电厂水平衡图

电厂水平衡图
电厂水平衡图

29676

31095

排入长江

凝汽器冷却水

1419

辅机冷却水

消耗5

259

11

消耗38

生水预处理湿法脱硫用水

脱硫废水系统

除灰用水49

重复使用 10 158

消耗156

2

热水站

工业用水(机组冷却)

取水

泵房

销售热水

16

重复使用 401脱硫脱硝蒸汽吹扫2

供热16

水汽消耗8

2

沉煤池

中和池

6

39

化学水处理

长江消耗1

31354

4

工业废水站

排污2

除灰用水7消耗0

油水分离油罐区用水

绿化用水

消耗0.75

消耗0.75

7.5

6

二级处理

生活用水

中和池

3

煤场及输煤系统用水

重复使用3

2

消耗 0.5

消耗2

沉煤池

0.5

煤码头用水

0.5

11

11

除灰用水

消耗22

灰渣闭路循环系统

循环34

干除灰及湿除渣用水

2013年全厂水平衡图(单位:万吨)

大连泰山电厂水平衡测试方案

大连泰山电厂水平衡测试方案 . 泰山电厂水平衡测试方案 1 水平衡测试的目的 1.1 通过对泰山电厂各种取、用、排、耗水的测定,查清泰山电厂用水状况,找出节水潜力,制定切实可行的节水技术措施和规划,使泰山电厂的用水达到合理使用和科学管理。 1.2 通过水平衡测试,正确地评价泰山电厂的用水水平,制定出合理的先进的发电水耗、供热水耗、补水率、灰水比等定额标准。 2 执行标准 本次测试执行《火力发电厂水平衡导则》,中华人民共和国电力工业部 -24 批准,1997-06-01实施。企业水平衡测试通则GB/T12452-2008。 1997- 02 3 水平衡测试准备工作 3.1 资料调查及整理 3.1.1 主要设备调查 全厂装机容量、台数、投产日期及主要技术规范,全厂主要用水设备台数和技术规范(用水量、水质、水温和冷却水介质的设计要求和技术数据)。 3,1.2 水源情况调查 查清全厂各种水源(自备井水、地下水、中水)情况,统计近几年来的用水情况(包括水量及水费)。 3.1.3 用水系统情况调查 主要包括三类用水:

生产用水:包括化学、锅炉、汽机、燃料等生产系统的工业水和循环水; 生活用水:包括厂区生活用水和厂前区生活用水; 其它用水:包括基建、绿化等用水。 3.1.4 排水、耗水系统情况调查 1 排水、耗水系统的设备和设施的技术参数,近几年主要排水点的排水水量统计。 3.2 编制用排水系统示意图,确定水平衡测试对象和具体的测点 4 水平衡测试原则 4.1 水平衡测试要求在常规工况下进行,且运行机组的发电负荷应占全厂总装机容量的80%以上,保证其真实用水水平。 4.2 重点设备必测,生活用水必测,相同设备抽样测。 4.3 充分利用现有的在线表计,综合运用多种测试方法,包括超声波流量计、明渠流量计、容积法、计算法和推估法等。 5 水平衡测试内容及方法 根据泰山电厂各专业提供的用排水系统,确定水平衡工作的测点,按照水平衡测试原则开展水平衡测试工作。 对于封闭管路,采用美国产康创1011超声波流量计测试,对外排放口主要采用明渠流量计测试,其它测点根据情况灵活运用容积法、计算法和推估法等测试手段。 5.1 建立水平衡系统,选定测试的测点 5.1.1 划分水平衡测试体系,即确定测试对象,划出水平衡测试范围和边界。 5.1.2 划分系统时,全厂水系统为大体系,设备为小体系,中体系可按分场(如汽轮机分场、锅炉分场、化学分场等)、系统(如工业水系统、冲灰水系统等)划分。

热电厂热力系统计算

热力发电厂课程设计 1.1 设计目的 1. 学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2. 学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3. 提高计算机绘图、制表、数据处理的能力 1.2 原始资料 西安 某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安 地区采暖期 101 天,室外采暖计算温度 –5℃,采暖期室外平均温度 1.0℃,工业用汽 和采暖用汽热负荷参数均为 0.8MPa 、230℃。通过调查统计得到的近期工业热负荷和采暖热 负荷如下表所示: 1.3 计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别 链条炉 煤粉炉 沸腾炉 旋风炉 循环流化床锅炉 锅炉效率 0.72~0.85 0.85~0.90 0.65~ 0.70 0.85 0.85~ 0.90 (2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率 750~ 6000 12000 ~ 25000 5000 汽轮机相对内效率 0.7~0.8 0.75~ 0.85 0.85~0.87 汽轮机机械效率 0.95~0.98 0.97~ 0.99 ~ 0.99 发电机效率 0.93~0.96 0.96~ 0.97 0.98~0.985 3)热电厂内管道效率,取为 0.96。 4)各种热交换器效率,包括高、低压加热器、除氧器,一般取 0.96~0.98。

5)热交换器端温差,取3~7℃。 2%

6)锅炉排污率,一般不超过下列数值: 以化学除盐水或蒸馏水为补给水的供热式电厂 以化学软化水为补给水的供热式电厂5% 7)厂内汽水损失,取锅炉蒸发量的3%。 8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。 9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。 10)生水水温,一般取5~20℃。 11)进入凝汽器的蒸汽干度,取0.88~0.95。 12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。 2、原则性热力系统 2.1 设计热负荷和年持续热负荷曲线 根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见 表2-1 。用户处工业用汽符合总量:采暖期最大为175 t/h, 折算汇总到电厂出口处为166.65 t/h 。 2-1 折算到热电厂出口的工业热负荷,再乘以0.9 的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8 kJ/kg)计算出供热量,见表2-2。根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1 、图2-2。 表2-2 热电厂设计热负荷

