(完整)高中文科数学立体几何部分整理.doc

(完整)高中文科数学立体几何部分整理.doc
(完整)高中文科数学立体几何部分整理.doc

立体几何

高中文科数学立体几何部分整理

第一章 空间几何体

(一)空间几何体的三视图与直观图

1.投影:区分中心投影与平行投影。平行投影分为正投影和斜投影。

2.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;正视图 ——光线从几何体的前面向后面正投影,得到的投影图;

侧视图 ——光线从几何体的左面向右面正投影,得到的投影图;正视图 ——光线从几何体的上面向下面正投影,得到的投影图;

注:( 1)俯视图画在正视图的下方, “长度”与正视图相等;侧视图画在正视图的右边, “高度”

与正视图相等, “宽度”与俯视图。 (简记为“正、侧一样高,正、俯一样长,俯、

侧一样宽” .

( 2)正视图,侧视图,俯视图都是平面图形,而不是直观图。 3.直观图:

3.1 直观图 ——是观察着站在某一点观察一个空间几何体而画出的图形。直观图通常是在平行投影下画出的空间图形。 3.2 斜二测法:

step1:在已知图形中取互相垂直的轴 Ox 、 Oy ,(即取 xoy 90

);

step2:画直观图时,把它画成对应的轴 o ' x ',o ' y' ,取 x ' o ' y' 45 (or 135 ) ,它们确定的

平面表示水平平面;

step3:在坐标系 x ' o ' y ' 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行

于 x 轴(或在 x 轴上)的线段保持长度不变,平行于

y 轴(或在 y 轴上)的线段长度减半。

结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的

2

倍 .

4

解决两种常见的题型时应注意: ( 1)由几何体的三视图画直观图时,一般先考虑“俯视图”

.

( 2)由几何体的直观图画三视图时,能看见的轮廓线和棱画成实线,不能看见的轮廓线和棱

画成虚线。

【例题点击】将正三棱柱截去三个角(如图

1 所示 A ,B , C 分别是 △GHI 三边的中点)得

到几何体如图 2,则该几何体按图 2 所示方向的侧视图(或称左视图)为(

H

A G A

B

B

B

侧视

B

B

B

C

C

I

E

D

E

D

E

E

E

E

A .

B .

C .

D .

立体几何

解:在图 2 的右边放扇墙 (心中有墙 ), 可得答案 A

(二)立体几何

1.棱柱

1.1 棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都

互相平行,由这些面所围成的几何体叫做棱柱。

1.2 相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:

E' D'

F' C'

侧面

A' B' l

底面侧棱

斜棱柱ED

F C

① 棱柱底面是正多形正棱柱A B

棱垂直于底面直棱柱

其他棱柱 L

②四棱柱底面为平行四边形平行六面体侧棱垂直于底面直平行六面体底面为矩形

长方体底面为正方形正四棱柱侧棱与底面边长相等正方体

1.3 棱柱的性质:

①侧棱都相等,侧面是平行四边形;

②两个底面与平行于底面的截面是全等的多边形;

③过不相邻的两条侧棱的截面是平行四边形;

④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1.4 面积、体积公式:S直棱柱侧 ch (c是底周长,h是高)

S 直棱柱表面 = c ·h+ 2S 底V 棱柱 = S 底·h 2.圆柱

2.1 圆柱——以矩形的一边所在的直线为旋转轴,其

A' O' C'

余各边旋转而形成的曲面所围成的几何体叫圆柱. B'

母线

2.2 圆柱的性质:上、下底及平行于底面的截面都是轴截面等圆;过轴的截面(轴截面)是全等的矩形.

2.3 侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形 .

2.4 面积、体积公式:

O

C

侧面A

B

底面

S 圆柱侧 = 2rh ;S圆柱全=2 rh 2 r 2,V圆柱=S底h=r 2 h (其中r为底面半径,h为圆柱高)

立体几何

3.棱锥

3.1 棱锥 ——有一个面是多边形, 其余各

S

顶点

侧面

面是有一个公共顶点的三角形,由这些

面所围成的几何体叫做棱锥。

侧棱

正棱锥 ——如果有一个棱锥的底面

是正多边形,并且顶点在底面的射影是

底面的中心,这样的棱锥叫做正棱锥。

底面

斜高

3.2 棱锥的性质:

D

C

①平行于底面的截面是与底面相似的正

O

H

A

B

多边形,相似比等于顶点到截面的距 离与顶点到底面的距离之比;

②正棱锥各侧棱相等,各侧面是全等的等腰三角形;

③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面

边长一半,构成四个直角三角形。 )(如上图: VSOB,VSOH ,VSBH ,VOBH 为直角三角形)

3.3 侧面展开图: 正 n 棱锥的侧面展开图是有

n 个全等的等腰三角形组成的。

1

1

S

,V 棱锥 =

1

h

3.4 面积、体积公式: S 正棱锥侧 =

ch

, S 正棱锥全 =

ch

S

.(其中 c

为底

2

底 底

2

3

面周长, h 侧面斜高, h 棱锥的高)

正四面体:

对于棱长为 a 正四面体的问题可将它补成一个边长为

2

a 的正方体问题。

2

对棱间的距离为

2

a (正方体的边长)

2

正四面体的高

6

a (

2

l 正方体体对角线 )

3

3

正四面体的体积为

2

3

1

12 a ( V 正方体

4V

小三棱锥

3

V

正方

1 : 3 (

1 l 正方体体对角线 1

正四面体的中心到底面与顶点的距离之比为

6 : l

正方体体对角线

2

第3页

立体几何

4.棱台

S

4.1 棱台 ——用一个平行于底面的平面去截棱

锥,我们把截面与底面之间的部分称为棱台.

上底面

C'

4.2 正棱台的性质:

D'

A'

M

O'

①各侧棱相等,各侧面都是全等的等腰梯形;

B'

下底面

②正棱台的两个底面以及平行于底面的截面是

D

C 正多边形;

O

N

顶点A

B

侧棱

侧面

斜高

③ 如右图:四边形 O`MNO ,O`B`BO 都是直角梯

④棱台经常补成棱锥研究 .如右图: VSO`M 与VSON ,VS`O `B`与VSOB 相似 ,注意考虑相似比 .

