石墨烯基超级电容器电极材料结构调控与性能

目录

目录

摘要 ....................................................................................................................... I Abstract ................................................................................................................... I II

第1章绪论 (1)

1.1 课题背景及研究目的和意义 (1)

1.2 超级电容器简介 (2)

1.2.1 超级电容器分类 (2)

1.2.2 超级电容器工作原理 (3)

1.2.3 超级电容器与电池的区别 (4)

1.2.4 超级电容器特点及应用领域 (6)

1.3 超级电容器电极活性材料研究概况 (9)

1.3.1 碳材料 (9)

1.3.2 金属氧化物 (10)

1.3.3 导电聚合物 (12)

1.4 超级电容器电极结构研究进展 (13)

1.4.1 粉末电极 (14)

1.4.2 薄膜电极 (15)

1.4.3 结构化电极 (15)

1.5 超级电容器电极的性能评价 (16)

1.5.1 活性材料负载量与比容量 (17)

1.5.2 能量密度与功率密度 (19)

1.6 石墨烯在超级电容器领域研究进展 (21)

1.6.1 石墨烯概述 (21)

1.6.2 氧化石墨烯 (22)

1.6.3 石墨烯的超级电容应用 (24)

1.7 超级电容器电极材料研究存在问题 (26)

1.8 本文的主要研究内容 (27)

第2章试验材料和研究方法 (30)

2.1 试验材料与仪器 (30)

2.2 电极材料与器件设计 (31)

哈尔滨工业大学博士学位论文

2.3 样品制备 (32)

2.3.1 氧化石墨烯的制备 (32)

2.3.2 氧化石墨烯转化碳球的制备 (35)

2.3.3 还原氧化石墨烯/Mn3O4复合粉体制备 (35)

2.3.4 氧化石墨烯/聚吡咯复合薄膜的制备 (36)

2.3.5 石墨烯粉末制备 (37)

2.3.6 二氧化锰粉末制备 (37)

2.4 样品的形貌结构表征 (37)

2.4.1 X射线衍射分析(XRD) (37)

2.4.2 扫描电子显微镜(SEM) (37)

2.4.3 透射电子显微镜(TEM) (37)

2.4.4 原子力显微镜(AFM) (38)

2.4.5 傅立叶红外光谱(FT-IR) (38)

2.4.6 X射线光电子谱(XPS) (38)

2.4.7 拉曼光谱(Raman) (38)

2.4.8 元素分析(Elemental Analysis) (38)

2.4.9 比表面积(BET) (38)

2.4.10 热重分析(TG) (39)

2.5 电极制备和超级电容器组装 (39)

2.5.1 电极制备 (39)

2.5.2 电容器组装 (39)

2.6 电化学性能测试 (39)

2.6.1 试验装置 (40)

2.6.2 循环伏安测试 (41)

2.6.3 恒流充放电测试 (42)

2.6.4 能量密度和功率密度 (42)

2.6.4 电化学阻抗谱测试 (43)

第3章氧化石墨烯转化碳球的形貌结构表征与电化学性能 (45)

3.1 氧化石墨烯转化碳球的合成方法 (45)

3.1.1 氧化石墨烯转化碳球的合成思路 (45)

3.1.2 氧化石墨烯转化碳球的合成参数 (46)

3.2 氧化石墨烯转化碳球的形貌结构表征 (50)

3.2.1 氧化石墨烯转化碳球的刺激-响应行为 (50)

3.2.2 氧化石墨烯转化碳球的热稳定性 (55)

目录

3.2.3 氧化石墨烯转化碳球的元素化学态 (56)

3.2.4 氧化石墨烯转化碳球的拉曼光谱 (57)

3.2.5 氧化石墨烯转化碳球的形成机理探讨 (58)

3.2.6 电子束诱发刺激-响应机理探讨 (59)

3.3 含碳球石墨烯的电化学性能研究 (61)

3.3.1 添加剂为酸形成含碳球石墨烯的电化学性能 (61)

3.3.2 添加剂为还原剂形成含碳球石墨烯电化学性能 (65)

3.4 本章小结 (67)

第4章还原氧化石墨烯/Mn3O4复合粉体形貌结构表征与电化学性能 (69)

4.1 还原氧化石墨烯/Mn3O4复合粉体的形貌结构表征 (69)

4.1.1 还原氧化石墨烯/Mn3O4复合粉体的物相组成 (70)

4.1.2 还原氧化石墨烯/Mn3O4复合粉体的元素化学态 (71)

4.1.3 还原氧化石墨烯/Mn3O4复合粉体的形貌表征 (72)

4.2 还原氧化石墨烯/Mn3O4复合粉体的电化学性能研究 (75)

4.2.1 单电极电化学特性 (75)

4.2.2 两电极电容器电化学性能 (78)

4.3 本章小结 (79)

第5章氧化石墨烯/聚吡咯复合薄膜形貌结构调控与电化学性能 (80)