电厂化学水处理工艺流程

电厂化学水处理工艺流程 Final approval draft on November 22, 2020

化学水处理系统 一.从给水品质标准看化学水处理的必要性 下表是锅炉给水品质标准。 总硬度 (μmol/L) 溶解氧 (μg/L) 电导率 (μs/cm) 二氧化硅 (μg/L) PH值 (25℃) 二氧化碳 (μg/L) 标准≤30 ≤50 10 ≤20 ~≤20 我国北方多采用深井水源,其水质超标最严重的是总硬度,总硬度是指溶液中钙离子(Ca2+)和镁离子(Mg2+)摩尔浓度的平均值。所谓摩尔浓度指每升溶液中溶质含量的毫摩尔数。例如Ca的原子量为40,1mol Ca2+的质量是80g (其化学意义是:1mol Ca2+内含×1023个钙离子)。如果1L溶液中含有1g Ca2+,那么它的摩尔浓度是1/80=L=L。 给水水质不良,特别是钙、镁、钠、硅酸根离子超标,会给热力设备造成如下危害: 1. 热力设备的结垢:如果进入锅炉或其它热交换器的水质不良,则经过一段时间运行后,在和水接触的受热面上,会生成一些固体附着物,这种现象称为结垢,这些固体附着物称为水垢。因为水垢的导热性比金属差几百倍,而这些水垢又极易在热负荷很高的锅炉炉管中生成,所以结垢对锅炉(或热交换器)的危害性很大;它可使结垢部位的金属管壁温度过高,引起金属强度下降,这样在管内压力的作用下,就会发生管道局部变形、产生鼓包,甚至引起爆管等严重事故。结垢不仅危害安全运行,而且还会大大降低发电厂的经济性。例如,热力发电厂锅炉的省煤器中,结有1mm厚的水垢时,其燃料用量就比原来的多消耗%~%。因此有效防止或减少结垢,将会产生很大的经济效益。另外,循环水的水质不良,在汽轮机凝汽器内结垢会导致凝汽器真空度降低,从而使汽轮机的热效率和出力下降;过热器的结垢会使蒸汽温度达不到设计值,使整个热力系统的经济性降低。热力设备结垢以后,必须及时进行清洗工作,这就要停运设备,减少了设备的年利用小时数;此外,还要增加检修工作量和费用等。 2.热力设备及其系统的腐蚀:发电厂热力设备的金属经常和水接触,若水质不良,则会引起金属腐蚀,如给水管道,省煤器、蒸发器、加热器、过热器和汽轮机凝汽器的换热管,都会因水质不良而腐蚀。腐蚀不仅要缩短设备本身的使用期限,造成经济损失;而且腐蚀产物转入水中,使给水中杂质增多,从而加剧在高热负荷受热面上的结垢过程,结成的垢又会加速炉管的垢下腐蚀。此种恶性循环,会迅速导致爆管等事故。 3. 过热器和汽轮机流通部分的积盐:水质不良还会使蒸汽溶解和携带的杂质(主要是Na+和HSiO3-离子)增加,这些杂质会沉积在蒸汽的流通部位,如过热器和汽轮机,这种现象称为积盐。过热器管内积盐会引起金属管壁过热甚至爆管;阀门会因积盐而关闭不严;汽轮机内积盐会大大降低汽轮机的出力和效率,即使少量的积盐也会显着增加蒸汽流通的阻力,使汽轮机的出力下降。当汽轮机积盐严重时,还会使推力轴承负荷增大,隔板弯曲,造成事故停机。

热电机组反平衡计算公式

热电机组反平衡计算公式 一、各项损失计算 1、排烟损失q2: q2=(k1+k2αy)×T y-t k 100×100-q4 100(%)(1-1) 式中:q2-----排烟损失百分数(%); k1、k2-----系数,查表1-1求得; T y----- 排烟温度(℃); t k----- 冷空气温度(℃); αy----- 锅炉排烟处的过剩空气系数; αy=α+Δα(1-2)式中:α----- 炉膛出口处的过剩空气系数; Δα----- 漏风系数; α= 21 21-氧量 (1-3) 热电流化床锅炉有两级过热器、两级省煤器、三级空预器,因此根据表1-2可算出: Δα=0.02×2+0.02×2+0.05×3=0.23 (1-4) 根据热电公司常用煤种,查表1-1,k1取0.4,k2取3.55 所以,排烟损失q2公式如下: q2=[0.4+3.55×(21 21-氧量+0.23)]× 排烟温度-环境温度 100× 100-q4 100(%)(1-5) 2、化学不完全燃烧损失q3(暂不考虑) 由于缺乏炉膛出口处烟气中二氧化碳、二氧化硫的体积百分数,无法计算化学不完全燃烧损失。该项损失一般在0.5%以下,暂不计入。 3、机械不完全燃烧损失q4

q 4= q 4hz + q 4lm + q 4fh (%) (1-5) 式中:q 4hz -----灰渣机械不完全燃烧损失; q 4lm -----漏煤机械不完全燃烧损失(流化床锅炉不存在该 项损失); q 4fh -----飞灰机械不完全燃烧损失; q 4hz =32826×A y .αhz .C hz Q D y .(100-C hz ) (%) (1-6) q 4fh =32826×A y .αfh .C fh Q D y .(100-C fh ) (%) (1-7) 式中:32826-----每公斤标煤所含热值及携带的物理热量,根据 7850kcal/kg 换算所得,kj/kg ; A y -- ---燃煤应用基灰份,%; Q D y -----燃煤应用基低位热值,kj/kg ; αhz 、αfh -----灰渣、飞灰的灰比,由于热电煤种变化较大, 取0.55/0.45,即αhz =0.55,αfh =0.45; C hz 、C fh -----灰渣、飞灰的可燃物质量百分数,%; 灰渣:每月化验一次,根据以往的化验结果, 平均取2%,即C hz =2%; 飞灰:每天取样,由煤分析化验,%; q 4hz =32826×灰份×0.55×2煤低位热值×98 =368.46×灰份煤低位热值 (%) (1-8) q 4fh =32826×灰份×0.45×飞灰可燃物煤低位热值×(100-飞灰可燃物) (%) (1-9) 所以,机械不完全燃烧损失q 4的公式是: q 4=q 4hz + q 4fh (1-10) 4、锅炉散热损失q 5 q 5= q 5e ×D e D G (%) (1-11) 式中:q 5e -----额定蒸发量的散热损失百分数,%; 查表:75t/h 锅炉q 5e =0.75% D e -----锅炉额定蒸发量(t/h ); D G -----锅炉实际蒸发量(t/h )。

