响,但如果温度下降幅度过大(超过5℃),则由于污泥活力的降低,反应器的负荷也应当降低以防止由于过负荷引起反应器酸积累等问题,即我们常说的“酸化”,否则沼气产量会明显下降,甚至停止产生,与此同时挥发酸积累,出水pH下降,COD值升高。

相关文档
最新文档