基于牛顿-欧拉法的3-UPS/S并联机构动力学分析

基于牛顿-欧拉法的3-UPS/S并联机构动力学分析
基于牛顿-欧拉法的3-UPS/S并联机构动力学分析

牛顿第二定律的系统表达式及应用一中

牛顿第二定律的系统表达式 一、整体法和隔离法处理加速度相同的连接体问题 1.加速度相同的连接体的动力学方程: F 合 = (m 1 +m 2 +……)a 分量表达式:F x = (m 1 +m 2 +……)a x F y = (m 1 +m 2 +……)a y 2. 应用情境:已知加速度求整体所受外力或者已知整体受力求整体加速度。 例1、如图,在水平面上有一个质量为M的楔形木块A,其斜面倾角为α,一质量为m的木块B放在A的斜面上。现对A施以水平推力F, 恰使B与A不发生相对滑动,忽略一切摩擦,则B对 A的压力大小为( BD ) A 、 mgcosα B、mg/cosα C、FM/(M+m)cosα D、Fm/(M+m)sinα ★题型特点:隔离法与整体法的灵活应用。 ★解法特点:本题最佳方法是先对整体列牛顿第二定律求出整体加速度,再隔离B受力分析得出A、B之间的压力。省去了对木楔受力分析(受力较烦),达到了简化问题的目的。 例2.质量分别为m1、m2、m3、m4的四个物体彼此用轻绳连接,放在光滑的桌面上,拉力F1、F2分别水平地加在m1、m4上,如图所示。求物体系的加速度a和连接m2、m3轻绳的张力F。(F1>F2) 例3、两个物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图所示,对物体A施以水平的推力F,则物体A对B的作用力等于 ( ) A.F F F F 3、B 解析:首先确定研究对象,先选整体,求出A、B共同的加速度,再单独研究B,B 在A施加的弹力作用下加速运动,根据牛顿第二定律列方程求解. 将m1、m2看做一个整体,其合外力为F,由牛顿第二定律知,F=(m1+m2)a,再以m2为研究对象,受力分析如右图所示,由牛顿第二定律可得:F12=m2a,以上两式联立可得:F12= ,B正确. 例4、在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b和c,如图1所示,已知m1>m2,三木块均处于静止, 则粗糙地面对于三角形木块( D ) A.有摩擦力作用,摩擦力的方向水平向右。B.有摩擦力作用,摩擦力的方向水平向左。C.有摩擦力作用,组摩擦力的方向不能确定。D.没有摩擦力的作用。 二、对加速度不同的连接体应用牛顿第二定律1.加速度不同的连接体的动力学方程:b c a

牛顿第二定律以及专题训练

牛顿第二定律 1.牛顿第二定律的表述(内容) 物体的加速度跟物体所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,公式为:F=ma(其中的F和m、a必须相对应)。 对牛顿第二定律理解: (1)F=ma中的F为物体所受到的合外力. (2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个物体组成一个系统)做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变. (4)F=ma中的F与a有矢量对应关系,a的方向一定与F的方向相同。 (5)F=ma中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度. 若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不是物体的实际加速度。 (6)F=ma中,F的单位是牛顿,m的单位是千克,a的单位是米/秒2. (7)F=ma的适用范围:宏观、低速 2.应用牛顿第二定律解题的步骤 ①明确研究对象。可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。设每个质点的质量为m i,对应的加速度为a i,则有:F合=m1a1+m2a2+m3a3+……+m n a n 对这个结论可以这样理解:先分别以质点组中的每个物体为研究对象用牛顿第二定律: ∑F1=m1a1,∑F2=m2a2,……∑F n=m n a n,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现的,其矢量和必为零,所以最后实际得到的是该质点组所受的所有外力之和,即合外力F。 ②对研究对象进行受力分析。(同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。 ③若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。 ④当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。 解题要养成良好的习惯。只要严格按照以上步骤解题,同时认真画出受力分析图,那么问题都能迎刃而解。 3.应用举例 【例1】质量为m的物体放在水平地面上,受水平恒力F作用,由静止开始做匀加速直线运动,经过ts后,撤去水平拉力F,物体又经过ts停下,求物体受到的滑动摩擦力f.

牛顿第二定律教学设计市级一等奖

牛顿第二定律 教学设计 教材分析 牛顿第二定律是动力学部分的核心内容,它具体地、定量地回答了物体运动状态的变化,即加速度与它所受外力的关系,以及加速度与物体自身的惯性——质量的关系;况且此定律是联系运动学与力学的桥梁,它在中学物理教学中的地位和作用不言而喻,所以本节课的教学对力学是至关重要的.本节课是在上节探究结果的基础上加以归纳总结得出牛顿第二定律的内容,关键是通过实例分析强化训练让学生深入理解,全面掌握牛顿第二定律,会应用牛顿第二定律解决有关问题. 学情分析???? 学生学习了第二节实验课:探究加速度与力/质量的关系,?对a?m?F三者关系都有了初步了解,并且总结出了相关规律,所以对本节理论课内容做好了铺垫,对掌握本节内容具有重要作用,? 教学目标: 知识与技能 1、能准确表述牛顿第二定律 2、理解数学表达式中各物理量的意义及相互关系 3、知道在国际单位制中力的单位“牛顿”是怎样定义的 4、能运用牛顿第二定律分析和处理简单的问题 过程与方法 通过对上节课实验结论的归纳,培养学生概括和分析推理能力