电厂水处理工艺流程及优化设计解析

电厂水处理工艺流程及优化设计解析 水的质量及出水受到水处理工艺的影响,发电厂的水处理工艺直接影响到发电质量和效率。对发电厂中的自然水进行有效处理,不仅可以提高水质和洁净水的产量,还能够提高发电厂发电效率。本文对电厂水处理工艺进行分析,并且提出了水处理工艺优化策略,旨在提高电厂发电效率。 1、概述 人们通过长期实践经验得出,发电厂热力设备的安全状况,发电厂是否能够经济运行受到热力系统中水品质的影响。天然水由于没有经过处理,含有很多杂质,含有杂质的水进入热力系统中的水汽循环系统,会对热力设备造成损害。要想确保热力系统中能够有良好的水质,就必须要对水进行净化处理,并且要对汽水质量进行严格监按控。 2、电厂水处理系统工艺流程 2.1 预处理 电厂锅炉水处理工艺的第一个流程就是给水预处理,这一流程主要包括混凝、沉淀澄清以及过滤,经过这几项工作将水中的悬浮物及胶体物质去除,确保水中悬浮物的含量低于5mg/L,最终得到澄清水。水经过预处理之后,还需要按照不同的用途进行深度处理。如在火力发电厂作为锅炉用水,还必须用反渗透及离子交换的方法去除水中溶解性的盐类;用加热、抽真空和鼓风的方法去除水中溶解性气

体。 2.2 补给水处理 发电厂补给水处理方式多采用反渗透和离子交换。超滤在补给水处理系统中可用作反渗透进水的前处理,它可有效地去除水中胶体等颗粒状物,使反渗透进水水质合格,减少反渗透膜的污染,延长反渗透膜的使用寿命。 2.3 凝结水处理 火力发电厂锅炉的给水由汽轮机凝结水和锅炉补给水组成,凝结水是锅炉给水的主要组成部分,它的量占锅炉给水总量的90%以上。凝结水中含有悬浮物和金属腐蚀物,在混床除盐前,可以用过滤的方法予以去除,以此来确保混床设备的有效运行。现阶段电厂中使用的过滤设备主要有覆盖过滤器和电磁过滤器两种。 2.4 循环水处理 电厂循环水处理工艺有很多种,比如加水稳计、加酸、石灰软化、弱酸离子软化以及膜处理技术等。在国家节水政策的要求下,火力发电厂尤其是采用干除灰工艺的火电厂,要在循环水处理这一环节进行节水,以提高循环水的浓缩倍率作为前提,使补充水量以及排污水量减少,进而能够减少新鲜水的使用量。 2.5废水处理

电厂化学水处理工艺流程

化学水处理系统一.从给水品质标准看化学水处理的必要性 下表是锅炉给水品质标准。 总硬度 (口mol/L)溶解氧 (卩g/L)电导率 (s/cm)二氧化硅 (口g/L) PH值 (25 C )二氧化碳 (u g/L) 标准 < 30 < 50 10 < 20 8.8 ?9.2 < 20 我国北方多采用深井水源,其水质超标最严重的是总硬度,总硬度是指溶液中钙离 子(Ca2+)和镁离子(Mg廿)摩尔浓度的平均值。所谓摩尔浓度指每升溶液中溶质含量的毫摩尔数。例如Ca的原子量为40,1mol Ca2+的质量是80g (其化学意义是:1mol Ca2 +内含6.02 X 1023个钙离子)。如果1L溶液中含有1g Ca2 +,那么它的摩尔浓度是1/80 = 0.0125mol/L = 12.5mmol/L。 给水水质不良,特别是钙、镁、钠、硅酸根离子超标,会给热力设备造成如下危

害: 1. 热力设备的结垢:如果进入锅炉或其它热交换器的水质不良,则经过一段时间运行后,在和水接触的受热面上,会生成一些固体附着物, 这种现象称为结垢,这些固体附着物称为水垢。因为水垢的导热性比金属差几百倍,而这些水垢又极易在热负荷很高的锅炉炉管中生成,所以结垢对锅炉(或热交换器)的危害性很大;它可使结垢部位的金属管壁温度过高,引起金属强度下降,这样在管内压力的作用下, 就会发生管道局部变形、产生鼓包,甚至引起爆管等严重事故。结垢不仅危害安全运行,而且还会大大降低发电厂的经济性。例如,热力发电厂锅炉的省煤器中, 结有1mm厚的水垢时,其燃料用量就比原来的多消耗1.5 %? 2.0%。因此有效防止或减少结垢,将会产生很大的经济效益。另外,循环水的水质不良,在汽轮机凝汽器内结垢会导致凝汽器真空度降低, 从而使汽轮机的热效率和出力下降;过热器的结垢会使蒸汽温度达不到设计值,使整个热力系统的经济性降低。热力设备结垢以后, 必须及时进行清洗工作,这就要停运设备,减少了设备的年利用小时数;此外,还要增加检修工作量和费用等。 2. 热力设备及其系统的腐蚀:发电厂热力设备的金属经常和水接触,若水质不良,则会引起金属腐蚀,如给水管道,省煤器、蒸发器、加热器、过热器和汽轮机凝汽器的换热管,都会因水质不良而腐蚀。腐蚀不仅要缩短设备本身的使用期限,造成经济损失;而且腐蚀产物转入水中,使给水中杂质增多,从而加剧在高热负荷受热面上的结垢过程,结成的垢又会加速炉管的垢下腐蚀。此种恶性循环,会迅速导致爆管等事故。 3. 过热器和汽轮机流通部分的积盐:水质不良还会使蒸汽溶解和携带的杂质(主要是Na+和HSiO,离子)增加,这些杂质会沉积在蒸汽的流通部位,如过热器和汽轮机,这种现象称为积盐。过热器管内积盐会引起金属管壁过热甚至爆管;阀门会因积盐而关闭不严;汽轮机内积盐会大大降低汽轮机的出力和效率,即使少量的积盐也会显着增加蒸汽流通的阻力,使汽轮机的出力下降。当汽轮机积盐严重时, 还会使推力轴承负荷增大,隔板弯曲,造成事故停机。

