最新15MW双馈风力发电机电气原理图汇总

最新15MW双馈风力发电机电气原理图汇总
最新15MW双馈风力发电机电气原理图汇总

15M W双馈风力发电机电气原理图

1.5MW双馈风力发电机电气原理图

常州轨道车辆牵引传动工程技朮研究中心仅供学习与交流,如有侵权请联系网站删除谢谢2

仅供学习与交流,如有侵权请联系网站删除谢谢3

仅供学习与交流,如有侵权请联系网站删除谢谢4

仅供学习与交流,如有侵权请联系网站删除谢谢5

仅供学习与交流,如有侵权请联系网站删除谢谢6

仅供学习与交流,如有侵权请联系网站删除谢谢7

双馈式风力发电机剖析

双馈式风力发电机 【摘要】随着地球能源的日益紧缺,环境污染的日益加重,风能作为可再生绿色能源越来越被人们重视,风力发电技术成为世界各国研究的重点。变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。通过调节发电机转子电流的大小、频率和相位,从而实现转速的调节。而其中双馈发电机构成的风力发电系统已经成为目前国际上风力发电的必然趋势。 关键词:风能风力发电变速恒频双馈式发电机 一、风力发电 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。 风力发电:把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。 风力发电在芬兰、丹麦等国家很流行;中国也在西部地区大力提倡。我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。在这些地区,发展风力发电是很有前途的。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。 风力发电的原理:是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。 风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)

风力发电并网方式的

科技信息 SCIENCE&TECHNOLOGYINFORMATION2013年第7期0引言 当今石化能源的日益匮乏,社会的发展对能源的需求不断增加。 风能作为一种清洁可再生能源越来越受到世界各国的重视。近年来风 力发电在国内外都得到了突飞猛进的发展。但由于风能的随机性和不 稳定性,在其发展的过程中也出现很多问题,其中风力发电并网难最 为突出。风电并网技术成为风力发电领域研究的重难点问题。如何将 并网瞬时冲击电流降低到最小规范值,进一步保证并网后系统电压稳 定是当今研究的重点方向。本文对并网技术问题进行相关研究,提出 并网运行方式并进行分析比较。1风力发电并网运行的分析随着风力发电的快速发展,风电场的并网已成为必然的途径。从风电问世以来,风力发电经历了独立运行方式、恒速恒频运行方式、变速恒频运行方式。当今变速恒频发电系统已成为主流,但风力发电并 网仍是热点的研究话题。 不管是哪一种发电类型,并网总是以保证电力系统稳定性为基本 原则。风力发电相比于火力发电和水力发电,由于其不稳定性需要更 精确的并网控制技术。并网运行时,需满足:(1)电压幅值与电网侧电 压幅值相等;(2)频率与电网侧频率相同;(3)电压相角差为零;(4)电压 波形及相位与电网侧的电压波形及相位保持一致。这样保证了并网时 冲击电流理想值为零。否则,若并网产生很大的瞬时冲击电流,不仅损 坏电力设备,更严重的是使电力系统发生震荡,威胁到电力系统稳定 性。 从大的方向看,风力发电系统并网分为恒速恒频风力发电机并网 和变速恒频风力发电机并网。恒速恒频并网运行方式为风力发电机的 转子转速不受风速的影响,始终保持与电网频率相同的转速运行。虽 然其结构简单、运行可靠,但是对风能的利用率不高,机械硬度高,而 且发电机输出的频率完全取决与转速,如控制不好,并网时会发生震 荡、失步,产生很大的冲击电流。所以恒速恒频系统已逐渐退出人们的 视线。随着电力电子技术的日益成熟,以变速恒频并网运行方式取而 代之。变速恒频风力发电并网系统是发电机转速随着风速的变化而变 化,系统通过电力电子变化装置,使机组输出的电能频率控制在与电 网频率一致。变速恒频并网方式减少了机组的机械应力,充分的利用 风能源,使发电效率大大提高;并网时通过精确合理地控制电力电子 变换器,使得并网更加稳定,降低系统因冲击电流过大使电网电压降 低从而破坏电力系统稳定性。2变速恒频双馈发电机并网 目前,并网型的变速恒频风力发电机组主要采用双馈发电机和永 磁同步发电机。 变速恒频双馈发电机的并网原理图如图1所示。 双馈发电机并网的工作原理为当风速变化时,发电机的转子励磁回路由双PWM 变频器控制转子励磁电流的频率,转子转速与励磁电流频率合成定子电流频率。调节励磁电流频率,使定子电流频率始终与电网频率保持一致。电机转动频率、定、转子绕组电流频率的关系式为:f 1=pn 60±f 2式中:f 1为定子电流频率,f 2为转子电流频率,n 为转子转速。双馈发电机既可以同步运行也可以异步运行,通过精确地控制双PWM 变频器,可以实行“柔性并网”,大大提高并网的成功率。一般双馈发电机 并网的结构相对复杂,大多采用多级齿轮箱双馈异步风力发电机组。 当自然风速使得风力发电机转子转速频率与电网频率相同时,风力发 电机同步运行;当风力发电机的转速小于或者大于电网频率时,风力 发电机异步运行,通过双向变频器实现发电机组转子与电网的功率交 换,保证输出频率与电网侧保持一致。在异步运行程中,不仅有励磁损 耗,而且还要从电网吸收无功功率,所以需在并网侧安装无功补偿器。图1变速恒频双馈发电机的并网原理图3直驱式永磁同步发电机并网变速恒频永磁同步发电机并网原理图如图2所示。图2变速恒频永磁同步发电机并网原理图 直驱式永磁同步发电机并网的原理为当风速改变时,发电机输出不同频率的交流电,经过不可控整流电路将交流电变成直流电,再经过DC/DC 直流斩波让直流电压幅值保持压稳定。以逆变器为核心,采用IGBT 作为开关器件构成全桥逆变电路,将整流器输出的直流电逆变成与电网侧电压相角、幅值、相位、频率相同的交流电。逆变有时会产生一定的电压谐波污染和冲击电流,这时必须有效(下转第92页)风力发电并网方式的研究 张伟亮潘敏君韦大耸陈富玲 (贺州学院机械与电子工程学院,广西贺州542800) 【摘要】通过分析风力发电系统并网方式的原理,针对风力发电并网难的问题,提出利用直驱式永磁同步发电机实现风力发电并网。直驱式永磁同步发电机并网比传统的恒速恒频并网方式更加稳定。 【关键词】风力发电;并网运行;恒速恒频;变速恒频 Study on wind Power Grid-connected Mode ZHANG Wei-liang PAN Min-jun WEI Da-song CHEN Fu-ling (School of Mechanical and Electronics Engineering,Hezhou Univ.Hezhou Guangxi,542800,China ) 【Abstract 】By analyzing the theory of grid-connected wind farms,the paper presents using direct-driven permannet magnet synchronous generator to achieve grid-connerted wind power according to the problem in wind power grid-connected difficult.Direct drive permanent magnet synchronous generator than traditional way of constant speed constant frequency grid interconnection is more stable. 【Key words 】Wind power generation ;Parallel operation ;Constant speed constant frequency ;Variable speed constant frequency ※项目基金:此文为贺州学院大学生创新项目研究成果,项目编号2013DXSCX08。 作者简介:张伟亮(1982—),男,硕士,讲师,从事电气工程及其自动化的教学及高压设备的生产研发。 潘敏君,男,贺州学院电气工程及其自动化专业在读学生 。 ○本刊重稿○4