4.3

S 全

S 下

S

V

1

S`) h

,(其中 S,S` 是

棱台的表面积、 体积公式:

=S + +

= ( +

上底

S SS`

3

上,下底面面积, h 为棱台的高)

5.圆锥

S

顶点

5.1 圆锥—— 以直角三角形的一直角边所在的直线为旋转轴,其 母线

余各边旋转而形成的曲面所围成的几何体叫圆锥。

h 侧面

5.2 圆锥的性质:

l

①平行于底面的截面都是圆, 截面直径与底面直径之比等于顶点

轴截面

到截面的距离与顶点到底面的距离之比;

r

②轴截面是等腰三角形;如右图:VSAB A

B O

③如右图: l 2

h 2 r 2 .

底面

5.3 圆锥的侧面展开图: 圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形。

5.4 面积、体积公式:

S 圆锥侧 =

rl , S 圆锥全 = r (r l ) , V 圆锥 = 1

r 2h (其中

3

r 为底面半径, h 为圆锥的高, l 为母线长)

6.圆台

第4页

②圆台的轴截面是等腰梯形;

③圆台经常补成圆锥来研究。如右图:S VSO`A与 VSOB相似,注意相似比的应用.

6.3 圆台的侧面展开图是一个扇环;

6.4 圆台的表面积、体积公式:

轴A r

O'

S 圆台侧 = π· (R + r)· l (r、R 为上下底面半径 )

母线h

S 圆台全 = π· r2 + π·R2 + π·(R + r)·l

l 轴截面= 1/3 ( 2 2

V rπ+ πr R) h (h 为圆台的高 )

圆台 B R

O 7.球

7.1 球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球或空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体叫做球体,简称球;

7.2 球的性质:

①球心与截面圆心的连线垂直于截面;

② rR 2 2

(其中,球心到截面的距离为d、球心

轴d

球的半径为R、截面的半径为r)

O 7.3 球与多面体的组合体:球与正四面体,球与长

上底面

D

侧面

C

下底面

.

球面

半径

方体,球与正方体等的内接与外切. R d

r

A

O1 B 注意圆与正方体的两个关系:球内接正方

体,球直径等于正方体对角线;

球外切正方体,球直径等于正方体的边长。

D' C'

A'

C' A' B'

4 O O

7.4 球面积、体积公式:S球 4 R2,V球R3

3 D C

(其中 R 为球的半径)A

B A c

32

例:(福建卷)已知正方体的八个顶点都在球面上,且球的体积为,则正方体的棱长为

3

_________

例题讲练

1 、右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )

A . 9π

B . 10π

C . 11π

D . 12π

2 解:从三视图可以看出该几何体是由一个球和一个圆柱

3 组合而成的简单几何体,其表面及为:

2

2

S 4

12 12 2 2 1 3 12 .,故选 D 。

俯视图 正 (主 )视图 侧 (左 )视图

2 、已知某几何体的俯视图是如图 5所示的矩形,正视图 (或称主视图 )是一个底边长为 8、高为 4 的等

腰三角形,侧视图 (或称左视图 )是一个底边长为 6、高为 4的等腰三角形. (1) 求该几何体的体积 V ; (2) 求该几何体的侧面积 S 解 :

由已知可得该几何体是底面为矩形,高为 4,顶点在底面的射影是矩形中心的四棱锥 V-ABCD 。

(1)

1 8

6 4 64

V

3

(2) 该四棱锥有两个侧面 VAD. VBC 是全等的等腰三角形

,且 BC 边

上的高为

2

h 1

42

8 4 2 ,

另两个侧面 VAB. VCD 也是全等的等腰三角形 ,

2

6 2

AB 边上的高为 h 2

42

5

2

因此

S 2( 1

6 4 2

1 8 5) 40 24 2

2

2

3 、用与球心距离为

1

,则球的体积为(

的平面去截球,所得的截面面积为

8 8 2

C. 8

2

32

A.

B.

3

D.

3

3

解:截面面积为

截面圆半径为 1,又与球心距离为 1

球的半径是 2 ,

第二章点、直线、平面之间的位置关系

(一)平面的基本性质

1.平面——无限延展,无边界

1.1 三个定理与三个推论

公理 1:如果一条直线上有两点在一个平面内,那么直线在平面内。(用于证明直线在平面内) 公理 2:不共线的三点确定一个平面. (用于确定平面 )

...

推论 1:直线与直线外的一点确定一个平面.

推论 2:两条相交直线确定一个平面.

推论 3:两条平行直线确定一个平面.

公理 3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(两个平面的交线).

用途:常用于证明线在面内,证明点在线上.

立体几何

(二)空间图形的位置关系

1.空间直线的位置关系:共面 :a I b=A,a//b 异面 :a 与b异面

1.1 平行线的传递公理:平行于同一条直线的两条直线互相平行。

符号表述: a // b, b // c a // c

1.2 等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。1.3 异面直线:(1)定义:不同在任何一个平面内的两条直线——异面直线;

(2)判定定理:连平面内的一点与平面外一点的直线与这个平面内不过此点的直线是异面直线。

P

A 图形语言:a P

符号语言:

A

与异面

PA a

a

A a

1.4 异面直线所成的角:(1)范围:0 ,90;(2)作异面直线所成的角:平移法.

如右图,在空间任取一点O,过 O 作a '// a, b '// b,则a ',b '

a'

b' 所成的角为异面直线a, b 所成的角。特别地,找异面直线所 a

O

成的角时,经常把一条异面直线平移到另一条异面直线的特殊

b

点(如线段中点,端点等)上,形成异面直线所成的角.

l

2.直线与平面的位置关系:l I A

l

l //

平行: // 3.

斜交:I

=a

平面与平面的位置关系:

相交

(三)平行关系(包括线面平行,面面平行)

1.线面平行:

.即l I l // .