电厂水平衡报告

(送审稿) 某 设计 院 二○○七年三月 某公司 空冷机组 水平衡测试报告

目录 1 前言 (1) 1.1任务来源 (1) 1.2电厂基本情况 (2) 1.2.1机组型号 (3) 1.2.2供排水系统 (3) 1.2.3已有的主要节水措施 (8) 2 水平衡测试工作概况 (10) 2.1水平衡测试的目的及原则 (10) 2.1.1水平衡测试目的 (10) 2.1.2水平衡测试的原则 (11) 2.1.3水平衡测试的主要技术依据 (11) 2.1.4水平衡测试术语、代号及公式 (12) 2.2水平衡测试的项目、测试方法及测试设备 (13) 2.2.1水平衡测试项目及内容 (13)

2.2.2水平衡测试方法 (14) 2.2.3测试仪器、设备 (14) 2.3测试期间机组运行状况说明 (15) 3 水平衡测试结果汇总 (16) 3.1全厂水平衡测试结果 (16) 3.1.1全厂水平衡测试数据 (16) 3.1.2全厂水平衡测试结果分析 (16) 3.1.3全厂用水情况分析 (17) 3.2主要分系统水量分配概况 (20) 3.2.1供水系统 (20) 3.2.2辅机冷却水系统 (21) 3.2.3化学除盐系统 (27) 3.2.4灰渣系统 (29) 3.2.5脱硫系统 (30) 3.2.6废污水处理系统 (31)

4 测试结果分析 (33) 4.1不平衡分析 (33) 4.2用水水平评价 (33) 5 节水建议 (35) 5.1搞好水务管理工作 (35) 5.1.1水务管理的概念及内容 (35) 5.1.2搞好水务管理工作的重点 (36) 5.2节水技术路线 (37) 5.2.1节水原则 (37) 5.2.2节水方案 (37) 5.2.3全厂废污水分类处理回用方案 (37) 5.2.4小结 (40) 5.3加强全厂关口流量计的维护和校验,消除非正常用排水 (40) 5.4全厂水平衡优化 (41) 6 结论 (43)

热平衡计算

热平衡计算 2007-08-21 14:25:57| 分类:暖通空调| 标签:|字号大中小订阅热平衡计算 1.热平衡原理 要使通风房间温度保持不变,必须使室内的总得热量等于总失热量,即。 在通风过程中,室内空气通过与进风、排风、围护结构和室内各种高低温热源进行交换,为了使房间内的空气温度保持不变,必须使房间内的总得热量∑Qd与总失热量∑Qs相等,也就是要保持房间内的热平衡。即热平衡:∑Qd=∑Qs。 通风房间内的得热与热量如图3-2-7所示。随工业厂房的设备、产品及通风方式的不同,车间得热量、失热量差别较大。一般通过高于室温的生产设备、产品、采暖设备及送风系统等取得热量;通过围护结构、低于室温的生产材料及排风系统等损失热量。 图3-2-7 通风房间内的得热与热量模型 在使用机械通风,又使用再循环空气补偿部分车间热损失的车间中,热平衡的等量关系如图3-2-8所示。

图3-2-8 热平衡的等量关系 由图3-2-8的热平衡等量关系,即的通风房间热平衡方程式为: (3-2-16) 式中——围护结构、材料吸热的总失热量,kW; ——生产设备、产品及采暖散热设备的总放热量,kW; Lp——局部和全面排风风量,m3/s; Ljj——机械进风量,m3/s; Lzj——自然进风量,m3/s; Lhx——再循环空气量,m3/s; pu ——室内空气密度,kg/ m3; Pw——室外空气密度,kg/ m3; tu——室内排出空气湿度,℃; tjj——机械进风湿度,℃; to——再循环送风温度,℃; c——空气的质量比热,其值为1.01kj/kg·℃; tw——室外空气计算湿度,℃, tw的确定:在冬季,对于局部排风及稀释有害气体的全面通风,采用冬季采暖室外计算湿度。对于消除余热、余湿及稀释低毒性有害物质的全面通风,采用冬季通风室外计算温度是指历年最冷月平均温度的平均值。 通风房间的风量平衡、热平衡是风流运动与热交换的客观规律要求,设计时应根据通风要求保证满足设计要求的风量平衡与热平衡。如果实际运行时所达到的新平衡状态与设计要求的平

电厂水平衡分析报告

(送审稿) 某设计院 二 ○○七年三月 某公司 空冷机组 水平衡测试报告

目录 1 前言 (1) 1.1任务来源 (1) 1.2电厂基本情况 (2) 1.2.1机组型号 (3) 1.2.2供排水系统 (3) 1.2.3已有的主要节水措施 (8) 2 水平衡测试工作概况 (10) 2.1水平衡测试的目的及原则 (10) 2.1.1水平衡测试目的 (10) 2.1.2水平衡测试的原则 (11) 2.1.3水平衡测试的主要技术依据 (11) 2.1.4水平衡测试术语、代号及公式 (12) 2.2水平衡测试的项目、测试方法及测试设备 (13) 2.2.1水平衡测试项目及内容 (13) 2.2.2水平衡测试方法 (14) 2.2.3测试仪器、设备 (14) 2.3测试期间机组运行状况说明 (15) 3 水平衡测试结果汇总 (16)