变速恒频双馈风力发电机的主要优点和基本原理

变速恒频双馈风力发电机的原理和优点研究 变速恒频发电技术 变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。这一调速系统和变桨距调节技术环节结合起来,就构成了变速恒频风力发电系统。其调节方法是:起动时通过调节桨距控制发电机转速;并网后在额定风速以下,调节发电机的转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上,采用失速与桨距双重调节、减少桨距调节的频繁动作,限制风力机获取的能量,保证发电机功率输出的稳定性和良好的动态特性,提高传动系统的柔性。上述方式目前被公认为最优化的调节方式,也是未来风电技术发展的主要方向。其主要优点是可大范围调节转速,使风能利用系数保持在最佳值;能吸收和存储阵风能量,减少阵风冲击对风力发电机产生的疲劳损坏、机械应力和转矩脉动,延长机组寿命,减小噪声;还可控制有功功率和无功功率,改善电能质量。尽管变速系统与恒速系统相比,风电转换装置中的电力电子部分比较复杂和昂贵,但成本在大型风力发电机组中所占比例并不大,因而大力发展变速恒频技术将是今后风力发电的必然趋势。 目前,采用变速恒频技术的风力发电机组,由于采用不同类型的发电机,并辅之相关的电力电子变流装置,配合发电机进行功率控制,就构成了形式多样的变速恒频风力发电系统。主要有以下几类:鼠笼型异步发电机变速恒频风力发电系统、绕线式异步发电机变速恒频风力发电系统、同步发电机变速恒频风力发电系统、双馈发电机变速恒频风力发电系统。其中,由双馈发电机构成的变速恒频控制方案是在转子电路实现的,采用双馈发电方式,突破了机电系统必须严格同步运行的传统观念,使原动机转速不受发电机输出频率限制,而发电机输出电压和电流的频率、幅值和相位也不受转子速度和瞬时位置的影响,变机电系统之间的刚性连接为柔性连接。基于诸多优点,由双馈发电机构成的变速恒频风力发电系统已经成为目前国际上风力发电方面的研究热点和必然的发展趋势。