情感与态度 1、渗透物理学研究方法的教育——由实验归纳总结物理规律 2、让学生感受到物理学在认识自然上的本质性、深刻性、有效性 教学重点: 牛顿第二定律 教学难点: 1、牛顿第二定律公式的理解 2、理解k=1时,F=ma 教学方法和程序:探讨、归纳、数字化实验、讯飞多媒体辅助互动等。具体步骤是:创设物理情景→回顾与思考→数字化演示实验→总结规律→讯飞多媒体辅助互动。 教学过程:

板书设计: 牛顿第二定律 1.内容:物体的加速度跟所受的合外力成正比,跟物体的质量成反比.加速度的方向跟合外力的方向相同 2.表达式:a =F 合m 或F 合=ma 说明:①a =F m 是加速度的决定式②力是产生加速度的原因③m =F a 中m 与F 、a 无关 1. 3.对牛顿第二定律的理解:①矢量性 ②因果性 ③瞬时性 ④同体性 ⑤独立性 ⑥局限性 4.应用牛顿第二定律解题的一般步骤 备用习题: 1.如图所示,一物体以一定的初速度沿斜面向 上滑动,滑到顶点后又返回斜面底端.试分析在物 体运动的过程中加速度的变化情况. 解析:在物体向上滑动的过程中,物体运动受到重力和斜面的摩擦力作用,其沿斜面的合力平行于斜面向下,所以物体运动的加速度方向是平行斜面向下的,与物体运动的速度方向相反,物体做减速运动,直至速度减为零.在物体向下滑动的过程中, 物体运动也是受到重力和斜面的摩擦力作用,但摩擦力的方向平行斜面向上,其沿斜面的合力仍然是

牛顿第二定律练习题和答案

牛顿第二定律练习题和 答案 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

牛顿第二定律练习题 一、选择题 1.关于物体运动状态的改变,下列说法中正确的是 [ ] A.物体运动的速率不变,其运动状态就不变 B.物体运动的加速度不变,其运动状态就不变 C.物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D.物体的运动速度不变,我们就说它的运动状态不变 2.关于运动和力,正确的说法是 [ ] A.物体速度为零时,合外力一定为零 B.物体作曲线运动,合外力一定是变力 C.物体作直线运动,合外力一定是恒力 D.物体作匀速运动,合外力一定为零 3.在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ] A.匀减速运动B.匀加速运动 C.速度逐渐减小的变加速运动D.速度逐渐增大的变加速运动 4.在牛顿第二定律公式F=km·a中,比例常数k的数值: [ ] A.在任何情况下都等于1 B.k值是由质量、加速度和力的大小决定的 C.k值是由质量、加速度和力的单位决定的

D.在国际单位制中,k的数值一定等于1 5.如图1所示,一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中,关于小球运动状态的下列几种描述中,正确的是 [ ] A.接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零 B.接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零 C.接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被压缩最大之处 D.接触后,小球速度最大的地方就是加速度等于零的地方 6.在水平地面上放有一三角形滑块,滑块斜面上有另一小滑块正沿斜面加 速下滑,若三角形滑块始终保持静止,如图2所示.则地面对三角形滑块 [ ] A.有摩擦力作用,方向向右B.有摩擦力作用,方向向左 C.没有摩擦力作用D.条件不足,无法判断 7.设雨滴从很高处竖直下落,所受空气阻力f和其速度v成正比.则雨滴的运动情况是 [ ] A.先加速后减速,最后静止B.先加速后匀速 C.先加速后减速直至匀速D.加速度逐渐减小到零 8.放在光滑水平面上的物体,在水平拉力F的作用下以加速度a运动,现将拉力F 改为2F(仍然水平方向),物体运动的加速度大小变为a′.则 [ ] A.a′=a B.a<a′<2a C.a′=2a D.a′>2a

牛顿第二定律两类动力学问题及答案解析

牛顿第二定律两类动力学问题 知识点、两类动力学问题 1.动力学的两类基本问题 第一类:已知受力情况求物体的运动情况。 第二类:已知运动情况求物体的受力情况。 2.解决两类基本问题的方法 以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如图: 对牛顿第二定律的理解 1.牛顿第二定律的“五个性质”

2.合力、加速度、速度的关系 (1)物体的加速度由所受合力决定,与速度无必然联系。 (2)合力与速度夹角为锐角,物体加速;合力与速度夹角为钝角,物体减速。 (3)a=Δv Δt 是加速度的定义式,a与v、Δv无直接关系;a= F m 是加速度的决定式。 3.[应用牛顿第二定律定性分析]如图1所示,弹簧左端固定,右端自由伸长到O点并系住质量为m的物体,现将弹簧压缩到A点,然后释放,物体可以一直运动到B点。如果物体受到的阻力恒定,则( ) 图1 A.物体从A到O先加速后减速 B.物体从A到O做加速运动,从O到B做减速运动 C.物体运动到O点时,所受合力为零 D.物体从A到O的过程中,加速度逐渐减小 解析物体从A到O,初始阶段受到的向右的弹力大于阻力,合力向右。随着物体向右运动,弹力逐渐减小,合力逐渐减小,由牛顿第二定律可知,加速度向右且逐渐减小,由于加速度与速度同向,物体的速度逐渐增大。当物体向右运动至AO间某点(设为点O′)时,弹力减小到与阻力相等,物体所受合力为零,加速度为零,速度达到最大。此后,随着物体继续向右运动,弹力继续减小,阻力大于弹力,合力方向变为向左。至O点时弹力减为零,此后弹力向左且逐渐增大。所以物体越过O′点后,合力(加速度)方向向左且逐渐增大,由于加速度与速度反