3.1.1全厂水平衡测试数据 (16) 3.1.2全厂水平衡测试结果分析 (16) 3.1.3全厂用水情况分析 (17) 3.2主要分系统水量分配概况 (20) 3.2.1供水系统 (20) 3.2.2辅机冷却水系统 (21) 3.2.3化学除盐系统 (27) 3.2.4灰渣系统 (29) 3.2.5脱硫系统 (30) 3.2.6废污水处理系统 (31) 4 测试结果分析 (33) 4.1不平衡分析 (33) 4.2用水水平评价 (33) 5 节水建议 (35) 5.1搞好水务管理工作 (35) 5.1.1水务管理的概念及内容 (35) 5.1.2搞好水务管理工作的重点 (36) 5.2节水技术路线 (37) 5.2.1节水原则 (37)

某电厂水平衡报告

某公司 空冷机组 水平衡测试报告 (送审稿) 某设计院 二○○七年三月

目录 1 前言 (1) 1.1任务来源 (1) 1.2电厂基本情况 (2) 1.2.1机组型号 (3) 1.2.2供排水系统 (3) 1.2.3已有的主要节水措施 (8) 2 水平衡测试工作概况 (10) 2.1水平衡测试的目的及原则 (10) 2.1.1水平衡测试目的 (10) 2.1.2水平衡测试的原则 (11) 2.1.3水平衡测试的主要技术依据 (11) 2.1.4水平衡测试术语、代号及公式 (12) 2.2水平衡测试的项目、测试方法及测试设备 (13) 2.2.1水平衡测试项目及内容 (13)

2.2.2水平衡测试方法 (14) 2.2.3测试仪器、设备 (14) 2.3测试期间机组运行状况说明 (15) 3 水平衡测试结果汇总 (16) 3.1全厂水平衡测试结果 (16) 3.1.1全厂水平衡测试数据 (16) 3.1.2全厂水平衡测试结果分析 (16) 3.1.3全厂用水情况分析 (17) 3.2主要分系统水量分配概况 (20) 3.2.1供水系统 (20) 3.2.2辅机冷却水系统 (21) 3.2.3化学除盐系统 (27) 3.2.4灰渣系统 (29) 3.2.5脱硫系统 (30) 3.2.6废污水处理系统 (31) 4 测试结果分析 (33) 4.1不平衡分析 (33) 4.2用水水平评价 (33) 5 节水建议 (35)

5.1搞好水务管理工作 (35) 5.1.1水务管理的概念及内容 (35) 5.1.2搞好水务管理工作的重点 (36) 5.2节水技术路线 (37) 5.2.1节水原则 (37) 5.2.2节水方案 (37) 5.2.3全厂废污水分类处理回用方案 (37) 5.2.4小结 (40) 5.3加强全厂关口流量计的维护和校验,消除非正常用排水 (40) 5.4全厂水平衡优化 (41) 6 结论 (43)

热电厂热力系统计算分析

热力发电厂课程设计 1.1设计目的 1.学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2.学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3.提高计算机绘图、制表、数据处理的能力 1.2原始资料 西安某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安地区采暖期101天,室外采暖计算温度–5℃,采暖期室外平均温度1.0℃,工业用汽和采暖用汽热负荷参数均为0.8MPa、230℃。通过调查统计得到的近期工业热负荷和采暖热负荷如下表所示: 热负荷汇总表 1.3计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别链条炉煤粉炉沸腾炉旋风炉循环流化床锅炉 锅炉效率0.72~0.85 0.85~0.90 0.65~0.70 0.85 0.85~0.90 (2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率750~6000 12000~25000 5000 汽轮机相对内效率0.7~0.8 0.75~0.85 0.85~0.87 汽轮机机械效率0.95~0.98 0.97~0.99 ~0.99 发电机效率0.93~0.96 0.96~0.97 0.98~0.985 (3)热电厂内管道效率,取为0.96。 (4)各种热交换器效率,包括高、低压加热器、除氧器,一般取0.96~0.98。 (5)热交换器端温差,取3~7℃。

(6)锅炉排污率,一般不超过下列数值: 以化学除盐水或蒸馏水为补给水的供热式电厂2% 以化学软化水为补给水的供热式电厂5% (7)厂内汽水损失,取锅炉蒸发量的3%。 (8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。 (9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。 (10)生水水温,一般取5~20℃。 (11)进入凝汽器的蒸汽干度,取0.88~0.95。 (12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。 2、原则性热力系统 2.1设计热负荷和年持续热负荷曲线 根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见表2-1。用户处工业用汽符合总量:采暖期最大为175 t/h,折算汇总到电厂出口处为166.65 t/h。 表2-1 热负荷汇总表 折算到热电厂出口的工业热负荷,再乘以0.9的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8 kJ/kg)计算出供热量,见表2-2。根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1、图2-2。 表2-2 热电厂设计热负荷

电厂水处理典型事故的分析、处理与防范

编订:__________________ 单位:__________________ 时间:__________________ 电厂水处理典型事故的分析、处理与防范Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-1434-33 电厂水处理典型事故的分析、处理 与防范 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常 工作或活动达到预期的水平。下载后就可自由编辑。 1 前言 青岛某热电厂炉外水处理系统基本工艺为:来自市政自来水管网的原水经原水加热器加热到18-25℃之后,进入盘式过滤器(DF)进行预过滤处理,然后经超滤装置(UF)进行深度过滤处理,超滤产水经过反渗透装置(RO)进行预脱盐处理,然后进入混合离子交换器进行二级脱盐处理,二级脱盐水作为该公司锅炉的补给水。炉内水处理基本工艺为协调PH-磷酸盐处理。 在水处理系统运行控制过程中,由于设备种类和水质品种繁多,影响安全运行的因素错综复杂。为指导运行人员合理调整运行参数、全面检查运行状况和安全操作运行设备,笔者对该厂水处理系统各个环节