①定义:直线与平面无公共点

a // b

②判定定理: a a // (线线平行线面平行)

b

a //

③性质定理: a a // b (线面平行线线平行)

I b

b a

//

④ a //(面面平行线面平行);⑤ b a //(用于判断);

a

a

2.线面斜交:l I A

①直线与平面所成的角(简称线面角):若直线与平面斜交,则平P

面的斜线与该斜线在平面内射影的夹角。【如图】 PO 于 O,

则 AO 是 PA 在平面内的射影,则PAO 就是直线PA与平面

所成的角。 A

范围:0 ,90 ,注:若 l 或l // ,则直线 l 与平面O

所成的角为0 ;若 l ,则直线l 与平面所成的角为90 。

3.面面平行:

①定义:I//;

②判定 1:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行;

符号表述:a,b, a I b O, a // ,b ////(如图一)

判定 2:垂直于同一条直线的两个平面互相平行.符号表述:a,a//.【如图二】

a

O

b

a

//

④面面平行的性质:( 1) a //(面面平行线面平行);

a

//

(2)I a a // b ;(面面平行线线平行)

I b

(四)垂直关系(包括线面垂直,面面垂直)

1.线面垂直

①定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。

符号表述:若任意a, 都有 l a ,且 l ,则 l.

a,b

a I

b O

②判定定理: l l (线线垂直线面垂直)

l a

l b

a //

b //

a

③证明或判定线面垂直的依据:( 1)b(较常用);(2)

a a

④性质:( 1)l , a l a (线面垂直线线垂直);( 2)a, b a // b

3.2 面面斜交

①二面角:( 1)定义:【如图】

OB l , OA l AOB 是二面角-l的平面角

范围:AOB [0 ,180 ]

②作二面角的平面角的方法:( 1)定义法;(2)三垂线法(常

用);(3)垂面法 .

3.3 面面垂直

( 1)定义:若二面角l的平面角为 90 ,则;

( 2)判定定理:如果一个平面经过另一个平面的一条垂线,那 a B 么这两个平面互相垂直 .

a

(线面垂直面面垂直) A

a

( 3)性质:①若,二面角的一个平面角为MON ,则 MON 90 ;

a I AB

线面垂直); A

②a(面面垂直

a a

a AB

a或a //

a

A

③a.④

A a

a

(一)、立体几何网络图:

公理 4

⑴⑵⑷

线线平行线面平行面面平行

⑶⑸

三垂线定理

⑼⒂

线线垂直线面垂直面面垂直

⑽⒃

三垂线逆定理

1、线线平行的判断:

(1)、平行于同一直线的两直线平行。

(3)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(6)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。(12)、垂直于同一平面的两直线平行。

2、线线垂直的判断:

(7)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

(8)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。

(10)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。

补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。3、线面平行的判断:

(2)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

内的直线必平行于另一个平面。

【实战真题】

1、如图,在四棱锥P ABCD 中,平面PAD⊥平面ABCD ,AB=AD ,∠ BAD=60 °, E、 F 分别是 AP、 AD 的中点

求证:

(1)直线 EF∥平面 PCD;

(2)平面 BEF⊥平面 PAD

2、四棱锥 P-ABCD 中, PA⊥底面 ABCD ,AB ⊥ AD ,点 E 在线段 AD 上,且 CE∥ AB 。

( I)求证: CE⊥平面 PAD;

(11)若 PA=AB=1 , AD=3 , CD= 2 ,∠CDA=45°,求四棱锥P-ABCD 的体积

1

3.如图,四边形 ABCD 为正方形, QA⊥平面 ABCD , PD ∥ QA, QA=AB= PD .

2 (I )证明: PQ⊥平面 DCQ ;

(II )求棱锥 Q— ABCD 的的体积与棱锥P— DCQ 的体积的比值.

4.如图,四棱锥P ABCD 中,底面ABCD为平行四边形,DAB 60 ,AB 2 AD ,PD 底面 ABCD .

(I )证明:PA BD ;

(II )设 PD=AD=1 ,求棱锥D-PBC 的高.

5. 如图,在直三棱柱

ABC A1B1C1中, A1 B1

1 1

, D

AC E 分别

是棱 BC ,CC1上的点(点D不同于点 C ),且 AD DE ,F 为B1C1的中点.

求证:( 1)平面ADE 平面 BCC1 B1;

( 2)直线A1F //平面ADE.

答案 1、

2.( I)明:因PA 平面 ABCD,CE 平面 ABCD,所以PA CE.

因 AB AD , CE / / AB, 所以 CE AD.

又 PA I AD A, 所以CE平面PAD。

( II)由( I)可知CE AD ,

在 Rt ECD 中,DE=CD cos 45 1,CE CD sin 45 1,

又因 AB CE 1, AB / /CE ,所以四形ABCE矩形,

所以S

四边形 ABCD S矩形ADCE S ECD AB AE 1

CE DE 1 2 1 1 1 5 .

2 2 2

又 PA 平面 ABCD, PA=1,所以V四边形P

1

PA

1 5 5 ABCD

S四边形

ABCD

3

1.

3 2 6

3.解:( I)由条件知 PDAQ 直角梯形

因 QA ⊥平面 ABCD ,所以平面 PDAQ ⊥平面 ABCD ,交 AD.

又四形 ABCD 正方形, DC ⊥ AD ,所以 DC⊥平面 PDAQ ,可得 PQ⊥ DC.

在直角梯形 PDAQ 中可得 DQ=PQ=

2

PD, PQ⊥ QD 2

所以 PQ⊥平面 DCQ. ?????? 6 分

( II ) AB= a.

由知 AQ 棱 Q— ABCD 的高,所以棱Q— ABCD 的体V1 1 a3.

3

由( I)知 PQ 棱 P— DCQ 的高,而 PQ= 2a ,△DCQ的面 2 a2,

2

立体几何

所以棱 P— DCQ 的体V2 1 a3.

3

故棱 Q— ABCD 的体与棱P— DCQ 的体的比 1.???? 12 分

4.(Ⅰ)因DAB 60 , AB 2AD ,由余弦定理得 BD 3AD

从而 BD 2+AD 2= AB 2,故 BD AD

又PD 底面 ABCD ,可得 BD PD

所以 BD平面PAD.故PA BD

(Ⅱ)如,作DE PB,垂足E。已知 PD底面ABCD,PD BC 。由(Ⅰ)知BD AD ,又 BC//AD ,所以 BC BD 。

故 BC平面PBD,BC DE 。

DE 平面 PBC。

由知, PD=1 , BD= 3 ,PB=2,

根据 BE·PB=PD· BD ,得 DE= 3 ,

2

即棱 D— PBC 的高 3 .