牛顿第二定律测习题和答案

牛顿第二定律测习题和 答案 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

牛顿第二定律练习题 一、选择题 1.关于物体运动状态的改变,下列说法中正确的是[] A.物体运动的速率不变,其运动状态就不变 B.物体运动的加速度不变,其运动状态就不变 C.物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D.物体的运动速度不变,我们就说它的运动状态不变 2.关于运动和力,正确的说法是[] A.物体速度为零时,合外力一定为零 B.物体作曲线运动,合外力一定是变力 C.物体作直线运动,合外力一定是恒力 D.物体作匀速运动,合外力一定为零 3.在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作[] A.匀减速运动B.匀加速运动 C.速度逐渐减小的变加速运动D.速度逐渐增大的变加速运动 4.在牛顿第二定律公式F=km·a中,比例常数k的数值:[] A.在任何情况下都等于1 B.k值是由质量、加速度和力的大小决定的 C.k值是由质量、加速度和力的单位决定的 D.在国际单位制中,k的数值一定等于1 5.如图1所示,一小球自空中自由落下,与正下方的直立轻质弹簧接触,

直至速度为零的过程中,关于小球运动状态的下列几种描述中,正确的是[] A.接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后 等于零 B.接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零C.接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被压 缩最大之处 D.接触后,小球速度最大的地方就是加速度等于零的地方 6.在水平地面上放有一三角形滑块,滑块斜面上有另一小滑块正沿斜面加 速下滑,若三角形滑块始终保持静止,如图2所示.则地面对三角形滑块[] A.有摩擦力作用,方向向右B.有摩擦力作用,方向向左 C.没有摩擦力作用D.条件不足,无法判断 7.设雨滴从很高处竖直下落,所受空气阻力f和其速度v成正比.则雨滴的运动情况是[] A.先加速后减速,最后静止B.先加速后匀速 C.先加速后减速直至匀速D.加速度逐渐减小到零 8.放在光滑水平面上的物体,在水平拉力F的作用下以加速度a运动,现将拉力F改为 2F(仍然水平方向),物体运动的加速度大小变为a′.则[] A.a′=a B.a<a′<2aC.a′=2a D.a′>2a 9.一物体在几个力的共同作用下处于静止状态.现使其中向东的一个力F的值逐渐减小 到零,又马上使其恢复到原值(方向不变),则[] A.物体始终向西运动B.物体先向西运动后向东运动 C.物体的加速度先增大后减小D.物体的速度先增大后减小 二、填空题

牛顿第二定律总结

牛顿第二定律应用的典型问题 1. 力和运动的关系 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气 故正确答案选C。 2. 力和加速度的瞬时对应关系 (1)物体运动的加速度a与其所受的合外力F有瞬时对应关系。每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之间或瞬时之后的力无关。若合外力变为零,加速度也立即变为零(加速度可以突变)。这就是牛顿第二定律的瞬时性。 (2)中学物理中的“绳”和“线”,一般都是理想化模型,具有如下几个特性: ①轻,即绳(或线)的质量和重力均可视为零。由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等。 ②软,即绳(或线)只能受拉力,不能承受压力(因绳能弯曲)。由此特点可知,绳与其他物体相互作用力的方向是沿着绳子且背离受力物体的方向。 ③不可伸长:即无论绳子所受拉力多大,绳子的长度不变。由此特点知,绳子中的张力可以突变。 (3)中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性: ①轻:即弹簧(或橡皮绳)的质量和重力均可视为零。由此特点可知,同一弹簧的两端及其中间各点的弹力大小相等。 ②弹簧既能受拉力,也能受压力(沿弹簧的轴线);橡皮绳只能受拉力,不能承受压力(因橡皮绳能弯曲)。 ③由于弹簧和橡皮绳受力时,其形变较大,发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能突变。但是,当弹簧和橡皮绳被剪断时,它们所受的弹力立即消失。