双馈风力发电模拟实验机组

双馈风力发电模拟实验机组 双馈风电机组(又称:双馈风力发电机模拟试验台),是风力发电行业广泛应用的模拟实验机组,该机组具有模拟变速恒频风力机组并网发电的功能及特性,是风电行业科学研究、教学实验的理想产品。 双馈风电机组分为拖动单元、控制单元、发电单元、测量单元。 本机组使用原动电机为拖动单元,电动机通过联轴器拖动双馈发电机。用户可根据设计的实验目的由控制单元调节电动机转速,达到宽范围模拟大自然风速变化引起的发电机发电状况之变化。用户通过开放式测量单元,可以根据自己的实验需求给定发电机转矩,通过控制双馈发电机的功率输出,达到变速恒频风力机组的并网发电等过程各参数的实验研究。通过机组故障模拟,达到对机组常见故障的认识和处理方法。 拖动单元的原动机选用异步电动机(也可选用永磁同步电动机、交流同步电动机、直流电动机):模拟机组因风速变化而引起的转速变化。 发电单元选用双馈发电机(也可选用永磁同步发电机、直流发电机、交流异步发电机,交流同步发电机):双馈发电机变速恒频发电。 控制单元选用变频器控制拖动电机转速,用以模拟风速的变化,同时可以方便的通过计算机控制变频器实现电机的转速调节模拟风机出力。 测量单元选用光电编码器采集发电机的转子位置和实时转速,光电编码器安装于发电机后端输出轴上(两台电机联轴间也可安装扭矩传感器,用于测量轴功率和转速);选用电压、电流、频率等测量传感元件及检测显示表面板、按键,开关模块等,对电量信号进行采集、分析、处理。 机组实现变速恒频风力机组发电状态的模拟,包括转速、转矩、发电量及有功、无功调节。拖动单元:模拟机组因风速变化而引起的转速变化。 机组模拟实验内容 1、风力发电机接线形式实验 2、空载运转实验 3、风速模拟实验 4、转距模拟实验

风力发电机工作原理图解析

风力发电,是能源业又一突破,其中风力发电机功不可没。通过风力发电机工作原理图,我们可以清晰了解各种奥妙。其实,风力发电机工作原理图并不是那么难懂。下面,我们一起来对风力发电机工作原理图进行详细的剖析和解读吧! 风力发电机为一由转动盘、固定盘、风轮叶片、固定轮、立竿、集电环盘、舵杆、尾舵和逆变器组成的系统。转动盘和固定盘构成该系统的发电机,逆变器包括50赫正弦波振荡器、整形电路、低压输出电路和倒相推挽电路。 风力发电机工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。 最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。 齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度。 风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。 早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距。 就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。 现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。理论上的12级飓风,其风速范围也仅为32。7-36。9米/秒。 风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时*齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元。

双馈风电机组与永磁直驱机组对比

双馈风电机组与永磁直驱机组对比 发表时间:2019-03-14T16:13:57.780Z 来源:《建筑模拟》2018年第34期作者:李兵[导读] 清洁能源在电力系统中的大规模利用,使得风电机组在电网中的占比日益扩大,其运行特性极大地影响电力系统的运行稳定性.本文分析了双馈变速与直驱同步风电机组的结构特点。 李兵 辽宁大唐国际新能源有限公司辽宁沈阳 110000 摘要:清洁能源在电力系统中的大规模利用,使得风电机组在电网中的占比日益扩大,其运行特性极大地影响电力系统的运行稳定性.本文分析了双馈变速与直驱同步风电机组的结构特点。 关键词:电力系统;风力机组;永磁直驱机 风力发电机组主要包括变频器、控制器、齿轮箱,发电机、主轴承、叶片等部件,在这些部件中发电机目前国产化程度最高,它的价格约占机组的10%左右。发电机主要包括两种机型:永磁同步发电机和异步发电机。永磁同步发电机低速运行时,不需要庞大的齿轮箱,但机组体积和重量都很大,1.5MW的用词直驱发电机机舱会达到5米,整个重量达80吨。同时,永磁直驱发电机的单价较贵,技术复杂,制造困难,但是这种机型的优点是少了个齿轮箱,也就少了个故障点。异步发电机是由风机拖动齿轮箱,在带动异步发电机运行,因为叶片速度很低,齿轮箱可以变速100倍,以让风机在额定转速下运行,目前流行的是双馈异步发电机,主要有1.25MW\1.5MW\2MW三种机型,异步发电机组的机组单价低,技术成熟,国产化高。 一、双馈风力发电系统 双馈风力发电机组的控制核心是通过变流器对双馈发电机转子电流(频率、幅值、相位)的控制,以达到与风电机组机械部分运行特性匹配、提高风能的利用效率及改善供电质量的目的。 1、双馈变速恒频型风力发电机组的风轮叶片桨距角可以调节,同时发电机可以变速,并输出恒频恒压电能; 2、在低于额定风速时,他通过改变转速和叶片桨距角使风力发电机组在最佳叶尖速比下运行,输出最大的功率; 3、在高风速时通过改变叶片桨距角使风力发电机组功率输出稳定在额定功率。 双馈风力发电系统主要由叶片、增速齿轮箱、双馈发电机、双向变流器和控制器组成。双馈式风力发电机组将风轮吸收的机械能通过增速机构传递到发电机,发电机将机械能转化为电能,通过发电机定子、转子传送给电网。发电机定子绕组直接和电网连接,转子绕组和变频器相连。变频器控制电机在亚同步和超同步转速下都保持发电状态。在超同步发电时,通过定转子两个通道同时向电网馈送能量,双馈式风力发电机在亚同步和超同步转速下都可发电。故称双馈技术主要特点 发电机采用绕线式异步电机,定子直接与电网相连,转子侧通过变流器与电网相连。当双馈发电机的负载和转速变化时,通过调节馈入转子绕组的电流,不仅能保持定子输出的电压和频率不变,而且还能调节双馈发电机的功率因数。 1发电机转子侧变流器功率仅需要25%~30%的风机额定功率,大大降低了变流器的造价; 2发电机体积小、运输安装方便、成本低; 3可承受电压波动范围:额定电压±10%; 4网侧及直流侧滤波电感、电容功率相应缩小,电磁干扰也大大降低; 5可方便地实现无功功率控制。 主要缺点 1需要采用双向变频器,变速恒频控制回路多,控制技术复杂,维护成本高 2发电机需安装集电环和刷架系统,且须定期维护、检修或更换随着风电机组单机容量的增大,双馈型风电系统中齿轮箱的高速传动部件故障问题日益突出,于是没有齿轮箱而将主轴与低速多极同步发电机直接连接的直驱式布局应运而生;从中长期来看,直驱型和半直驱型传动系统将逐步在大型风电机组中占有更大比例,另外,在传动系统中采用集成化设计和紧凑型结构是未来大型风电机组的发展趋势。在大功率变流技术和高性能永磁材料日益发展完善的背景下,大型风电机组越来越多地采用pmsg(无功控制和低电压穿越能力),pmsg不从电网吸收无功功率,无需励磁绕组和直流电源,也不需要滑环碳刷,结构简单且技术可靠性高,对电网运行影响小。Pmsg与全功率变流器结合可以显著改善电能质量,减轻对低压电网的冲击,保障风电并网后的电网可靠性和安全性,与双馈型机组相比,全功率变流器更容易实现低电压穿越等功能,更容易满足电网对风电并网日益严格的要求。 二、直接驱动型风力发电系统 典型的永磁直驱型变速恒频风力发电系统,包括永磁同步发电机(pmsg)和全功率背靠背双pwm变流器,无齿轮箱。Pmsg通过全功率变流器直接与电网连接,通常极对数较多,低转速,大转矩,径向尺寸较大,轴向尺寸较小,呈圆环状;由于省去了齿轮箱,从而简化了传动链,提高了系统效率,降低了机械噪声,减小了维修量,提高了机组的寿命和运行可靠性;发电机通过变流器与电网隔离,因此其应对电网故障的能力更强,但是变流器容量较大,损耗较大,变流器的成本较高。