5.1 氧化石墨烯/聚吡咯薄膜的电化学共沉积 (81)

5.1.1 氧化石墨烯的弱阴离子性 (81)

5.1.2 吡咯的电化学聚合过程 (82)

5.1.3 前驱体溶液选取与电参数设计 (82)

5.1.4 氧化石墨烯浓度对复合膜形貌的影响 (85)

5.1.5 电沉积时间对复合膜形貌的影响 (88)

5.1.6 氧化石墨烯/聚吡咯复合膜形成机理探讨 (89)

5.2 氧化石墨烯/聚吡咯薄膜的形貌结构表征 (90)

5.2.1 氧化石墨烯/聚吡咯复合薄膜的形貌表征 (90)

5.2.2 氧化石墨烯/聚吡咯复合薄膜的FT-IR官能团表征 (92)

5.2.3 氧化石墨烯/聚吡咯复合薄膜的XPS元素化学态分析 (93)

5.3 氧化石墨烯/聚吡咯复合薄膜电化学性能研究 (96)

5.3.1 单电极性能 (96)

5.3.2 水系超级电容器 (104)

5.3.3 固态超级电容器 (107)

5.3.4 能量密度与功率密度 (109)

哈尔滨工业大学博士学位论文

5.3.5 固态超级电容器应用实例 (111)

5.4 本章小结 (112)

第6章二氧化锰//石墨烯非对称水系高工作电压超级电容器性能研究 (113)

6.1 二氧化锰正极材料的形貌结构表征与电化学特性 (114)

6.1.1 二氧化锰正极材料的形貌结构表征 (114)

6.1.2 二氧化锰正极的过电位析氧行为 (115)

6.2 石墨烯负极材料的形貌结构表征与电化学特性 (116)

6.2.1 石墨烯负极材料的形貌结构表征 (116)

6.2.2 石墨烯负极的过电位析氢行为 (117)

6.3 二氧化锰//石墨烯非对称电容器工作原理 (118)

6.3.1 正负极电位区间匹配 (119)

6.3.2 正负极容量平衡 (120)

6.3.3 二氧化锰//石墨烯非对称电容器的充放电机理 (120)

6.4 二氧化锰//石墨烯非对称超级电容器性能 (122)

6.4.1 循环伏安特性 (122)

6.4.2 恒流充放电特性 (123)

6.4.3 功率密度和能量密度 (125)

6.4.4 循环寿命 (126)

6.5 本章小结 (126)

结论 (128)

参考文献 (130)

攻读博士学位期间发表的论文及其它成果 (144)

哈尔滨工业大学学位论文原创性声明和使用权限 (147)

致谢 (149)

个人简历 (150)

Contents

Contents

Abstract (In Chinese) .............................................................................................. I Abstract (In English) ............................................................................................. I II Chapter 1 Introduction.. (1)

1.1 Background, objective and significance of the subject (1)

1.2 Brief introduction of supercapacitors (2)

1.2.1 Classification of supercapacitors (2)

1.2.2 Principles of supercapacitors (3)

1.2.3 Difference between supercapacitors and batteries (4)

1.2.4 Characteristics and applications of supercapacitors (6)

1.3 Introduction of electrode materials for supercapacitors (9)

1.3.1 Carbon materials (9)

1.3.2 Metal oxides (10)

1.3.3 Conducting polymers (12)

1.4 Advances in electrode structures for supercapacitors (13)

1.4.1 Powder electrodes (14)

1.4.2 Thin film electrodes (15)

1.4.3 Electrodes with designed architectures (15)

1.5 Performance evaluation of supercapacitor electrodes (16)

1.5.1 Mass loading of active material and specific capacitance (17)

1.5.2 Energy density and power density (19)

1.6 Progress of graphene based supercapacitors (21)

1.6.1 Brief introduction of graphene (21)

1.6.2 Graphene oxide (GO) (22)

1.6.3 Applications of graphene in supercapacitors (24)

1.7 Existing problems in electrode materials for supercapacitors (26)

1.8 Main contents of this subject (27)

Chapter 2 Experimental materials and methods (30)