牛顿第二定律 两类动力学问题

课时跟踪检测(九) 牛顿第二定律 两类动力学问题 对点训练:牛顿第二定律的理解 1.若战机从“辽宁号”航母上起飞前滑行的距离相同,牵引力相同,则( ) A .携带弹药越多,加速度越大 B .加速度相同,与携带弹药的多少无关 C .携带弹药越多,获得的起飞速度越大 D .携带弹药越多,滑行时间越长 2.(多选)如图所示,一木块在光滑水平面上受一恒力F 作用,前方固定一足够长的水平轻弹簧,则当木块接触弹簧后,下列判断正确的是( ) A .木块立即做减速运动 B .木块在一段时间内速度仍增大 C .当F 等于弹簧弹力时,木块速度最大 D .弹簧压缩量最大时,木块速度为零但加速度不为零 3.如图所示,在倾角为θ=30°的光滑斜面上,物块A 、B 质量分别为m 和2m 。物块A 静止在轻弹簧上面,物块B 用细线与斜面顶端相连,A 、B 紧挨在一起但A 、B 之间无弹力。已知重力加速度为g ,某时刻把细线剪断,当细线剪断瞬间,下列说法正 确的是( ) A .物块A 的加速度为0 B .物块A 的加速度为g 3 C .物块B 的加速度为0 D .物块B 的加速度为g 2 4.(多选)如图所示,在动摩擦因数μ=0.2的水平面上有一个质量m =1 kg 的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,此时小球处于静止状态,且水平面对小球的弹力恰好为零。在剪断轻绳的瞬间(g 取10 m/s 2),下列说法中正确的是( ) A .小球受力个数不变 B .小球立即向左运动,且a =8 m/s 2 C .小球立即向左运动,且a =10 m/s 2 D .若剪断的是弹簧,则剪断瞬间小球加速度为零 5.如图所示,两根长度分别为L 1和L 2的光滑杆AB 和BC 在B 点垂直焊接,当按图示方式固定在竖直平面内时,将一滑环从B 点由静止释放,分别沿BA 和BC 滑到杆的底端经历的时间相同,则这段时间为( ) A. 2L 1L 2g B. 2L 1L 2g

第2讲牛顿第二定律两类动力学问题

第2讲牛顿第二定律两类动力学问题 一、单项选择题 1.(2014·盐城调研)2013年6月20日,在“天宫一号”测出指令长聂海胜的质量.聂海胜受到恒定作用力F从静止开始运动,经时间t时,测速仪测出他运动的速率为v,则聂海胜的质量为() A. B. C. D. 2.如图所示,三个物块A、B、C的质量满足m A=2m B=3m C,A与天花板之间、B与C之间均用轻弹簧相连,A与 B之间用细绳相连.当系统静止后,突然剪断A、B间的细绳,则此瞬间A、B、C的加速度分别为(取向下为正方向)() A. -g、2g、0 B. -2g、2g、0 C. -g、g、0 D. -2g、g、g 3.(2017·扬州中学)如图所示,一根轻弹簧竖直直立在水平地面上,下端固定,在弹簧的正上方有一个物块,物块从高处自由下落到弹簧上端O,将弹簧压缩,弹簧被压缩了x0时,物块的速度变为零.从物块与弹簧接触开始,物块的加速度的大小随下降的位移x变化的图象可能是下图中的() A B C D 4.(2015·重庆卷)若货物随升降机运动的图象如图所示(竖直向上为正),则货物受到升降机的支持力与时间关系的图象可能是()

A B C D 5.(2015·山西四校联考)如图所示,在倾角为α=30°的光滑固定斜面上,有两个质量均为m的小球A、B,它们用劲度系数为k的轻弹簧连接,现对A施加一水平向右的恒力,使A、B均静止在斜面上,此时弹簧的长度为L,下列说法中正确的是() A.弹簧的原长为L+ B.水平恒力大小为mg C.撤掉恒力的瞬间小球A的加速度为g D.撤掉恒力的瞬间小球B的加速度为g 二、多项选择题 6.如图所示,总质量为460kg的热气球从地面刚开始竖直 上升时的加速度为0.5m/s2,当热气球上升到180m时,以5m/s的速度向上匀速运动.若离开地面后热气球所受浮力保持不变,上升过程中热气球总质量不变,重力加速度取g=10m/s2.关于热气球,下列说法中正确的是() A. 所受浮力大小为4830N B. 加速上升过程中所受空气阻力保持不变 C. 从地面开始上升10s后的速度大小为5m/s D. 以5m/s匀速上升时所受空气阻力大小为230N 7.(2017·木渎中学)物体原来静止在水平地面上,用一水平力F拉物体,在F从0开始逐渐增大的过程中,物体先静止后又做变加速运动,其加速度a随外力F变化的图象如图所示.设最大静摩擦力与滑动摩擦力相等.根据题目提供的信息,下列说法中正确的是() A. 物体的质量m=2 kg B. 物体与水平面间的动摩擦因数μ=0.6 C. 物体与水平面的最大静摩擦力f max=12 N D. 在F为10 N时,物体的加速度a=2.0 m/s 8.(2016·江苏卷)如图所示,一只猫在桌边猛地将桌布从鱼缸下拉出,鱼缸最终没有滑出桌面.若鱼缸、桌布、桌面两两之间的动摩擦因数均相等,则在上述过程中()

牛顿第二定律 基础理解

牛顿第二定律基础理解 不定项选择 1、关于运动和力的关系,下列说法中正确的是 A.力是维持物体运动的原因 B.力是改变物体运动状态的原因 C.一个物体受到的合力越大,它的速度越大 D.一个物体受到的合力越大,它的加速度越大 2、关于伽利略理想实验,以下说法正确的是() A.理想实验是一种实践活动 B.理想实验是一种思维活动 C.伽利略的理想实验否定了亚里士多德关于力与运动的关系 D.伽利略的理想实验证实牛顿第二定律 3、下列说法中正确的是( ) A.物体在不受外力作用时,保持原有运动状态不变的性质叫惯性,故牛顿运动定律又叫惯性定律 B.牛顿第一定律仅适用于宏观物体,只可用于解决物体的低速运动问题 C.牛顿第一定律是牛顿第二定律在物体的加速度a=0条件下的特例 D.伽利略根据理想实验推出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去 4、关于速度、加速度、合外力之间的关系,正确的是( ) A.物体的速度越大,则加速度越大,所受的合外力也越大 B.物体的速度为零,则加速度为零,所受的合外力也为零 C.物体的速度为零,但加速度可能很大,所受的合外力也可能很大 D.物体的速度很大,但加速度可能为零,所受的合外力也可能为零 5、下列对力和运动的认识正确的是() A.亚里士多德认为只有当物体受到力的作用才会运动 B.伽利略认为力不是维持物体速度的原因,而是改变物体速度的原因 C.牛顿认为力是产生加速度的原因 D.伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去