双馈风力发电机并网控制

双馈风力发电机并网控制 摘要:风力是重要的清洁能源,风力所具备的可再生性以及无污染性使得其受到广泛关注和应用,风力发电也是目前我国重点要求的电力能源技术。而并网控制是将风力发电机稳定地接入到电网系统中的技术。本文主要研究双馈风力发电机并网控制的方法,以及在实际应用中的难点,以及并网控制过程中存在的其他影响控制,并相应地提出优化建议。 关键词:双馈风力发电机;并网控制;方法;难点 一、双馈风力发电机概述 当前风力发电机大体可以分为同步电机好异步电机两类,实际应用中可以细分为鼠笼异步发电机、双馈发电机、同步发电机以及永磁同步发电机。双馈风力发电机是一种绕线式感应发电机,属于异步发电机。由于双馈异步电动机的定子绕组直接同电网相连接,转子绕组通过变流器和电网连接,并由变频器实现对饶子绕组电源电压、相位以及频率和幅值的自动调控,因而在运行中,机组可以在不同的转速下维持恒频发电。然而,虽然双馈发电机具备机械承受应力小、运行噪音小、变频器容量小以及启动效率高的特点,但双馈发电机的电气损耗较大,还需配备齿轮箱,造价较为昂贵。不过相比同步风力发电机,双馈风力发电机能够更好的实现电能稳定输出,实用性较强。 二、双馈发电机的并网控制方法 双馈发电机的并网控制方法和异步发电机相似,主要原理是通过滑差率来调节负荷,发电机的转速和输出功率近似成线性关系,所以只要保持发电机的转速和同步转速相接近就能实现并网。目前,常用的并网方法主要有四种,直接并网控制法、准同期并网法、降压并网控制法以及电子元件软并网控制法。 2.1 直接并网控制法 直接并网控制法是指将风力发电机的输出交流电直接并入到风力电网中,在电机转速和同步转速接近时,由测速系统给出并网信号,再通过自动空气开关实现并网,主要适用于风力发电机和电网相序相同的情况,即电网电容量足够大的同时,风力发电机的容量保持在百千瓦以下。 优点:直接并网控制方法能够保证风力速率变动情况下风力发电机也可以维持横频输出,同时能够单独地对有功功率和无功功率进行解耦控制,便于对风力电动机运行中负载消耗的无功功率进行补偿,稳定其他机组的无功负荷,确保风力发电系统电压的稳定。 缺点:直接并网控制方法要求双馈发电机的相序和发电电网的相序必须保持一致,这就对风力发电机的规格提出了严格的要求。 2.2 准同期并网控制法 异步发电机下的准同期并网控制方法和同步发电机下的准同步并网控制方法基本相同,都是在发电机转速接近同步转速的时候,利用电容励磁先来确定一个稳定的电压,再根据系统电压、频率、相位等来调节发电机的电压和频率,确保二者同步。当二者同步后,就可以将风力发电机接入电网。 优点:准同期并网控制方法对风力系统的电压没有太大的影响,不会出现电压下降的问题,常用于发电机容量和电网容量相似或相差不多的机组。 缺点:按照传统的整步方式,想要实现从整步到准同步的转变,不但需要高精度的整步设备、同期设备以及调速设备,还需要耗费较长的时间,加大了机组构造成本。而且,准同期并网控制方法也需要对电流进行精准控制,确保合闸瞬