2

5 明:(1)∵ABC A1B1C1是直三棱柱,∴CC1 平面 ABC 。

又∵ AD 平面 ABC ,∴ CC1 AD 。

又∵ AD DE ,CC1, DE 平面 BCC1 B1,CC1 I DE E ,

∴ AD 平面 BCC1 B1

又∵ AD 平面 ADE ,∴平面 ADE 平面 BCC1 B1。

( 2)∵A B AC ,

F B C 的中点,∴ A F B C 。

1 1 1 1 1 1 1 1 1

又∵ CC1 平面 A1 B1C1,且 A1 F 平面 A1B1C1,∴ CC1 A1F 。

又∵ CC1,B1C1 平面 BCC1B1, CC1 I B1 C1 C1,∴ A1F 平面 A1 B1C1。

立体几何

又∵ AD平面ADE , A1F平面ADE,∴直线A1F //平面ADE

高中数学立体几何教学研究

高中数学“立体几何”教学研究 一 . “立体几何”的知识能力结构 高中的立体几何是按照从局部到整体的方式呈现的,在必修2中,先从对空间几何体的整体认识入手,主通过直观感知、操作确认,获得空间几何体的性质,此后,在空间几何体的点、直线和平面的学习中,充分利用对模型的观察,发现几何体的几何性质并通过简单的“推理”得到一些直线和平面平行、垂直的几何性质,从微观上为进一步深入研究空间几何体做了必要的准备.在选修2-1中,首先引入空间向量,在必修2的基础上完善了几何论证的理论基础,在此基础上对空间几何体进行了深入的研究. 首先安排的是对空间几何体的整体认识,要求发展学生的空间想像能力,几何直观能力,而没有对演绎推理做出要求. 在“空间点、直线、平面之间的位置关系”的研究中,以长方体为模型,通过说理(归纳出判定定理,不证明)或简单推理进行论证(归纳并论证明性质定理), 在“空间向量与立体几何”的学习中,又以几何直观、逻辑推理与向量运算相结合,完善了空间几何推理论证的理论基础,并对空间几何中较难的问题进行证明. 可见在立体几何这三部分中,把空间想像能力,逻辑推理能力,适当分开,有所侧重地、分阶段地进行培养,这一编排有助于发展学生的空间观念、培养学生的空间想象能力、几何直观能力,同时降低学习立体几何的门槛,同时体现了让不同的学生在数学上得到不同的发展的课标理念. 二. “立体几何”教学内容的重点、难点 1.重点: 空间几何体的结构特征:柱、锥、台、球的结构特征的概括; 空间几何体的三视图与直观图:几何体的三视图和直观图的画法; 空间几何体的表面积与体积:了解柱、锥、台、球的表面积与体积的计算公式; 空间点、直线、平面的位置关系:空间直线、平面的位置关系; 直线、平面平行的判定及其性质:判定定理和性质定理的归纳; 直线、平面垂直的判定及其性质:判定定理和性质定理的归纳. 2.难点: 空间几何体结构特征的概括:柱、锥、台球的结构特征的概括; 空间几何体的三视图与直观图:识别三视图所表示的几何体; 空间点、直线、平面的位置关系:三种语言的转化; 直线、平面平行的判定及其性质:性质定理的证明; 直线、平面垂直的判定及其性质:性质定理的证明.

高中数学(文科)立体几何知识点总结

l立体几何知识点整理(文科)l // m l //m m 直线和平面的三种位置关系:一.αl 1. 线面平行 方法二:用面面平行实现。l//l //αl符号表示: 2. 线面相交βl lαAα方法三:用平面法向量实现。符号表示:

n 为平若面线在面内3. 的一个法向量,ln n l ll //且。,则l αα符号表示: 二.平行关系:线线平行:1.方法一:用线面平行实现。3. 面面平行:l mβl //l方法一:用线线平行实现。l'l // ml m'αl // l 'm m // m'm//且相交l , m且相交l ' , m'方法二:用面面平行实现。//l βl // mlγm m α方法二:用线面平行实现。 方法三:用线面垂直实现。 l // l, m l // m //m //若。,则l l , m且相交mβ方法四:用向量方法:m l l // m。若向量和向量共线且l、m不重合,则α 2.线面平行: 方法一:用线线平行实现。1/11

l C A方法三:用向量方法: Bα l m l m ,则的数量积为和向量若向量0。三.垂直关系:

夹角问题。三.线面垂直:1.异面直线所成的角:一)(方法一:用线线垂直实现。(0 ,90 ]范围:(1) ACl ABl 求法:(2)P n l ABAC A方法一:定义法。AθO AC, ABα:平移,使它们相交,找到夹角。步骤1 方法二:用面面垂直实现。)常用到余弦定理步骤2:解三角形求出角。( 余弦定理:βl lm a c222c ab l m, l m cosθ2ab bα )计算结果可能是其补角( 面面垂直:2.方法二:向量法。转化为向量 方法一:用线面垂直实现。 C的夹角βl lθl:)(计算结果可能是其补角 BA AB ACαcos AB AC方法二:计算所成二面角为直角。 线面角)(二线线垂直:3. 上任取一点(1) 定义:直线l ,作(交点除外)P方法一:用线面垂直实现。 内,则连结AO AO 为斜线PA 在面于O,PO l l m PAO 图中(与面)为直线l l所成的角。的射影,m

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

高中数学立体几何证明定理及性质总结

一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 l 符号表示: 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。方法二:用面面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。若α α⊥ ⊥m l,,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 3.面面平行: 方法一:用线线平行实现。方法二:用线面平行实现 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 。β α β α α // , // // ? ? ? ? ? ? ?且相交 m l m l 三.垂直关系: l

1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 α α⊥??? ????? ?=?⊥⊥l AB AC A AB AC AB l AC l , αββαβα⊥???? ???⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 βαβα⊥?? ?? ?⊥l l 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥????