6、由牛顿第二定律表达式F=ma可知 ( ) A.质量m与合外力F成正比,与加速度a成反比 B.合外力F与质量m和加速度a都成正比 C.物体的加速度的方向总是跟它所受合外力的方向一致 D.物体的加速度a跟其所受的合外力F成正比,跟它的质量m成反比 7、关于运动和力的关系,下列说法中正确的是( ) A.当物体所受合外力不变时,运动状态一定不变 B.当物体所受合外力为零时,速度一定不变 C.当物体速度为零时,所受合外力不一定为零 D.当物体运动的加速度为零时,所受合外力不一定为零 8、下列说法正确的是( ) A.物体所受到的合外力越大,其速度改变量也越大 B.物体所受到的合外力不变(F合≠0),其运动状态就不改变 C.物体所受到的合外力变化,其速度的变化率一定变化 D.物体所受到的合外力减小时,物体的速度可能正在增大 9、下列说法正确的是() A.物体受到的合外力方向与速度方向相同时,物体做加速直线运动 B.物体受到的合外力方向与速度方向成锐角时,物体做加速曲线运动 C.物体受到的合外力方向与速度方向成钝角时,物体做减速直线运动 D.物体受到的合外力方向与速度方向相反时,物体做减速直线运动 10、在牛顿第二定律的数学表达式F=kma中,有关比例系数k的说法正确的是( ) A.在任何情况下k都等于1 B.在国际单位制中k一定等于1 C.k的数值由质量、加速度和力的大小决定 D.k的数值由质量、加速度和力的单位决定 11、力F1单独作用在物体A上时产生的加速度a1大小为5m/s2,力F2单独作用在物体A上时产生的加速度a2大小为2m/s2,那么,力F1和F2同时作用在物体A上时产生的加速度a可能是() A. 5m/s2 B. 2m/s2 C. 8m/s2 D. 6m/s2

牛顿第二定律 两类动力学问题

第四章牛顿第二定律 编写人:侯振坚审核人:高二物理使用时间:2018-6 【学习目标】 1. 掌握牛顿运动定律应用的两种基本类型. 2. 掌握瞬时加速度的求解方法。 【课前预习】 知识归纳: 知识点三单位制 .单位制 单位和单位一起组成了单位制. .基本单位 基本物理量的单位.力学中的基本物理量有三个,它们分别是、和 自主检测 1.关于力和运动的关系,下列说法正确的是() A.物体的速度不断增大,表示物体必受力的作用 B.物体的位移不断增大,表示物体必受力的作用 C.若物体的位移与时间的平方成正比,表示物体必受力的作用 D .物体的速率不变,则其所受合力必为 2.在牛顿第二定律公式F = kma中,比例系数k的数值() A.在任何情况下都等于1 B.是由质量m、加速度a和力F三者的大小所决定的 C.是由质量m、加速度a和力F三者的单位所决定的 D.在国际单位制中一定等于1 课堂探究 〖探究1〗牛顿第二定律的理解和应用 【例1】如图,用橡皮筋将一小球悬挂在小车的架子上,系统处于平衡状态.现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内).与稳定在竖直位置时相比,小球的高度() A.一定升高 B.一定降低 C.保持不变 D.升高或降低由橡皮筋的劲度系数决定 【变式1】如图所示,细线的一端系一质量为m的小球,另一端固定在倾角为θ的光滑斜面体顶端,细线与斜面平行.在斜面体以加速度a水平向右做匀加速直线运动的过程中,小球始终静止在斜面上,小球受到细线的拉力T和斜面的支持力F N分别为(重力加速度为g)() A.T=m(g sinθ+a cosθ)F N=m(g cosθ-a sinθ) B.T=m(g cosθ+a sinθ)F N=m(g sinθ-a cosθ) C.T=m(a cosθ-g sinθ)F N=m(g cosθ+a sinθ) D.T=m(a sinθ-g cosθ)F N=m(g sinθ+a cosθ) 〖探究2〗用牛顿第二定律求瞬时加速度 【例2】如图所示,两个质量相同的小球A和B,甲图中两球用不可伸长的细绳连接,乙图中两球用轻弹簧相连,然后用细绳悬挂起来.问 (1)对于甲图,在剪断悬挂线OA的瞬间,A球和B球的加速度分别为多少? (2)对于乙图,在剪断细绳OA的瞬间,A球与B球的加速度分别是多少?