风力发电机结构图分析风力发电机原理

风力发电机结构图分析风力发电机原理 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。风力研究报告显示:依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。下面先看风力发电机结构图。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。

风力发电机结构图指出:风力发电机因风量不稳定,故其输出的是13~25v变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220v市电,才能保证稳定使用。 通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。风力发电机结构图显示:目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。在内地,小的风力发电机会比大的更合适。因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。当无风时人们还可以正常使用风力带来的电能,也就是说一台200w风力发电机也可以通过大电瓶与逆变器的配合使用,获得500w甚至1000w乃至更大的功率出。 现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。 最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。 齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度。 风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。 早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距。 就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。 现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。理论上的12级飓风,其风速范围也仅为32.7-36.9米/秒。 风力发电机结构图显示:风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时监视齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元

双馈异步风力发电机(讲)

1.引言: 风力发电机组主要包括变频器,控制器,齿轮箱(视机型而定),发电机,主轴承,叶片等等部件,在这些部件中发电机目前国产化程度最高,它的价格约占机组的10%左右。发电机主要包 括2种机型:永磁同步发电机和异步发电机。永磁同步发电机低速运行时,不需要庞大的齿轮箱,但是机组体积和重量都很大,1.5MW 的永磁直驱发电机机舱会达到5米,整个重量达80吨。同时,永磁直驱发电机的单价较贵,技术复杂,制造困难,但是这种机型的优点是少了个齿轮箱,也就少了个故障点。异步发电机是由风机拖动齿轮箱,再带动异步发电机运行,因为叶片速度很低,齿轮箱可以变速100倍,以让风机在1500RPMF运行,目前流行的是双馈异步发电机,主要有1.25MV Y 1.5MV y 2MW三种机型,异步发电机的机组单价低,1KW大概需6000元左右,而且技术成熟,国产化高。 2.双馈异步发电机的原理: 所谓双馈,可以理解为定子、转子同时可以发出电能, 发电机原理理论上说只要有动力带动电动机,在电动机的定子侧就能直接发出电能。现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转矩(即风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。双馈发电机正是由叶片通过齿轮箱

变速,带动电机高速旋转,同时转子接变频器,通过变频器PW M控制以达到定子侧输出相对完美正弦波,同时在额定转速下,转子侧也能同时发出电流,以达到最大利用风能效果。通俗的讲,就是要变频器控制转子电流,反馈到定子上面,保证定子发出相对完美的正弦无谐波电能,同时在额定转速下,转子也能发出功率出来。有个大致感觉是 1.5MW 发电机的定子发电量大概1200KV,转子大约300KV,转子侧发出的功率要在30%以下,总之越少越好这样可以让变频器功率小点。 3.双馈异步发电机的设计难点: 结构设计难点:因机舱封闭体积,风机运行环境非常恶劣,需要气温-30?55度之间正常运行,希望电机尺寸尽量小,风机对发电机重量有严格要求,部分厂家对转子转动惯量也有要求。发电机需要高速运行,但振速要小,通常要小于 2.8mm/s。此外对于水冷的电机入水温度较高,需要考虑维修和维护问题!比如轴承自动加油等!还有就是,整个发电机是倾斜运行的,大概4?5度的倾斜角度,这个在结构设计时候需要考虑??大家看到发电机的轴承就知道了。 电气设计难点:风机需要效率97%以上,由于转子绕组接变频 器,接变频器就会引发谐波电流,会引起铜耗,铁耗等!此外 定子转子承受很大冲击电压,提高绕组温升问题是优先考虑, 转子电流非常大,上千安培,滑环设计也是难点!电机会有轴 电流,需要考虑绝缘问题!同时高空运行需要防雷处理!转子 绕组线规非常大,成型困难!尽量控制转子输出功率尽量小于 30%,以缩小变频器的功率。

双馈异步风力发电机(西莫讲堂)

主讲人:aser 关键词:双馈异步风力发电机 协助讨论: Edwin_Sun lidb856 pat baizengchen g zslzsl xfq7111 wayne 会议摘要: 1. 引言: 风力发电机组主要包括变频器,控制器,齿轮箱(视机型而定),发电机,主轴承,叶片等等部件,在这些部件中发电机目前国产化程度最高,它的价格约占机组的10%左右。发电机主要包括2种机型:永磁同步发电机和异步发电机。永磁同步发电机低速运行时,不需要庞大的齿轮箱,但是机组体积和重量都很大,1.5MW的永磁直驱发电机机舱