立体几何-2009-2017全国高中数学联赛分类汇编

2009-2017全国高中数学联赛分类汇编第09讲:立体几何 1、(2010一试7)正三棱柱111C B A ABC -的9条棱长都相等,P 是1CC 的中点,二面角α=--11B P A B ,则=αsin 【答案】4 【解析】 O E P 1B 1 A 1 C B A 设分别与平面P BA 1、平面P A B 11垂直的向量是),,(111z y x m =、),,(222z y x n =,则 ???? ?=++-=?=+-=?,03, 022111111z y x z x BA ???? ?=-+-=?=-=?, 03, 022221211z y x B x A B n 由此可设)3,1,0(),1,0,1(==,所以cos m n m n α?=? ,即 2cos cos αα=?= .所以4 10sin =α. 解法二:如图,PB PA PC PC ==11, . 设B A 1与1AB 交于点,O 则1111,,OA OB OA OB A B AB ==⊥ . 11,,PA PB PO AB =⊥因为 所以 从而⊥1AB 平面B PA 1 . 过O 在平面B PA 1上作P A OE 1⊥,垂足为E .

连结E B 1,则EO B 1∠为二面角11B P A B --的平面角.设21=AA ,则易求得 3,2,5111== ===PO O B O A PA PB . 在直角O PA 1?中,OE P A PO O A ?=?11,即5 6,532= ∴?= ?OE OE . 11B O B E =∴===又.4 10 5 542sin sin 111= ==∠=E B O B EO B α. 2、(2011一试6)在四面体ABCD 中,已知?=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为 【解析】 因为?=∠=∠=∠60ADB CDB CDA ,设CD 与平面ABD 所成角为θ,可求得3 2sin ,3 1cos = = θθ. 在△DMN 中,332 33232,121=??=?=== DP DN CD DM .学科*网 由余弦定理得231312)3(1222=? ??-+=MN , 故2=MN .四边形DMON 的外接圆的直径 33 22sin === θ MN OD .故球O 的半径3=R . 3、(2012一试5)设同底的两个正三棱锥P ABC -和Q ABC -内接于同一个球.若正三棱锥P ABC -的

高中数学《立体几何(文科)》练习题

高中数学《立体几何》练习题 1.用斜二测画法画出长为6,宽为4的矩形水平放置的直观图,则该直观图面积为 ( ) A.12 B.24 C.62 D.122 2.设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是 ( ) A .若//,,m n m n αβ⊥⊥,则αβ⊥ B .若//,,m n m n αβ⊥⊥,则//αβ C .若//,,//m n m n αβ⊥,则α⊥β D .若//,,//m n m n αβ⊥,则//αβ 3.如图,棱长为1的正方体1111D C B A ABCD -中,P 为线段B A 1上的动点,则下列结论错误.. 的是 A .P D DC 11⊥ B .平面⊥P A D 11平面AP A 1 C .1AP D ∠的最大值为090 D .1PD AP +的最小值为22+ 4.一个几何体的三视图如图所示(单位:m),则该几何体的体积为______m 3. 5.若某几何体的三视图如图所示,则此几何体的体积等于 . 6.如图是一个几何体的三视图,则该几何体的体积是____________

7.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞F E D ,,,且知 1:2:::===FS CF EB SE DA SD ,若仍用这个容器盛水,则最多可盛水的体积是原来的 . 8.如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB = 12 PD. (1)证明:PQ ⊥平面DCQ ; (2)求棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值.[来 9.如图所示的多面体中,ABCD 是菱形,BDEF 是矩形,ED ⊥面ABCD ,3 BAD π ∠=. (1)求证://BCF AED 平面平面. (2)若,BF BD a A BDEF ==-求四棱锥的体积。 10.在四棱锥ABCD P -中,底面ABCD 为矩形,ABCD PD 底面⊥,1=AB ,2=BC ,3=PD ,F G 、分别为CD AP 、的中点. (1) 求证:PC AD ⊥; (2) 求证://FG 平面BCP ; S F C B A D E

2011—2017高考全国卷文科数学立体几何总结

新课标全国卷 文科数学总结 立 体 几 何 一、选择题 【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( ) 【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂 直的半径.若该几何体的体积是 28π 3 ,则它的表面积是( ) A .17π B . 18π C . 20π D . 28π 【2016,11】平面α过正方体1111ABCD A BC D -的顶点 A ,α∥平面11C B D ,α平面ABCD m =, α 平面11ABB A n =,则,m n 所成角的正弦值为( ) A . 2 B .2 C .3 D .13 【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书 中有如下问 题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) A .14斛 B .22斛 C .36斛 D .66斛 【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的 正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) B A .1 B .2 C .4 D .8 【2015,11】 【2014,8】 【2013,11】 【2012,7】 【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( ) A .三棱锥 B .三棱柱 C .四棱锥 D .四棱柱 【2013,11】某几何体的三视图如图所示,则该几何体的体积为( ). A .16+8π B .8+8π C .16+16π D .8+16π 【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 A .6 B .9 C .12 D .15

高中数学立体几何专项练习

立体几何简答题练习 1、正方形ABCD 与正方形ABEF 所在平面相交于AB,在AE 、BD 上各有一点P 、Q,且AP=DQ 。求证:PQ ∥平面BCE.(用两种方法证明) 2、如图所示,P 是平行四边形ABCD 所在平面外一点,E 、F 分别在PA 、BD 上,且PE:EA=BF:FD,求证:EF ∥平面PBC. 3、如图,E ,F ,G ,H 分别是正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点。 求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .

4、如图所示,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别为AB 、PC 的中点,平面PAD ∩平面PBC =l. (1)求证:l ∥BC ; (2)MN 与平面PAD 是否平行?试证明你的结论。 5、如图,在四棱锥S-ABCD 中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA=SB ,点M 是SD 的中点,AN ⊥SC ,且交SC 于点N 。 (1)求证:SB ∥平面ACM ; (2)求证:平面SAC ⊥平面AMN ; (3)求二面角D-AC-M 的余弦值。 6、如图,在四棱锥P-ABCD 中,底面ABCD 是边长为2的正方形,侧面PAD ⊥底面ABCD,且PA=PD= 2 2 AD,E 、F 分别为PC 、BD 的中点. 求证:(1) 求证:EF ∥平面PAD; (2) 求证:平面PAB ⊥平面PDC; (3) 在线段AB 上是否存在点G,使得二面角C-PD-G 的余弦值为3 1 ?说明理由.

高中数学立体几何知识点总结

高中数学之立体几何 平面的基本性质 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理3 经过不在同一直线上的三个点,有且只有一个平面. 根据上面的公理,可得以下推论. 推论1 经过一条直线和这条直线外一点,有且只有一个平面. 推论2 经过两条相交直线,有且只有一个平面. 推论3 经过两条平行直线,有且只有一个平面. 空间线面的位置关系 共面平行—没有公共点 (1)直线与直线相交—有且只有一个公共点 异面(既不平行,又不相交) 直线在平面内—有无数个公共点 (2)直线和平面直线不在平面内平行—没有公共点 (直线在平面外) 相交—有且只有一公共点 (3)平面与平面相交—有一条公共直线(无数个公共点) 平行—没有公共点 异面直线的判定 证明两条直线是异面直线通常采用反证法. 有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”. 线面平行与垂直的判定 (1)两直线平行的判定 ①定义:在同一个平面内,且没有公共点的两条直线平行. ②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,aβ,α∩β=b,则a∥b. ③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c. ④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b ⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b ⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b. (2)两直线垂直的判定

高中文科数学立体几何知识点总结材料

立体几何知识点整理(文科) 一. 直线和平面的三种位置关系: 1. 线面平行 l 符号表示: 2. 线面相交 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α 方法二:用面面平行实现。 m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。 若α α⊥ ⊥m l,,则m l//。 方法四:用向量方法: 若向量l和向量m共线且l、 m不重合,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 方法三:用平面法向量实现。 若n为平面α的一个法向量,l n⊥且α ? l,则 α // l。 3.面面平行: 方法一:用线线平行实现。 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l l

方法二:用线面平行实现。 βαβαα //,////??? ? ???且相交m l m l 三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 αα⊥???? ? ??? ?=?⊥⊥l AB AC A AB AC AB l AC l , 方法二:用面面垂直实现。 αββαβα⊥??? ? ?? ?⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 βαβα⊥?? ?? ?⊥l l 方法二:计算所成二面角为直角。 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥???? 方法三:用向量方法: 若向量l 和向量m 的数量积为0,则m l ⊥。 三. 夹角问题。 (一) 异面直线所成的角: (1) 范围:]90,0(?? (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。

高中数学立体几何专题证明题训练

A P B C F E D 立体几何专题训练 1.在四棱锥P -ABCD 中,PA =PB .底面ABCD 是菱形, 且∠ ABC =60°.E 在棱PD 上,满足DE =2PE ,M 是AB 的中点. (1)求证:平面PAB ⊥平面PMC ; (2)求证:直线PB ∥平面EMC . 2.如图,正三棱柱ABC —A 1B 1C 1的各棱长都相 等, D 、 E 分别是CC 1和AB 1的中点,点 F 在BC 上且满 足BF ∶FC =1∶3. (1)若M 为AB 中点,求证:BB 1∥平面EFM ; (2)求证:EF ⊥BC 。 3.如图,在长方体1111ABCD A B C D -中,,E P 分别是 11,BC A D 的中点,M 、N 分别是1,AE CD 的中点,1,2AD AA a AB a === (1)求证://MN 面11ADD A (2)求三棱锥P DEN -的体积 4如图1,等腰梯形ABCD 中,AD ∠ο 60⊥⊥⊥ 4a 2a (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积. 6如图,等腰梯形ABEF 中,//AB EF ,AB =2, 1AD AF ==,AF BF ⊥,O 为AB 的中点,矩形ABCD 所在的平面和平面ABEF 互相垂直. (Ⅰ)求证:AF ⊥平面CBF ; (Ⅱ)设FC 的中点为M ,求证://OM 平面DAF ; (Ⅲ)求三棱锥C BEF -的体积. 7在直三棱柱111C B A ABC -中,,900=∠ABC E 、F 分别为 11A C 、11B C 的中点,D 为棱1CC 上任一点. (Ⅰ)求证:直线EF ∥平面ABD ;(Ⅱ)求证:平面ABD ⊥平面11BCC B 8已知正六棱柱111111ABCDEF A B C D E F -的所有棱长均为2,G 为 AF 的中点。 (1)求证:1F G ∥平面11BB E E ; (2)求证:平面1F AE ⊥平面11DEE D ; D A B C P E M A B D C E A B C D E P F A B C D E F M O C 1 A B C D E F A 1 B 1

高中数学立体几何重要知识点(经典)

立体几何知识点 1、柱、锥、台、球的结构特征 (1)棱柱: 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与 高的比的平方。 (3)棱台: 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c 为底面周长,h 为高,' h 为斜高,l 为母线) ch S =直棱柱侧面积 rh S π2=圆柱侧 '2 1ch S =正棱锥侧面积 rl S π=圆锥侧面积 ')(2 121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 () 22R Rl rl r S +++=π圆台表 (3)柱体、锥体、台体的体积公式 V Sh =柱 2V S h r h π==圆柱 13V S h =锥 h r V 23 1π=圆锥 '1()3 V S S h =台 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343 R π ; S 球面=24R π

高中数学-立体几何位置关系-平行与垂直证明方法汇总

高中数学-立体几何位置关系-平行与垂直证明方法汇总 (一)立体几何中平行问题 证明直线和平面平行的方法有: ①利用定义采用反证法; ②平行判定定理; ③利用面面平行,证线面平行。 主要方法是②、③两法 在使用判定定理时关键是确定出面内的 与面外直线平行的直线. 常用具体方法:中位线和相似 例1、P是平行四边形ABCD所在平面外一点,Q是PA的中点. 求证:PC∥面BDQ. 证明:如图,连结AC交BD于点O. ∵ABCD是平行四边形, ∴A O=O C.连结O Q,则O Q在平面BDQ内, 且O Q是△APC的中位线, ∴PC∥O Q. ∵PC在平面BDQ外, ∴PC∥平面BDQ. 例2、在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证: (1)E、F、B、D四点共面; (2)面AMN∥面EFBD.