(二)“牛顿第二定律”难题解析

(二)“牛顿第二定律”难题--压轴题2015.6.4 参考答案与试题解析 9.(2011?历城区校级模拟)在一个与水平面成α角的粗糙斜面上的A点放着一个物体,它系于一根不可伸长的细绳上,绳子的另一端B通过小孔C穿出底面,如图所示,开始时物体与C等高,当物体开始缓慢下滑时,适当的拉动绳端B,使物体在斜面上划过一个半圆到达C,则A和斜面之间的动摩擦因数μ为() 其工作原理如图(a)所示,将压电陶瓷和一块挡板固定在绝缘小车上,中间放置一个绝缘重球,它的直径略小于陶瓷和挡板间的距离.小车向右做直线运动过程中,电压流表示数如图(b)所示,下列判断正确的是()

码m1和m2.在铁架上A处固定环状支架z,它的孔只能让m1通过.在m1上加一个槽码m,m1和m从O 点由静止释放向下做匀加速直线运动.当它们到达A时槽码m被支架z托住,m1继续下降.在下图中能正确表示m1运动速度v与时间t和位移x与时间t关系图象的是() B 17.(2010?松江区二模)如图所示,足够长的水平传送带以速度v沿顺时针方向运动,传送带的右端与光滑曲面的底部平滑连接,曲面上的A点距离底部的高度为h=0.45m.一小物块从A点静止滑下,再滑上传送带,经过一段时间又返回曲面,g 2

25.(2014?河西区二模)物体A的质量M=1kg,静止在光滑水平面上的平板车B的质量为m=0.5kg、长L=1m.某时刻A以v0=4m/s向右的初速度滑上木板B的上表面,在A滑上B的同时,给B施加一个水平向右的拉力.忽略物体A的大小,已知A与B之间的动摩擦因数μ=0.2,取重力加速度g=10m/s2.试求: (1)若F=5N,物体A在小车上运动时相对小车滑行的最大距离; (2)如果要使A不至于从B上滑落,拉力F大小应满足的条件.

牛顿第二定律

教材分析: 牛顿第二定律它就是在实验基础上建立起来的重要规律,也就是动力学的核心内容。而牛顿第二定律就是牛顿第一定律的延续,就是整个运动力学理论的核心规律,就是本章的重点与中心内容。它在力学中占有很重要的地位,反映了力、加速度、质量三个物理量之间的定量关系,就是一条适用于惯性系中的各种机械运动的基本定律,就是经典牛顿力学的一大支柱。而且牛顿第二定律在生活生产中都有着非常重要的作用,如设计机器、研究天体运动,计算人造卫星轨道等等都与牛顿第二定律有关。教科书将牛顿第二定律的探究实验与公式表达分成了两节内容,目的在于加强实验探究与突出牛顿第二定律在力学中的重要地位。牛顿第二定律的首要价值就是确立了力与运动之间的直接关系,即因果关系。本节内容就是在上节实验的基础上,通过分析说明,提出了牛顿第二定律的具体表述,得到了牛顿第二定律的数学表达式。教科书突出了力的单位“1牛顿”的物理意义,并在最后通过两个例题介绍牛顿第二定律应用的基本思路。 教学目标: 教学重点 牛顿第二定律的特点 教学难点 (1)牛顿第二定律的理解.

(2)理解k=1时,F=ma 教学过程 【新课导入】 师:利用多媒体播放上节课做实验的过程,引起学生的回忆,激发学生的兴趣,使学生再一次体会成功的喜悦,迅速把课堂氛围变成研究讨论影响物体加速度原因这一课题中去. 学生观瞧,讨论上节课的实验过程与实验结果. 师:通过上一节课的实验,我们知道当物体的质量不变时物体的加速度与其所受的作用力之间存在什么关系? 生:当物体的质量不变时物体运动的加速度与物体所受的作用力成正比, 师:当物体所受力不变时物体的加速度与其质量之间存在什么关系? 生:当物体所受的力不变时物体的加速度与物体的质量成反比. 学@科网 师:当物体所受的力与物体的质量都发生变化时,物体的加速度与其所受的作用力、质量之间存在怎样的关系呢? 【新课教学】 一、牛顿第二定律 师:通过上一节课的实验,我们再一次证明了:物体的加速度与物体的合外力成正比,与物体的质量成反比. 师:如何用数学式子把以上的结论表示出来? 生:a∝F/m 师:如何把以上式子写成等式? 生:需要引入比例常数k a=kF/m

运动状态的改变与牛顿第二定律

运动状态的改变与牛顿第二定律人教新课标高一物理必修(一)写道:“实验表明,对于任何物体,在受到相同的作用力时,决定它们运动状态变化难易程度的唯一因素就是它们的质量。”可以得出结论,质量是物体慢性的唯一量度,这一表述,在定性或定量比较哪个物体惯性大时,非常有效。可以这样理解,在相同的外力作用下,质量大的物体运动状态改变相对难一些,质量小的物体运动状态改变得相对容易一些。然而在有些情况下,如果定量地研究物体运动状态的改变,还要结合牛顿第二定律。且看下例: 例在一密闭的汽车内,一氢气球用细绳系在座位上,设空气的密度为,氢气球的质量为,体积为,问:汽车以恒定的加速度启动时,氢气球向哪个方向偏转,稳定后偏转角是多少 ? 分析:我们有这样的生活经验,我们平时坐车的时候,汽车启动后,由于惯性,我们要向后仰,如果作类比,容易得气球向后偏的错误结论。我们从运动状态改变的难易程度上去分析,汽车启动后,车内的空气随之加速,由于氢气的密度小,或者说氢气球的质量比同体积的空气的质量小,所以氢气球的运动准状态改变的相对容易一些,故氢气球要向前偏。然而这只是一种定性的解释,还没有指出氢气球向前偏转的跟本原因。或者说还没有对氢气球的受力进行分析,第二步在算稳定后氢气球的偏转角时也必须对其进行受力分析。汽车在启动后,空气随着汽车一起加速。设想有一和氢气球体积相同的“空气球”,则质量为:,由于其加速度为,故其