会达到5米,整个重量达80吨。同时,永磁直驱发电机的单价较贵,技术复杂,制造困难,但是这种机型的优点是少了个齿轮箱,也就少了个故障点。异步发电机是由风机拖动齿轮箱,再带动异步发电机运行,因为叶片速度很低,齿轮箱可以变速100倍,以让风机在1500RPM下运行,目前流行的是双馈异步发电机,主要有1.25MW,1.5MW,2MW三种机型,异步发电机的机组单价低,1KW大概需6000元左右,而且技 术成熟,国产化高。 2.双馈异步发电机的原理: 所谓双馈,可以理解为定子、转子同时可以发出电能,发电机原理理论上说只要有动力带动电动机,在电动机的定子侧就能直接发出电能。现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转矩(即风轮转动惯量),通过主轴传动链,经过齿轮箱增速

到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。双馈发电机正是由叶片通过齿轮箱变速,带动电机高速旋转,同时转子接变频器,通过变频器PWM控制以达到定子侧输出相对完美正弦波,同时在额定转速下,转子侧也能同时发出电流,以达到最大利用风能效果。通俗的讲,就是要变频器控制转子电流,反馈到定子上面,保证定子发出相对完美的正弦无谐波电能,同时在额定转速下,转子也 能发出功率出来。有个大致感觉是 1.5MW发电机的定子发电量大概1200KW,转子大约300KW,转子侧发出的功率要在30%以下,总之越少越好这样可以让变频器功率小点。 3. 双馈异步发电机的设计难点: 结构设计难点:因机舱封闭体积,

风力发电机液压变桨系统简介

风力发电机液压变桨系统简介 全球投入商业运行的兆瓦级以上风力发电机均采用了变桨距技术,变桨距控制与变频技术相配合,提高了风力发电机的发电效率和电能质量,使风力发电机在各种工况下都能够获得最佳的性能,减少风力对风机的冲击,它与变频控制一起构成了兆瓦级变速恒频风力发电机的核心技术。液压变桨系统具有单位体积小、重量轻、动态响应好、转矩大、无需变速机构且技术成熟等优点。本文将对液压变桨系统进行简要的介绍。 风机变桨调节的两种工况 风机的变桨作业大致可分为两种工况,即正常运行时的连续变桨和停止(紧急停止)状态下的全顺桨。风机开始启动时桨叶由90°向0°方向转动以及并网发电时桨叶在0°附近的调节都属于连续变桨。液压变桨系统的连续变桨过程是由液压比例阀控制液压油的流量大小来进行位置和速度控制的。当风机停机或紧急情况时,为了迅速停止风机,桨叶将快速转动到90°,一是让风向与桨叶平行,使桨叶失去迎风面;二是利用桨叶横向拍打空气来进行制动,以达到迅速停机的目的,这个过程叫做全顺桨。液压系统的全顺桨是由电磁阀全导通液压油回路进行快速顺桨控制的。 液压变桨系统 液压变桨系统由电动液压泵作为工作动力,液压油作为传递介质,电磁阀作为控制单元,通过将油缸活塞杆的径向运动变为桨叶的圆周运动来实现桨叶的变桨距。 液压变桨系统的结构 变桨距伺服控制系统的原理图如图1所示。变桨距控制系统由信号给定、比较器、位置(桨距)控制器、速率控制器、D/A转换器、执行机构和反馈回路组成。 图1 控制原理图 液压变桨执行机构的简化原理图如图2所示,它由油箱、液压动力泵、动力单元蓄压器、液压管路、旋转接头、变桨系统蓄压器以及三套独立的变桨装置组成,图中仅画出其中的一套变桨装置。

双馈风力发电机组

双馈风力发电机组 一前言 风力发电作为清洁、丰富、可再生能源,日益受到全世界广泛重视,特别就是在近年得到了迅猛发展。当风流过风力机叶片,带动风力机转动时,风能转化为机械能,风力机又拖动发电机转子旋转,发电机向电网供电,机械能转化为电能。采用双馈绕线型异步发电机的变速恒频风力发电系统与传统的恒速恒频风力发电系统相比具有显著优势:风能利用系数高,不但能吸收由风速突变所产生的能量波动且避免主轴及传动机构承受过大的扭矩与应力,还可以自由调整有功与无功功率,改善系统的功率因数,可实现对频率与电压的方便调节等。目前,双馈风力发电技术就是应用最为广泛的风力发电技术之一。 二双馈绕线型异步风力发电系统的组成 变速恒频VSCF(Variable Speed Constant Frequency)双馈绕线型异步风力发电系统主要由风力机、增速齿轮箱、双馈绕线型异步发电机DFIG(Doubly-fed Induction Generator)、双向变频器与控制单元等组成。双馈发电机定子绕组接工频电网,转子绕组接“交—交”、“交—直—交”或“矩阵式”双向变频器,该变频器可实现对转子绕组的频率、相位、幅值与相序等调节控制。控制系统采用正弦波脉宽调制技术SPWM(Sinusoidal Pulse Width Modulation)与绝缘栅双极晶体管控制技术IGBT(Insulated Gate Bipolar Transistor),可四象限运行,变速运行范围一般在同步转速的±35 %左右。 三实现变速恒频的两种基本方式 实现变速恒频的基本方式一般有两种:一种就是采用传统直流电励磁或永磁同步发电机(以及笼型异步发电机等),另一种就是采用交流励磁的同步化双馈绕线型异步发电机。 当系统采用传统直流电励磁或永磁同步发电机(以及笼型异步发电机等)时,变频器 设置在发电机定子侧。随着转速不断变化,发电机发出变频交流电,经整流与逆变,最终转换成恒频电源再并网发电,永磁直驱同步发电机系统结构如图1(永磁半直驱同步发电机系统须在风力机与发电机之间增加增速齿轮箱):