证明:(1)分别连结B 1D 1、ED 、FB ,如图, 则由正方体性质得 B 1D 1∥BD. ∵E 、F 分别是D 1C 1和B 1C 1的中点, ∴EF ∥ 21B 1D 1.∴EF ∥2 1 BD. ∴E 、F 、B 、D 对共面. (2)连结A 1C 1交MN 于P 点,交EF 于点Q ,连结AC 交BD 于点O ,分别连结PA 、Q O . ∵M 、N 为A 1B 1、A 1D 1的中点, ∴MN ∥EF ,EF ?面EFBD. ∴MN ∥面EFBD. ∵PQ ∥A O , ∴四边形PA O Q 为平行四边形. ∴PA ∥O Q. 而O Q ?平面EFBD , ∴PA ∥面EFBD.且PA ∩MN=P ,PA 、MN ?面AMN , ∴平面AMN ∥平面EFBD. 例3如图(1),在直角梯形P 1DCB 中,P 1D//BC ,CD ⊥P 1D ,且P 1D=8,BC=4,DC=4 6, A 是P 1D 的中点,沿A B 把平面P 1AB 折起到平面PAB 的位置(如图(2)),使二面角P —CD —B 成45°,设E 、F 分别是线段AB 、PD 的中点. 求证:AF//平面PE C ; 证明:如图,设PC 中点为G ,连结FG ,

(完整word版)高中数学立体几何专项练习

立体几何简答题练习 1、正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ。求证:PQ∥平面BCE.(用两种方法证明) 2、如图所示,P是平行四边形ABCD所在平面外一点,E、F分别在PA、BD上,且PE:EA=BF:FD,求证:EF∥平面PBC. 3、如图,E,F,G,H分别是正方体ABCD-A 1B 1 C 1 D 1 的棱BC,CC 1 ,C 1 D 1 ,AA 1 的中点。 求证:(1)EG∥平面BB 1D 1 D; (2)平面BDF∥平面B 1D 1 H.

4、如图所示,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别为AB 、PC 的中点,平面PAD ∩平面PBC =l. (1)求证:l ∥BC ; (2)MN 与平面PAD 是否平行?试证明你的结论。 5、如图,在四棱锥S-ABCD 中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA=SB ,点M 是SD 的中点,AN ⊥SC ,且交SC 于点N 。 (1)求证:SB ∥平面ACM ; (2)求证:平面SAC ⊥平面AMN ; (3)求二面角D-AC-M 的余弦值。 6、如图,在四棱锥P-ABCD 中,底面ABCD 是边长为2的正方形,侧面PAD ⊥底面ABCD,且PA=PD= 2 2 AD,E 、F 分别为PC 、BD 的中点. 求证:(1) 求证:EF ∥平面PAD; (2) 求证:平面PAB ⊥平面PDC; (3) 在线段AB 上是否存在点G,使得二面角C-PD-G 的余弦值为3 1 ?说明理由.

7、如图,在四棱柱ABCD-A 1B 1 C 1 D 1 中,底面ABCD是等腰梯形,∠ DAB=60°,AB=2CD=2,M是线段AB的中点。 (1)求证:C 1M∥平面A 1 ADD 1 ; (2)若CD 1垂直于平面ABCD且CD 1 =3,求平面C 1 D 1 M和平面ABCD所成的角(锐角) 的余弦值。 8、如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点. (1)证明:PA∥平面EDB; (2)证明:BC⊥DE.

高中文科数学立体几何知识点总结

γm βα l l α β立体几何知识点整理(文科) 一. 直线和平面的三种位置关 系: 1. 线面平行 α l 符号表示: 2. 线面相交 α A l 符号表示: 3. 线在面内 α l 符号表示: 二. 平行关系: 1. 线线平行: 方法一:用线面平行实 现。 m l m l l ////??? ? ??=??βαβ α 方法二:用面面平行实现。 m l m l ////??? ? ?? =?=?βγαγβα 方法三:用线面垂直实现。 若αα⊥⊥m l ,,则m l //。 方法四:用向量方法: 若向量l 和向量m 共线且l 、m 不重合,则 m l //。 2. 线面平行: 方法一:用线线平行实现。 ααα////l l m m l ??? ? ?? ?? 方 法二:用面面平行实现。 αββα////l l ?? ?? ? 方法三:用平面法向量实现。 若n 为平面α的一个法向量, l n ⊥且α?l ,则α//l 。 3. 面面平行: 方法一:用线线平行实现。 β ααβ//',',' //'//????? ??? ??且相交且相交m l m l m m l l 方法二:用线面平行实现。 βαβαα //,////??? ? ?? ?且相交m l m l m l α n α l m'l'l α βm m β α l l m β α

三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 αα⊥???? ? ??? ?=?⊥⊥l AB AC A AB AC AB l AC l , 方法二:用面面垂直实现。 αββαβα⊥??? ? ?? ?⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 βαβα⊥?? ?? ?⊥l l 方法二:计算所成二面角为直角。 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥???? 方法三:用向量方法: 若向量l 和向量m 的数量积为0,则m l ⊥。 三. 夹角问题。 (一) 异面直线所成的角: (1) 范围:]90,0(?? (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: ab c b a 2cos 2 22-+=θ (计算结果可能是其补角) 方法二:向量法。转化为向量的夹角 (计算结果可能是其补角): AC AB AC AB ??= θcos (二) 线面角 (1)定义:直线l 上任取一点P (交点除外),作PO ⊥α于O,连结AO ,则AO 为斜线PA 在面α内的射影,PAO ∠(图中θ)为直线l 与面α所成的角。 A B C αl l β α m l β α m α l θ c b a A B C θn A O θ P αl A O P α