受到周围空气对它在水平方向上的合力为:,这个合力是由“空气球”前后压强的不同所引起的。换成是氢气球后,在水平方向上由于空气前后压强的不同所引起的这个力必定仍等于,而氢气球自身的质量为,故其在水平方向上的合力应为,由于,在水平方向上必定受到一个向后的力,这个力由绳子的拉力在水平方向上的分力所提供,也就是说绳子是斜向后拉氢气球的,所以氢气球向前倾斜。其倾角的计算如下: 解:已知氢气球质量,体积,空气密度,汽车加速度,重力加速度,设氢气球受到的浮力为,细绳与竖直方向上的夹角为,细绳上的拉力为。氢气球的受力分析如下图 : 在竖直方向有: (1) 在水平方向上有: (2) 由 (1) ,(2) 可解出,即。 质量是惯性的唯一量度,我们在讨论物体运动状态改变难易的时候,总是给它施加一个相同的外力,其实这正是利用了牛顿第二定律,当相同时,比较的大小,因此我们分析问题时,可以将第一定律及第二定律结合起来。

牛顿第二定律、两类动力学问题

《牛顿第二定律、两类动力学问题》 一、选择题 1.一辆空车和一辆满载货物的同型号汽车,在同一路面上以相同的速度向同一方向行驶.两辆汽车同时紧急刹车后(即车轮不滚动只滑动),以下说法正确的是( ) A.满载货物的汽车由于惯性大,滑行距离较大 B.满载货物的汽车由于受到的摩擦力较大,滑行距离较小 C.两辆汽车滑行的距离相同 D.满载货物的汽车比空车先停下来 【答案】选C. 【详解】由于两辆汽车的车轮与地面间的摩擦因数相同,所以汽车刹车时的加速度a=μg相同,由知,两辆汽车滑行的距离相同.A、B均错,C正确;由知两车同时停下,D错. 2.下列说法正确的是( ) A.物体所受到的合外力越大,其速度改变量也越大 B.物体所受到的合外力不变(F合≠0),其运动状态就不改变 C.物体所受到的合外力变化,其速度的变化率一定变化 D.物体所受到的合外力减小时,物体的速度可能正在增大 【答案】选C、D. 【详解】物体所受到的合外力越大,物体的加速度(速度变化率)也越大,即速度变化得越快,但速度改变量还与时间有关,故选项A错误、C正确;物体的合外力不为零,就会迫使运动状态(运动的快慢

和方向)发生变化,选项B错误;合外力的大小与速度的大小之间没有直接关系,选项D正确. 3.下列说法正确的是( ) A.若物体运动速率始终不变,则物体所受合力一定为零 B.若物体的加速度均匀增加,则物体做匀加速直线运动 C.若物体所受合力与其速度方向相反,则物体做匀减速直线运动 D.若物体在任意相等的时间间隔内位移相等,则物体做匀速直线运动【答案】选D. 【详解】若物体运动速率始终不变,速度大小不变,但速度方向可能变化,因此合力不一定为零,A错;物体的加速度均匀增加,即加速度在变化,是非匀加速直线运动,B错;物体所受合力与其速度方向相反,只能判断其做减速运动,但加速度大小不能确定,C错;若物体在任意相等的时间间隔内位移相等,则物体做匀速直线运动,D对. 4.关于单位制,下列说法中正确的是( ) A.kg、m/s、N是导出单位 B.kg、m、C是基本单位 C.在国际单位制中,时间的基本单位是s D.在国际单位制中,力的单位是根据牛顿第二定律定义的 【答案】选C、D. 【详解】力学中的基本单位有三个:kg、m、s.有些物理单位属于基本单位,但不是国际单位,如厘米(cm)、克(g)、小时(h)等;有些单位属于国际单位,但不是基本单位,如米/秒(m/s)、帕斯卡(Pa)、牛顿(N)