双馈风力发电机工作原理

双馈异步风力发电机工作原理 我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。双馈电机虽然属于异步机的范畴,但是由于其有独立的励磁绕组,可以像同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。 同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。交流励磁电机的可调量有三个:一是可调节励磁电流幅值;二是可改变励磁频率;三是可改变相位。这说明交流励磁电机比同步电机多了两个可调量,通过改变励磁频率,可改变电机的转速,达到调速的目的。这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释放或者吸收负荷,对电网扰动远比常规电机小。改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位置上有一个位移,这就改变了发电机电势与电网电压相量的相对位置,也就改变了电机的功率角。这说明电机的功率角也可以进行调节。所以交流励磁不仅可以调节无功功率,也可以调节有功功率。 双馈电机的定转子绕组均为对称绕组,电机的极对数为 p,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的气隙中形成一个旋转的磁场,这个旋转磁场的转速 n1称为同步转速,它与电网频率 f1 及电机的极对数 p的关系如下:

P f n 1 160= 同样在转子三相对称绕组上通入频率为f 2 的三相对称电流,所 产生的旋转磁场相对于转子本身的旋转速度为: P f n 2260= 由上式可知,改变频率 f 2,即可改变 n 2,而且若改变通入转子三 相电流的相序,还可以改变此转子旋转磁场的转向。因此,若设n 1 为对应于电网频率为50Hz 时双馈发电机的同步转速,而n 为电机转子本身的旋转速度,则只要维持n ±n2=n1=常数,则双馈电机定子绕组的感应电势,如同在同步发电机时一样,其频率将始终维持为f 1 不变。 n ±n2=n1=常数 双馈电机的转差率 11n n n S -= ,则双馈电机转子三相绕组内通入的电流频率应为: 11 11122606060sf n n n Pn n n P Pn f =-=-==)( 根据上式表明:在异步电机转子以变化的转速转动时,只要在转子的三相对称绕组中通入转差频率(即f 1S )的电流,则在双馈电机 的定子绕组中就能产生50Hz 的恒频电势。所以根据上述原理,只要控制好转子电流的频率就可以实现变速恒频发电了。 根据双馈电机转子转速的变化,双馈发电机可有以下三种运行状态: (1) 亚同步运行状态。在此种状态下n

第五章 风力发电机组的液压系统和刹车

第五章风力发电机组的液压系统和刹车 风力发电机组的液压系统和刹车机构是一个整体。在定桨距风力发电机组中,液压系统的主要任务是执行风力发电机组的气动刹车和机械刹车;在变桨距风力发电机组中,液压系统主要控制变距机构,实现风力发电机组的转速控制、功率控制,同时也控制机械刹车机构。 第一节定桨距风力发电机组的刹车机构 一、气动刹车机构 气动刹车机构是由安装在叶尖的扰流器通过不锈钢丝绳与叶片根部的液压油缸的活塞杆相联接构成的。扰流器的结构(气动刹车结构)如图5-1 所示。当风力发电机组正常运行时,在液压力的作用下,叶尖扰流器与叶片主体部分精密地合为一体,组成完整的叶片。当风力发电机组需要脱网停机时,液压油缸失去压力,扰流器在离心力的作用下释放并旋转80°-9 0°形成阻尼板,由于叶尖部分处于距离轴最远点,整个叶片作为一个长的杠杆,使扰流器产生的气动阻力相当高,足以使风力发电机组在几乎没有任何磨损的情况下迅速减速,这一过程即为叶片空气动力刹车。叶尖扰流器是风力发电机组的 主要制动器,每次制动时都是它起主要作用。 在叶轮旋转时,作用在扰流器上的离心力和弹簧力会使叶尖扰流器力图脱离叶片主体转动到制动位置;而液压力的释放,不论是由于控制系统是正常指令,还是液压系统的故障引起,都将导致扰流器展开而使叶轮停止运行。因此,空气动力刹车是一种失效保护装置,它使整个风力发电机组的制动系统具有很高的可靠性。 二、机构刹车机构 图5-2为机构刹车机构由安装在低速轴或高速轴上的刹车圆盘与布置在四周的液压夹钳构成。液压夹钳固定,刹车圆盘随轴一起转动。刹车夹钳有一个预压的弹簧制动力,液压力通过油缸中的活塞将制动夹钳打开。机械刹车的预压弹簧制动力,一般要求在额定负载下脱网时能够保证风力发电机组安全停机。但在正常停机的情况下,液压力并不是完全释放,即在制动过程中只作用了一部分弹簧力。为此,在液压系统中设置了一个特殊的减压阀和蓄能器,以保证在制动过程中不完全提供弹簧的制动力。