高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

高中文科数学立体几何知识点大题

高考立体几何中直线、平面之间的位置关系知识点总结(文科) 一.平行问题 (一) 线线平行: 方法一:常用初中方法(1中位线定理;2平行四边形定理;3三角形中对应边成比例;4同位角、内错角、同旁内角) 方法二:1线面平行?线线平行 m l m l l ////??? ???=??βαβα 方法三:2面面平行?线线平行 m l m l ////??????=?=?βγαγβα 方法四:3线面垂直 ?线线平行 若αα⊥⊥m l ,,则m l //。 (二) 线面平行: 方法一:4线线平行?线面平行 ααα////l l m m l ??? ????? 方法二:5面面平行?线面平行 αββα////l l ????? (三) 面面平行:6方法一:线线平行?面面平行 βααβ//',','//' //??? ???????且相交且相交m l m l m m l l 方法二:7线面平行?面面平行 βαβαα//,////??? ???=?A m l m l m l , 方法三:8线面垂直?面面平行 βαβα面面面面//?? ??⊥⊥l l l

二.垂直问题:(一)线线垂直 方法一:常用初中的方法(1勾股定理的逆定理;2三线合一 ;3直径所对的圆周角为直角;4菱形的对角线互相垂直。) 方法二:9线面垂直?线线垂直 m l m l ⊥?? ???⊥αα (二)线面垂直:10方法一:线线垂直?线面垂直 αα⊥??? ? ?????=?⊥⊥l AB AC A AB AC AB l AC l , 方法二:11面面垂直?线面垂直 αββαβα⊥??? ????⊥=?⊥l l m l m , (面) 面面垂直: 方法一:12线面垂直?面面垂直 βαβα⊥?? ???⊥l l 三、夹角问题:异面直线所成的角: (一) 范围:]90,0(?? (二)求法:方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(计算结果可能是其补角) 线面角:直线PA 与平面α所成角为θ,如下图 求法:就是放到三角形中解三角形 四、距离问题:点到面的距离求法 1、直接求, 2、等体积法(换顶点)

高中数学立体几何大题及答案解析

高中数学立体几何大题 及答案解析 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-

高中数学《立体几何》大题及答案解析(理) 1.(2009全国卷Ⅰ)如图,四棱锥S ABCD -中,底面 ABCD 为矩形,SD ⊥底面ABCD ,2AD =, 2DC SD ==,点M 在侧棱SC 上,∠ABM=60。 (I )证明:M 是侧棱SC 的中点; ()II 求二面角S AM B --的大小。 2.(2009全国卷Ⅱ)如图,直三棱柱ABC-A 1B 1C 1中,AB⊥AC,D、E 分别为AA 1、B 1C 的中点,DE⊥平面BCC 1(Ⅰ)证明:AB=AC (Ⅱ)设二面角A-BD-C 为60°,求B 1C 与平面BCD 所成的角的大小 3.(2009浙江卷)如图,DC ⊥平面ABC ,//EB DC , 22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证 明://PQ 平面ACD ;(II )求AD 与平面 ABE 所成角的正弦值. 4.(2009北京卷)如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ) 当 2PD AB =且E 为PB 的中点时,求AE 与平面PDB 所 成的角的大小. 5.(2009江西卷)如图,在四棱锥P ABCD -中,底 面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==, A B A 1 B 1 D E O A P B M

2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . (1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 6.(2009四川卷)如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形, ,,45AB AE FA FE AEF ?==∠=(I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。 7.(2009湖北卷文)如图,四棱锥S-ABCD 的底面是正方形,SD ⊥平面ABCD,SD =AD =a,点E 是SD 上的点,且DE =λa(0<λ≦1). (Ⅰ)求证:对任意的λ∈(0、1),都有AC ⊥BE: (Ⅱ)若二面角C-AE-D 的大小为600C ,求λ的值。 8.(2009湖南卷)如图3,在正三棱柱111ABC A B C -中,AB =4, 17AA =,点D 是BC 的中点,点E 在AC 上,且DE ⊥1A E.(Ⅰ)证明:平面1A DE ⊥平面 11ACC A ;(Ⅱ)求直线AD 和平面1A DE 所成角的正弦值。

高中数学立体几何大题练习(文科)

立体几何大题练习(文科): 1.如图,在四棱锥S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,侧面SAD⊥底面ABCD. (1)求证:平面SBD⊥平面SAD; (2)若∠SDA=120°,且三棱锥S﹣BCD的体积为,求侧面△SAB的面积. 【分析】(1)由梯形ABCD,设BC=a,则CD=a,AB=2a,运用勾股定理和余弦定理,可得AD,由线面垂直的判定定理可得BD⊥平面SAD,运用面面垂直的判定定理即可得证; (2)运用面面垂直的性质定理,以及三棱锥的体积公式,求得BC=1,运用勾股定理和余弦定理,可得SA,SB,运用三角形的面积公式,即可得到所求值.【解答】(1)证明:在梯形ABCD中,AB∥DC,∠ABC=90°,BC=CD=, 设BC=a,则CD=a,AB=2a,在直角三角形BCD中,∠BCD=90°, 可得BD=a,∠CBD=45°,∠ABD=45°, 由余弦定理可得AD==a, 则BD⊥AD, 由面SAD⊥底面ABCD.可得BD⊥平面SAD, 又BD?平面SBD,可得平面SBD⊥平面SAD; (2)解:∠SDA=120°,且三棱锥S﹣BCD的体积为, 由AD=SD=a, 在△SAD中,可得SA=2SDsin60°=a, △SAD的边AD上的高SH=SDsin60°=a, 由SH⊥平面BCD,可得 ×a××a2=,

解得a=1, 由BD⊥平面SAD,可得BD⊥SD, SB===2a, 又AB=2a, 在等腰三角形SBA中, 边SA上的高为=a, 则△SAB的面积为×SA×a=a=. 【点评】本题考查面面垂直的判定定理的运用,注意运用转化思想,考查三棱锥的体积公式的运用,以及推理能力和空间想象能力,属于中档题. 2.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD. 求证:(1)EF∥平面ABC; (2)AD⊥AC. 【分析】(1)利用AB∥EF及线面平行判定定理可得结论; (2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论. 【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,

相关文档
最新文档