2.1 Experimental materials and instruments (30)

2.2 Design of electrode materials and devices (31)

2.3 Preparation of samples (32)

2.3.1 Preparation of GO (32)

2.3.2 Preparation of GO converted carbon spheres (35)

2.3.3 Preparation of graphene/Mn3O4 composite (35)

2.3.4 Preparation of GO/polypyrrole (GO/PPy) composite film (36)

哈尔滨工业大学博士学位论文

2.3.5 Preparation of graphene power (37)

2.3.6 Preparation of MnO2 power (37)

2.4 Characterization (37)

2.4.1 X-ray diffraction analysis (XRD) (37)

2.4.2 Scanning electron microscopy (SEM) (37)

2.4.3 Transmission electron microscopy (TEM) (37)

2.4.4 Atomic force microscopy (AFM) (38)

2.4.5 Fourier infrared spectrum (FT-IR) (38)

2.4.6 X-ray photo-electron spectrum (XPS) (38)

2.4.7 Raman spectrum (Raman) (38)

2.4.8 Elemental analysis (38)

2.4.9 BET specific surface area (38)

2.4.10 Thermal gravimetric analysis (TG) (39)

2.5 Electrode preparation and fabrication of supercapacitors (39)

2.5.1 Preparation of electrodes (39)

2.5.2 Fabrication of supercapacitors (39)

2.6 Electrochemical measurements (39)

2.6.1 Experimental configuration (40)

2.6.2 Cyclic voltammetry measurement (41)

2.6.3 Galvanostatic charge-discharge measurement (42)

2.6.4 Energy density and power density (42)

2.6.5 Electrochemical impedance measurements (43)

Chapter 3 Characterizations and electrochemical performances of graphene oxide converted carbon spheres (45)

3.1 Method for preparation of GO converted carbon spheres (45)

3.1.1 Design of method (45)

3.1.2 Preparation parameters (46)

3.2 Characterizations of GO converted carbon spheres (50)

3.2.1 Stimulus-responsive behavior of GO converted carbon spheres (50)

3.2.2 Thermostability of GO converted carbon spheres (55)

3.2.3 Elements’ chemical state of GO converted carbon spheres (56)

3.2.4 Raman spectrum of GO converted carbon spheres (57)

3.2.5 Formation mechanism of GO derived carbon spheres (58)

3.2.6 Mechanism for the stimulus-responsive behavior (59)

3.3 Electrochemical performance of GO converted carbon spheres (61)

3.3.1 Performance of samples with acids as additives (61)

3.3.2 Performance of samples with reductants as additives (65)

3.4 Brief summary (67)

Contents

Chapter 4 Characterization and electrochemical performance of rGO/Mn3O4 composite powder (69)

4.1 Morphologies and structures of rGO/Mn3O4 composite powder (69)

4.1.1 Phase compositions of rGO/Mn3O4 composite powder (70)

4.1.2 Elemental chemical states of rGO/Mn3O4 composite powder (71)

4.1.3 Morphologies of rGO/Mn3O4 composite powder (72)

4.2 Electrochemical performance of rGO/Mn3O4 composite powder (75)

4.2.1 Electrochemical characteristics of single electrode (75)

4.2.2 Electrochemical performance two-electrode capacitor (78)

4.3 Brief summary (79)

Chapter 5 Morphology control and electrochemical performance of graphene oxide/polypyrrole composite films (80)

5.1 Electrochemical co-deposition of GO/PPy composite film (81)

5.1.1 Anionic behavior of GO (81)

5.1.2 Electropolymerization process of pyrrole (82)

5.1.3 Selection of precursor solution and electrical parameters (82)

5.1.4 Influences of GO concentration on the morphology of composite film .. 85

5.1.5 Influences of deposition time on the morphology of composite film (88)

5.1.6 Formation mechanism of GO/PPy composite film (89)

5.2 Characterization of GO/PPy composite film (90)

5.2.1 Morphologies of GO/PPy composite film (90)

5.2.2 FT-IR functional groups of GO/PPy composite film (92)

5.2.3 XPS Elements’ chemical state of GO/PPy composite film (93)

5.3 Electrochemical performance of GO/PPy composite film (96)

5.3.1 Performance of single electrodes (96)

5.3.2 Aqueous supercapacitor (104)

5.3.3 Solid-state supercapacitor (107)

5.3.4 Energy density and power density (109)

5.3.5 Application example of solid-state supercapacitor (111)

5.4 Brief summary (112)

Chapter 6 Performance of a high voltage asymmetric MnO2//graphene aqueous supercapacitor (113)

6.1 Characterization and electrochemical behaviors of MnO2 positive electrode (114)

6.1.1 Characterization of MnO2 powder (114)

6.1.2 Overpotential of oxygen evolution in MnO2 positive electrode (115)

6.2 Characterization and electrochemical behaviors of graphene negative

哈尔滨工业大学博士学位论文

electrode (116)

6.2.1 Characterization of graphene powder (116)

6.2.2 Overpotential of hydrogen evolution in graphene negative electrode (117)

6.3 Principles of MnO2//graphene asymmetric supercapacitor (118)

6.3.1 Matching of potential windows of positive and negative electrodes (119)

6.3.2 Capacitance balance of positive and negative electrodes (120)

6.3.3 Charge-discharge mechanism of MnO2//graphene supercapacitor (120)

6.4 Performance of MnO2//graphene asymmetric supercapacitor (122)

6.4.1 Cyclic voltammetry characteristics (122)

6.4.2 Galvanostatic charge-discharge characteristics of single (123)

4.4.3 Energy density and power density (125)

6.4.4 Cycling stability (126)

6.5 Brief summary (126)

Conclusions (128)

References (130)

Papers published in the period of Ph.D. education (144)

Statement of copyright and Letter of authorization (147)

Acknowledgements (149)

Resume (150)

相关主题
相关文档
最新文档