的常见易发事故进行分析研究,提出了事故分析与处理的方法,提出了相应的事故防范措施。 2 原水加热温度超标事故 2.1 事故后果:加热器出水超温严重时,可能会造成盘滤装置、超滤膜甚至反渗透膜的超温损坏或烧毁事故,引起设备报废。 2.2 事故现象:(1)加热器出水的温度表显示数值偏高;(2)手摸盘滤装置及进出水管道较热。(3)严重时会导致DF、UF、RO产水量迅速下降。(4)严重时超滤水箱、反渗透产水箱顶部冒出热汽。 2.3 事故原因:(1)加热器控制失灵造成加热过量;(2)停运制水装置后忘记停运加热器。(3)加热器进汽阀门关闭不严实,造成蒸汽内漏。 2.4 事故处理方法:(1)发现加热温度过高时应迅速关闭进汽阀门,检查热水串入到了哪些设备,检查热水对系统的影响程度,发现热水串入后续设备且温度高于40℃时应立即放掉或置换掉其内部热水,然后查找超温原因。(2)发现温度稍微偏高时可及时

鹤壁鹤淇发电有限责任公司(2660MW机组)全厂水平衡试

鹤壁鹤淇发电有限责任公司(2×660MW机组)全厂水平衡试验项目技术规范书 编制: 审核: 批准: 鹤壁鹤淇发电有限责任公司 2020年5月

资质要求 投标人专项资格要求 1.投标人应具有独立订立合同的法人资格。有CMA或CNAS资质证书。 2. 应具有完善的质量保证体系,必须持有国家认定的有资质机构颁发的ISO9000系列认证书或等同的质量保证体系认证证书; 3. 投标人应在5年内至少有2项300MW以上机组电厂水平衡测试业绩。投标人须随投标文件同时提供相关合同的复印件(封面、工程范围、签字页等),以证明投标人满足招标业绩要求。 4.最近三年内没有发生骗取中标、严重违约等行为。

技术规范书 1 .总则 1.1本技术规范适用于鹤壁鹤淇发电有限责任公司(2×660MW机组)全厂水平衡试验项目,水平衡试验结果将为鹤壁鹤淇发电有限责任公司(2×660MW机组)进一步开展全厂节水工作提供基础数据技术依据。 1.2本招标文件提出的是最低限度的技术要求,并未对一切技术要求作出详细规定,也未充分引述有关标准及规范。投标方应保证提供符合本招标文件和相关的国际、国内工业标准的优质服务。 1.3如投标方没有对本招标文件书提出书面异议,招标方则可认为投标方提供的服务完全满足本技术协议的要求。 1.4本招标文件所引用的标准若与投标方所执行的标准发生矛盾时,按较严格的标准执行。 1.5投标方对报告数据结果负有全部责任。 1.6在合同签定后,招标方有权因规范、标准、规程发生变化而提出一些补充要求。 1.7 投标方提交的水平衡报告必须通过专家评审(有水利主管部门专家参加)。 2、水平衡试验工作要求 2.1公司用水概况 鹤淇电厂设计以城市中水作为循环水系统补给水源。水库水可作为循环水系统的应急备用水源。消防水源采用循环水排污水,脱硫工艺水采用循环水排污水。全厂水系统包括工业水系统、循环冷却水(含开式水)冷却系统、生活水及生活污水处理系统、闭式冷却水系统、消防水系统、锅炉补给水处理系统、工业废水处理系统、含煤废水系统、含油废水系统、脱硫工艺水及脱硫废水处理系统、热力循环系统。 2.2水平衡试验的目的及原则 2.2.1水平衡试验的目的 河南省水利厅和河南省发改委关于印发《河南省水平衡测试管理办法》的通知(豫水政资【2013】12号)文件明确要求:取用水单位应定期进行水平衡测试,挖掘节水潜力。凡月用水一万立方米以上的,每三年测试一次。

高炉热平衡计算方法

高炉热平衡计算方法 4.3热平衡计算过程 需要补充的原始条件: 鼓风温度1100℃;炉顶温度200℃;入炉矿石温度为80℃。 4.3.1 热量收入 (1)碳素氧化热 由C 氧化1m3 成CO 2放热 1222.433410.66 ?=17898.43 KJ/m3 由C 氧化成1m3 的CO 放热 1222.4 9797.11 ?=5250.50 KJ/m 3 碳素氧化热=288.45×19878.43+(435.04-2.22)×5250.50 =8006454.54 KJ (2)热风带入热 1100 ℃时干空气的比热容为1.429kJ / m 3·℃ ,水蒸气的比热为1.753 kJ / m 3·℃,热风带入热=[(1238.89-18.58)×1.429+18.58×1.753]×1100 =1954033.10 KJ (3)成渣热 炉料中以碳酸盐形式存在的CaO 和MgO ,在高炉内生成钙铝酸盐时,1kg 放出热量1130.49 kJ 混合矿的CaO=1666.82×0.0154× 44 56 =32.67 KJ 成渣热=32.67×1130.49=36933.10 kJ (4)混合矿带入的物理热 80 ℃时混合矿的比热容为1.0 KJ/Kg·℃ 混合矿带入的物理热=1666.82×1.0×80=133345.60 kJ (5)H 2氧化放热 1m3 H 2氧化成H 2O 放热10806.65 KJ H 2氧化放热=51.81×10806.65=559892.53 kJ (6)CH 4生成热 1Kg CH 4生成热=16 77874.4 =4865.29 KJ CH 4的生成热=10.78×22.416 ×4865.29=37462.73 KJ 冶炼1t 生铁总热为以上各热量的总和 Q 总收 =8006454.54