第七章 双馈风力发电机工作原理

第七章双馈风力发电机工作原理 我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。双馈电机虽然属于异步机的范畴,但是由于其具有独立的励磁绕组,可以象同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。 同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。交流励磁电机的可调量有三个:一是可调节的励磁电流幅值;二是可改变励磁频率;三是可改变相位。这说明交流励磁电机比同步电机多了两个可调量。 通过改变励磁频率,可改变发电机的转速,达到调速的目的。这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释放或吸收负荷,对电网扰动远比常规电机小。 改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位置上有一个位移,这就改变了发电机电势与电网电压相量的相对位移,也就改变了电机的功率角。这说明电机的功率角也可以进行调节。所以交流励磁不仅可调节无功功率,还可以调节有功功率。 交流励磁电机之所以有这么多优点,是因为它采用的是可变的交流励磁电流。但是,实现可变交流励磁电流的控制是比较困难的,本章的主要内容讲述一种基于定子磁链定向的矢量控制策略,该控制策略可以实现机组的变速恒频发电而且可以实现有功无功的独立解耦控制,当前的主流双馈风力发电机组均是采用此种控制策

略。 一、 双馈电机的基本工作原理 设双馈电机的定转子绕组均为对称绕组,电机的极对数为p ,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的气隙中形成一个旋转的磁场,这个旋转磁场的转速1n 称为同步转速,它与电网频率 1f 及电机的极对数p 的关系如下: p f n 1 160= (3-1) 同样在转子三相对称绕组上通入频率为2f 的三相对称电流,所产生旋转磁场相对于转子本身的旋转速度为: p f n 2 260= (3-2) 由式3-2可知,改变频率2f ,即可改变2n ,而且若改变通入转子三相电流的相序,还可以改变此转子旋转磁场的转向。因此,若设1n 为对应于电网频率为50Hz 时双馈发电机的同步转速,而n 为电机转子本身的旋转速度,则只要维持 常数==±12n n n ,见式3-3,则双馈电机定子绕组的感应电势,如同在同步发电机 时一样,其频率将始终维持为1f 不变。 常数==±12n n n (3-3) 双馈电机的转差率1 1n n n S -=,则双馈电机转子三相绕组内通入的电流频率应为: S f pn f 12 260 == (3-4)

小型风力发电机控制器设计

电子设计竞赛教程 考试(设计报告) 题目:小型风力发电机控制器设计

摘要 现有的小型风力发电系统存在能量转换效率低、蓄电池使用寿命短、控制简单和缺乏完整的系统功率控制等问题。因此提高对蓄电池的充电速度,减少充电损耗,正确地监控蓄电池状态,确保蓄电池的正确使用、延长蓄电池的使用寿命对小型风力发电有着重要意义。本设计的目的是在分析现有的小型风力发电系统的基础上,设计简单、高效、高可靠性的风机控制器,实现风电系统可靠及优化运行。 本设计以单片机8051的加强版STC12C5A60S2为核心控制整个电路,具体由风力发电机、控制系统、整流电路、斩波电路、蓄电池充放电控制电路、蓄电池及其用电设备组成,功能上能保证系统安全运行,在电气特性和机械特性允许范围内运行。减少风速随机变化对输出电能的影响,使输出电压稳定,减少纹波。合理调度系统电能,保证向负载提供连续电能。保护蓄电池,防止过充和过放,提供足够充电能量进行快速充电。 综上所述,本设计将具有可靠性更高、价格更廉等优势,对于增强市场竞争能力,加速小型风力发电的普及和应用,节约能源和保护环境都具有重要意义。 关键词:发电机整流锂电池环保

目录 一绪论 0 二小型风力发电系统原理 (1) 2.1 风力发电系统组成 (1) 2.2 风电系统的运行特点 (1) 2.3 电能变换单元和控制单元 (3) 2.3.1 整流器 (3) 2.3.2 DC/DC 变换器 (4) 2.4 锂电池 (4) 2.4.1 锂电池的介绍 (4) 2.4.2 锂电池的种类 (5) 2.4.3 锂电池的充电方法 (5) 三小型风力发电机控制器的设计 (6) 3.1 电机的选择 (6) 3.1.1 手摇发电机 (6) 3.1.2 电机特性曲线 (8) 3.2 单片机(单片机STC12C5A60S2) (10) 3.2.1 产品介绍 (10) 3.2.2 单片机STC12C5A60S2的特点 (10) 四流程图和电路图 (13) 4.1流程图和控制原理图 (13) 4.2 显示屏 (17) 4.3 锂电池选择 (19) 4.4 检测电路 (20) 4.4.1 电压检测 (20) 4.4.2 电流检测 (21) 五调试 (21)

相关文档
最新文档