牛顿第二定律

牛顿第二定律 班级________姓名________学号_____ 学习目标: 1.知道国际单位制中力的单位是怎样定义的。 2.理解牛顿第二定律的内容,知道牛顿第二定律表达式的确切含义。 3.能初步应用牛顿第二定律解决一些简单问题。 学习重点: 牛顿第二定律 学习难点: 牛顿第二定律 主要内容: 一、牛顿第二定律 1. 公式推导: 2. 语言表述: 3.公式表达: ①数学表达式: ②常用计算式:F 合=ma 4.牛顿第二定律是牛顿运动定律的核心,是本章的重点和中心内容,在力学中占有很重要的地位,一定要深入理解牛顿第二定律的确切含义和重要意义。理解: (1) 因果关系:只要物体所受合力不为零(无论合力多么的小),物体就获得 加速度,即力是产生加速度的原因,力决定加速度,力与速度、速度的 变化没有直接关系。如果物体只受重力G=mg 的作用,则由牛顿第二定 律知物体的加速度为a=g m mg m G m F ===合 。 即重力是使物体产生重力加速度g 的原因,各地的g 值略有差异,通常 取g=9.8m /s 2。在第一章学习《重力》一节时,给出了重量和质量的关 系式G=mg ,g 是以比例常数引人的,g=9.8N /kg 。现在可以证明,这 个比例常数就是重力加速度,9.8N /kg 与9.8m /s 2等价。 (2)矢量关系:F 合=ma 是一个矢量式,加速度a 与合外力F 合都是矢量,物 体加速度的方向由它所受的合外力的方向决定且总与合外力的方向相同 (同向性),而物体的速度方向与合外力方向之间并无这种关系。这样知道 了合外力(或加速度)的方向,就知道了加速度(或合外力)的方向。 (3)瞬时对应关系:牛顿第二定律表示的是力的瞬时作用规律,物体在某一 时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小 和方向来决定的。当物体所受到的合外力发生变化时,它的加速度随即也 要发生变化,F 合=ma 对运动过程的每一瞬间成立,加速度与力是同一时 刻的对应量,即同时产生(虽有因果关系但却不分先后)、同时变化、同时 消失。 (4) 独立对应关系:当物体受到几个力的作用时,各力将独立地产生与其对应

牛顿第二定律练习题和答案

牛顿第二定律练习题和 答案 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

牛顿第二定律练习题 一、选择题 1.关于物体运动状态的改变,下列说法中正确的是 [ ] A.物体运动的速率不变,其运动状态就不变 B.物体运动的加速度不变,其运动状态就不变 C.物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D.物体的运动速度不变,我们就说它的运动状态不变 2.关于运动和力,正确的说法是 [ ] A.物体速度为零时,合外力一定为零 B.物体作曲线运动,合外力一定是变力 C.物体作直线运动,合外力一定是恒力 D.物体作匀速运动,合外力一定为零 3.在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ] A.匀减速运动B.匀加速运动 C.速度逐渐减小的变加速运动D.速度逐渐增大的变加速运动 4.在牛顿第二定律公式F=km·a中,比例常数k的数值: [ ] A.在任何情况下都等于1 B.k值是由质量、加速度和力的大小决定的 C.k值是由质量、加速度和力的单位决定的 D.在国际单位制中,k的数值一定等于1

5.如图1所示,一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中,关于小球运动状态的下列几种描述中,正确的是 [ ] A.接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零 B.接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零 C.接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被压缩最大之处 D.接触后,小球速度最大的地方就是加速度等于零的地方 6.在水平地面上放有一三角形滑块,滑块斜面上有另一小滑块正沿斜面加 速下滑,若三角形滑块始终保持静止,如图2所示.则地面对三角形滑块 [ ] A.有摩擦力作用,方向向右B.有摩擦力作用,方向向左 C.没有摩擦力作用D.条件不足,无法判断 7.设雨滴从很高处竖直下落,所受空气阻力f和其速度v成正比.则雨滴的运动情况是 [ ] A.先加速后减速,最后静止B.先加速后匀速 C.先加速后减速直至匀速D.加速度逐渐减小到零 8.放在光滑水平面上的物体,在水平拉力F的作用下以加速度a运动,现将拉力F 改为2F(仍然水平方向),物体运动的加速度大小变为a′.则 [ ] A.a′=a B.a<a′<2a C.a′=2a D.a′>2a

牛顿第二定律应用及连接体问题

牛顿定律的应用 一 两类常用的动力学问题 1. 已知物体的受力情况,求解物体的运动情况; 2. 已知物体的运动情况,求解物体的受力情况 上述两种问题中,进行正确的受力分析和运动分析是关键,加速度的求解是解决此类问题的纽带,思维过程可以参照如下: 解决两类动力学问题的一般步骤 根据问题的需要和解题的方便,选出被研究的物体,研究对象可以是单个物体, 也可以是几个物体构成的系统 画好受力分析图,必要时可以画出详细的运动情景示意图,明确物体的运动性质 和运动过程 通常以加速度的方向为正方向 或者以加速度的方向为某一坐标的正方向 若物体只受两个共点力作用,通常用合成法,若物体受到三个或是三个以上不在 一条直线上的力的作用,一般要用正交分解法 根据牛顿第二定律=ma F 合或者x x F ma = ;y y F ma = 列方向求解,必要时对结论进行讨论 解决两类动力学问题的关键是确定好研究对象分别进行运动分析跟受力分析,求出加速度 例1(新课标全国一2014 24 12分) 公路上行驶的两汽车之间应保持一定的安全距离。当前车突然停止时,后车司机以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰。通常情况下,人的反应时间和汽车系统的反应时间之和为1s 。当汽车在晴天干燥沥青路面上以108km/h的速度匀速行驶时,安全距离为120m。设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的2/5,若要求安全距离仍为120m,求汽车在雨天安全行驶的最大速度。 解:设路面干燥时,汽车与路面的摩擦因数为μ0,刹车加速度大小为a 0,安全距离为s ,反应时间为t0,由牛 顿第二定律和运动学公式得:ma mg =0μ ①0 20002a v t v s += ②式中,m 和v 0分别为汽车的质量明确研究对象 受力分析和运动 状态分析 选取正方向或建 立坐标系 确定合外力F 合 列方程求解

相关文档
最新文档