电厂化学水处理技术全解析

由于电厂中的某些热力设备可能受到水中一些物质的作用从而产生有害的成分,使设备发生腐蚀的现象,因此电厂安全运行和化学水处理系统具有直接的关系。水中杂质对设备的破坏决定了电厂中的水必须要经过一定的处理才能被使用,该处理就是电厂中的化学水处理系统。 1 电厂化学水处理技术发展的现状 1.1 电厂获得纯净除盐水主要采用的三种方式: (1)采用传统澄清、过滤+离子交换方式,其流程如下: 原水→絮凝澄清池→多介质过滤器→活性炭过滤器→阳离子交换床→除二氧化碳风机→中间水箱→阴离子交换床→阴阳离子交换床→树脂捕捉器→机组用水。 (2)采用反渗透+混床制水方式,其流程如下: 原水→絮凝澄清池→多介质过滤器→活性碳滤器→精密过滤器→保安过滤器→高压泵→反渗透装置→中间水箱→混床装置→树脂捕捉器→除盐水箱。 (3)采用预处理、反渗透+EDI 制水方式,其流程如下: 原水→絮凝澄清池→多介质过滤器→活性炭过滤器→超滤装置→反渗透装置→反渗透水箱→EDI装置→微孔过滤器→除盐水箱。 以上3种水处理方式是目前电厂获得纯净除盐水的主要工艺,其他的水质净化流程大都是在以上3种制水方式的基础上进行不同组合而搭成的制水工艺流程。 1.2三种制水方式的优缺点: (1)第一种采用澄清、过滤+离子交换的优点在初期投资少,设备占用地方相对较少,其缺点是离子交换器失效需要酸、碱进行再生来恢复其交换容量,需大量耗费酸碱。再生所产生的废液需要中和排放,后期成本较高,容易对环境造成破坏。 (2)第二种采用反渗透+混床,这种制水工艺是化学制取超纯除盐水相对经济的方法,只需对混床进行再生,而且经过反渗透半除盐处理的水质较好,缓解了混床的失效频度。减少了再生需要的酸、碱用量,对环境的破坏相对较小。其缺点是在投资初期反渗透膜费用较大,但总的比较相对划算,多数电厂目前考虑接受这种制水工艺。 (3)第三种采用预处理、反渗透+EDI的制水方式也称全膜法制水。这种制水方法不需要用酸、碱进行再生就可以制取纯净除盐水,不会对环境造成破坏。是目前电厂最经济、最环保的化学制水工艺,但其缺点是设备初期投资相对前面两种制水方式过于昂贵。 2 电厂化学水处理措施 2.1 补给水的处理措施 电厂在生产锅炉的补给水处理中,关系到生产安全与效率。目前随着科学技术的快速发展,电厂关于环保节能的理念深入人心,过去传统的离子交换、澄清过滤或混凝等比较落后的技术已经逐渐被摒弃,现如今新的纤维材料广泛应用于过滤设备,不仅除去了胶体,微生物以及一些颗粒的悬浮物等,在过滤中也具有较强的吸附、截污能力,取得了相当好的效果。膜分离技术被采用,当前反参透占主导地位,反渗透技术能除去水中90%以上离子,如水中有机物、硅有较好的去除率。由于膜分离技术具有明显的优势,因此在锅炉补给水的处理中节约了大量的由于离子交换或澄清过滤等落后技术在运营时产生废水排放的费用,同时过去操作复杂和排放困难的许多问题也得到了改进。新的膜分离技术不仅达到了环保的要求。当水中的氯含量比较高时,可以采用活性碳过滤或者使用水质还原剂来进行处理。而混床在除盐处理的作用仍占有重要的位置,混床除盐技术相对成熟、可靠,混床的功能具有其他除盐所无法替代的作用。目前将超滤、反渗透装置和电渗析除盐技术有效的搭配,形成高效的除盐工艺,不需要酸、碱再生剂,只通过对水电离出来的H+和OH-即可完成再生的作用,从而完成电渗析的再生、除盐。这种制水工艺将是电厂化学制水的发展方向。

热力发电厂课程设计---660MW凝汽式机组全厂原则性热力系统计算

660MW凝汽式机组全厂原则性热力系统计算 (设计计算) 一、计算任务书 (一)计算题目 国产660MW凝汽式机组全厂原则性热力系统计算(设计计算)(二)计算任务 1.根据给定热力系统数据,计算气态膨胀线上各计算点的参数, 并在h-s图上绘出蒸汽的气态膨胀线; 2.计算额定功率下的气轮机进汽量Do,热力系统各汽水流量D j、G j; 3.计算机组的和全厂的热经济性指标; 4.绘出全厂原则性热力系统图,并将所计算的全部汽水参数详细 标在图中(要求计算机绘图)。 (三)计算类型 定功率计算 (四)热力系统简介 某火力发电场二期工程准备上两套660MW燃煤汽轮发电机组,采用一炉一机的单元制配置。其中锅炉为德国BABCOCK公司生产的2208t/h自然循环汽包炉;气轮机为GE公司的亚临界压力、一次中间再热660MW凝汽式气轮机。 全厂的原则性热力系统如图5-1所示。该系统共有八级不调节抽汽。其中第一、二、三级抽汽分别供三台高压加热器,第五、六、七、八级抽汽分别供四台低压加热器,第四级抽汽作为压力除氧器的加热汽源。 第一、二、三级高压加热器均安装了内置式蒸汽冷却器,上端差分别为℃、0℃、℃。第一、二、三、五、六、七级回热加热器装设疏水冷却器,下端差均为℃。 气轮机的主凝结水由凝结水泵送出,依次流过轴封加热器、4台低压加热器,进入除氧器。然后由气动给水泵升压,经三级高压加热器加热,最终给水温度达到℃,进入锅炉。 三台高压加热器的疏水逐级自流至除氧器,第五、六、七级低压加热器的疏水逐级自流至第八级低压加热器;第八级低加的疏水用疏水泵送回本级的主凝结水出口。 凝汽器为双压式凝汽器,气轮机排气压力。给水泵气轮机(以下简称小汽机)的汽源为中压缸排汽(第四级抽汽),无回热加热其排

火力发电厂水平衡测试的方法和应用

火力发电厂水平衡测试的方法和应用 刘斌 (华能日照电厂 276826) 摘要:本文结合日照电厂在实际进行水平衡测试过程中的经验,对水平衡测试的方法和步骤进行了论述,通过日照电厂采取的节水实例进一步说明了水平衡测试在火力发电厂中节水的重要意义。 关键词:火力发电厂水平衡测试步骤应用 1引言 水是生命的源泉、农业的命脉、工业的血液。没有水,人类就不能生存,社会就不能发展。早在1977年,联合国就召开水会议,向全世界发出严正警告:水不久将成为一个深刻的社会危机,继石油危机之后的下一个危机便是水。把水看成取之不尽、用之不竭的时代已经过去,把水当成宝贵资源的时代已经到来。科学的预言很快就变成了严峻的现实。目前,世界上有一百多个国家和地区缺水。我国的水资源也很匮乏,尤其是我国北方缺水更为严重,全国共有450个城市,近300个城市缺水,严重缺水的城市有100多个,如青岛、大连、太原、西安、长春等。水的危机正在严重地威胁着火力发电厂的机组正常运行。有些电厂不得已通过高昂的投入采用海水淡化解决水资源紧缺的局面。为提高火力发电厂的经济效益,降低发电成本,强化用水管理,降低发电水耗率就显得更为重要。查清火力发电厂用水、取水和排水,达到合理用水科学管水,做好水平衡测试工作是唯一的途径。 2 水平衡测试目的 水平衡测试是对用水单位进行科学管理之有效的方法,也是进一步做好节约用水工作的基础。通过水平衡测试应达到以下目的: 1、掌握单位用水现状。如水系管网分布情况,各类用水设备、设施、仪器、仪表分布及运转状态,用水总量和各用水单元之间的定量关系,获取准确的实测数据。 2、对单位用水现状进行合理化分析。依据掌握的资料和获取的数据进行计算、分析、评价有关用水技术经济指标,找出薄弱环节和节水潜力,制订出切实可行的技术、管理措施和规划。 3、找出单位用水管网和设施的泄漏点,并采取修复措施,堵塞跑冒滴漏。 4、健全单位用水三级计量仪表。既能保证水平衡测试量化指标的准确性,又为今后的用水计量和考核提供技术保障。 5、可以较准确地把用水指标层层分解下达到各用水单元,把计划用水纳入各级承包责任制或目标管理计划,定期考核,调动各方面的节水积极性。 6、建立用水档案,在水平衡测试工作中,搜集的有关资料,原始记录和实测数据,按照有关要求,进行处理、分析和计算,形成一套完整详实的包括有图、表、文字材料在内的用水档案。 7、通过水平衡测试提高单位管理人员的节水意识,单位节水管理节水水平和业务技术素质。 8、为制定用水定额和计划用水量指标提供了较准确的基础数据。 3 电厂水平衡测试的方法步骤 3.1 宣传发动阶段 这一阶段首先要进行全厂性的宣传,进行水平衡测试知识的普及工作。宣传电厂进行水平衡的重要意义,进行水平衡的步骤方法。宣传的手段可以利用图表、图片、文字等形式,要做到通俗易

火电厂水平衡测试

火电厂水平衡测试 葛春鹏 (西:l匕电力试验研究院,陕西西安710054) [摘要]主要阐述在电厂水平衡测试过程中,如何关注组织管理、前期准备、测试方法、数据整理等几个方面的工作,才能确保水平衡测试任务的顺利实施,最终达到令人满意的效果,为电厂合理用水、科学管水提供可靠资料。 [关键词]水平衡;测试;注意要点 中图分类号,TU99L64文献标识码,B文章编号;1008—4835(2005)02一002】一02 0引言 火电厂是用水大户,一座装有两台600MW发电机组的电厂,如冷却水采用闭式循环方式,年用水量约为2000万m3左右。电厂所用生水通常取用江河湖泊、水库等地表水或地下水。电厂用水遍及电厂的各个部门,用水量较多的为冷却水系统的补充水、锅炉用水及水力除灰用水;同时电厂排水种类也较多,主要有灰场渣场排水、化学车间酸碱废水、主厂房的生产废水、输煤系统喷淋除尘污水、生活污水等。为节约用水及减少外排水的污染问题,提高水的重复利用率,常采取多种处理系统,故需要强化电厂用水管理,降低发电水耗率也就显得十分重要,查清火电厂用水、取水和排水,达到合理用水、科学管水,作好水平衡测试工作便成为其惟一的途径。火电厂水平衡测试就是以火电厂作为一个确定的用水体系,研究水的输入、输出和损失之间的平衡关系。通过对电厂各种取、用、排、耗水量的测定,查清火电厂用水状况,正确地评价火电厂的用水水平,找出节水潜力,制定切实可行的节水技术措施和规划,使火电厂的用水达到合理使用和科学管理。 1成立水平衡测试小组 1.1水平衡测试作为一项临时工作,电厂一般以合同协议的方式委托具有相关工作经验的单位来厂里进行具体指导和测试,电厂负责协调配合。由于电厂用水遍及电厂的各个部门,委托单位就必须与电厂相关专业人员进行合作才能顺利完成任务,这除了需要厂里高级领导层的统一调度、指挥外,相当程度上依赖于水平衡测试小组合作各方的协调能力。因此在组织工作方面需要成立一个水平衡测试小组,负责与委托单位合作,协调电厂各部门配合工作。 水平衡测试小组以主管总工程师为领导,抽选机、炉、电、燃、化专业人员参加,要求参加试验的人员熟悉专业系统,具有一定的运行经验和理论知识。 根据电厂实际情况,以锅炉燃料、环保或化学专业的技术主管为主要负责人,一方面负责与委托单位合作、联系及具体测试的一些相关事宜,另一方面负责与水平衡测试小组内各专业人员协调、组织各部门配合水平衡测试工作。 1.2水平衡测试以锅炉燃料技术主管牵头负责,环保专工、化学专工配合。抽选各专业部分人员参加测试工作。 1.3委托具有水平衡测试经验的专业技术人员编写水平衡测试大纲,并具体负责测试工作。 2水平衡测试的准备工作 水平衡测试的准备工作主要有:水平衡测试前的准备工作、建立水平衡体系及选定测点和水平衡测试计量仪表的配备。 水平衡测试前的准备工作主要有:编写水平衡测试大纲、现场调查、收集资料和准备测试用仪器、仪表、记录表格等项内容。其中现场调查又包括水源情况、 丽丽丽厕丽d蒜甓搿泓器0   万方数据

相关文档
最新文档