电荷泵工作原理

电荷泵工作原理
电荷泵工作原理

电荷泵工作原理

电荷泵电压反转器是一种DC/DC变换器,它将输入的正电压转换成相应的负电压,即VOUT= -VIN。另外,它也可以把输出电压转换成近两倍的输入电压,即VOUT≈2VIN。由于它是利用电容的充电、放电实现电荷转移的原理构成,所以这种电压反转器电路也称为电荷泵变换器(Charge Pump Converter)。

电荷泵的应用

电荷泵转换器常用于倍压或反压型DC-DC 转换。电荷泵电路采用电容作为储能和传递能量的中介,随着半导体工艺的进步,新型电荷泵电路的开关频率可达1MHz。电荷泵有倍压型和反压型两种基本电路形式。

电荷泵电路主要用于电压反转器,即输入正电压,输出为负电压,电子产品中,往往需要正负电源或几种不同电压供电,对电池供电的便携式产品来说,增加电池数量,必然影响产品的体积及重量。采用电压反转式电路可以在便携式产品中省去一组电池。由于工作频率采用2~3MHz,因此电容容量较小,可采用多层陶瓷电容(损耗小、ESR 低),不仅提高效率及降低噪声,并且减小电源的空间。

虽然有一些DC/DC 变换器除可以组成升压、降压电路外也可以组成电压反转电路,但电荷泵电压反转器仅需外接两个电容,电路最简单,尺寸小,并且转换效率高、耗电少,所以它获得了极其广泛的应用。

目前不少集成电路采用单电源工作,简化了电源,但仍有不少电路需要正负电源才能工作。例如,D/A 变换器电路、A/D 变换器电路、V/F或F/V 变换电路、运算放大器电路、电压比较器电路等等。自INTERSIL公司开发出ICL7660电压反转器IC后,用它来获得负电源十分简单,90 年代后又开发出带稳压的电压反转电路,使负电源性能更为完善。对采用电池供电的便携式电子产品来说,采用电荷泵变换器来获得负电源或倍压电源,不仅仅减少电池的数量、减少产品的体积、重量,并且在减少能耗(延长电池寿命)方面起到极大的作用。现在的电荷泵可以输出高达250mA的电流,效率达到75%(平均值)。

电荷泵大多应用在需要电池的系统,如蜂窝式电话、寻呼机、蓝牙系统和便携式电子设备。便携式电子产品发展神速,对电荷泵变换器提出不同的要求,各半导体器件公司为满足不同的要求开发出一系列新产品,本文将作一个概况介绍。

电荷泵的分类

电荷泵分类

电荷泵可分为:

?开关式调整器升压泵,如图1(a)所示。

?无调整电容式电荷泵,如图1(b)所示。

?可调整电容式电荷泵,如图1(c)所示。

图1 电荷泵的种类

电荷泵工作过程

3 种电荷泵的工作过程均为:首先贮存能量,然后以受控方式释放能量,以获得所需的输出电压。开关式调整器升压泵采用电感器来贮存能量,而电容式电荷泵采用电容器来贮存能量。

电荷泵的结构

电容式电荷泵通过开关阵列和振荡器、逻辑电路、比较控制器实现电压提升,采用电容器来贮存能量。电荷泵是无须电感的,但需要外部电容器。由于工作于较高的频率,因此可使用小型陶瓷电容(1mF),使空间占用小,使用成本低。电荷泵仅用外部电容即可提供±2 倍的输出电压。其损耗主要来自电容器的ESR(等效串联电阻)和内部开关晶体管的RDS(ON)。电荷泵转换器不使用电感,因此其辐射EMI可以忽略。输入端噪声可用一只小型电容滤除。它的输出电压是工厂生产精密预置的,调整能力是通过后端片上线性调整器实现的,因此电荷泵在设计时可按需要增加电荷泵的开关级数,以便为后端调整器提供足够的活动空间。电荷泵十分适用于便携式应用产品的设计。从电容式电荷泵内部结构来看,如图2 所示它实际上是一个片上系统。

图2 电容式电荷泵内部结构

电荷泵工作原理

电荷泵变换器的基本工作原理如图3所示。它由振荡器、反相器及四个模拟开关组成,外接两个电容C1、C2 构成电荷泵电压反转电路。

振荡器输出的脉冲直接控制模拟开关S1及S2;此脉冲经反相器反相后控制S3及S4。当S1、S2 闭合时,S3、S4 断开;S3、S4 闭合时,S1、S2 断开。

当S1、S2 闭合、S3、S4 断开时,输入的正电压V+向C1 充电(上正下负),C1 上的电压为V+;当S3、S4闭合、S1、S2断开时,C1向C2放电(上正下负),C2上充的电压为-VIN,即VOUT=-VIN。当振荡器以较高的频率不断控制S1、S2 及S3、S4 的闭合及断开时,输出端可输出变换后的负电压(电压转换率可达99%左右)。

由图 3 可知,电荷泵电压反转器并不稳压,即有负载电流时,输出电压将有变化。输出电流与输出电压的变化曲线(输出特性)称为输出特性曲线,其特点是输出电流越大,输出电压变化越大。

一般以输出电阻Ro来表示输出电流与输出电压的关系。若输出电流从零增加到Io时,输出电压变化为△V,则输出电阻Ro 为:

Ro = △V/Io

输出电阻Ro 越小,输出电压变化越小,输出特性越好。

如何选择电荷泵

1、效率优先,兼顾尺寸

如果需要兼顾效率和占用的 PCB 面积大小时,可考虑选用电荷泵。例如电池供电的应用中,效率的提高将直接转变为工作时间的有效延长。通常电荷泵可实现 90% 的峰值效率,更重要的是外围只需少数几个电容器,而不需要功率电感器、续流二极管及 MOSFET。这一点对于降低自身功耗,减少尺寸、BOM 材料清单和成本等至关重要。

2、输出电流的局限性

电荷泵转换器所能达到的输出负载电流一般低于 300mA,输出电压低于 6V。多用于体积受限、效率要求较高,且具有低成本的场合。换言之,对于 300mA 以下的输出电流和 90% 左右的转换效率,无电感型电荷泵 DC/DC 转换器可视为一种成本经济且空间利用率较高的方式。然而,如果要求输出负载电流、输出电压较大,那么应使用电感开关转换器,同步整流等 DC/DC 转换拓扑。

3、较低的输出纹波和噪声

大多数的电荷泵转换器通过使用一对集成电荷泵环路,工作在相位差为 180 度的情形,这样的好处是最大限度地降低输出电压纹波,从而有效避免因在输出端增加滤波处理而导致

的成本增加。而且,与具有相同输出电流的等效电感开关转换器相比,电荷泵产生的噪声更低些。对于 RF 或其它低噪声应用,这一点使其无疑更具竞争优势。

电荷泵选用要点

作为一个设计工程师选用电荷泵时必然会考虑以下几个要素:

?转换效率要高

无调整电容式电荷泵 90%

可调整电容式电荷泵 85%

开关式调整器 83%

?静态电流要小,可以更省电;

?输入电压要低,尽可能利用电池的潜能;

?噪音要小,对手机的整体电路无干扰;

?功能集成度要高,提高单位面积的使用效率,使手机设计更小巧;

?足够的输出调整能力,电荷泵不会因工作在满负荷状态而发烫;

?封装尺寸小是手持产品的普遍要求;

?安装成本低,包括周边电路占PCB 板面积小,走线少而简单;

?具有关闭控制端,可在长时间待机状态下关闭电荷泵,使供电电流消耗近乎为0。新型电荷泵变换器的特点

80 年代末90 年代初各半导体器件厂生产的电荷泵变换器是以ICL7660为基础开发出一些改进型产品,如MAXIM 公司的MAX1044、Telcom 公司的TC1044S、TC7660 和LTC 公司的LTC1044/7660等。这些改进型器件功能与ICL7660相同,性能上有改进,管脚排列与ICL7660完全相同,可以互换。

这一类器件的缺点是:输出电流小;输出电阻大;振荡器工作频率低,使外接电容容量大;静态电流大。

90 年代以后,随着半导体工艺技术的进步与便携式电子产品的迅猛发展,各半导体器件公司开发出各种新型电荷泵变换器,它们在器件封装、功能和性能方面都有较大改进,并开发出一些专用的电荷泵变换器。它们的特点可归纳为:

1. 提高输出电流及降低输出电阻

早期产品ICL7660在输出40mA时,使-5V 输出电压降为-3V(相差2V),而新型MAX660输出电流可达100mA,其输出电阻Ro仅为6.5Ω,MAX660在输出40mA时,-5V输出电压为-4.74V(相差仅0.26V),即输出特性有较大的提高。MAX682 的输出电流可达250mA,并且在器件内部增加了稳压电路,即使在250mA 输出时,其输出电压变化也甚小。这种带稳压的产品还有AD 公司的ADM8660、LT 公司的LT1054 等。

2. 减小功耗

为了延长电池的寿命或两次充电之间的间隔,要尽可能减小器件的静态电流。近年来,开发出一些微功耗的新产品。ICL7660 的静态电流典型值为170μA,新产品TCM828的静态电流典型值为50μA,MAX1673 的静态电流典型值仅为35μA。另外,为更进一步减小电路的功耗,已开发出能关闭负电源的功能,使器件耗电降到1μA 以下,另外关闭负电源后使部分电路不工作而进一步达到减少功耗的目的。例如,MAX662A、AIC1841 两器件都有关闭功能,在关闭状态时耗电< 1μA,几乎可忽略不计。这一类器件还有TC1121、TC1219、ADM660 及ADM8828等。

3. 扩大输入电压范围

ICL7660电荷泵电路的输入电压范围为1.5~10V,为了满足部分电路对更高负压的需要,已开发出输入电压可达18及20V的新产品,即可转换成-18 或-20V的负电压。例如,TC962、TC7662A 的输出电压范围为3~18V,ICL7662、Si7661 的输入电压可达20V。

4. 减少占印板的面积

减少电荷泵变换器占印板面积有两种措施:采用贴片或小尺寸封装IC,新产品采用SO 封装、μMAX封装及开发出尺寸更小的SOT-23封装;其次是减小外接电容的容量。输出电流一定时,电荷泵变换器的外接电容的容量与振荡器工作频率有关:工作频率越高,电容容量越小。工作频率在几kHz到几十kHz时,往往需要外接10μF的泵电容;新型器件工作频率已提高到几百kHz,个别的甚至到1MHz,其外接泵电容容量可降到1~0.22μF。

ICL7660 工作频率为10kHz,外接10μF电容;新型TC7660H 的工作频率提高到

120kHz,其外接泵电容已降为1μF。MAX1680/1681 的工作频率高达1MHz,在输出电流为125mA 时,外接泵电容仅为1μF。TC1142 工作频率200kHz,输出电流20mA 时,外接泵电容仅为0.47μF。MAX881R 工作频率100kHz,输出电流较小,其外接泵电容仅为0.22μF。

若采用SOT-23 封装的器件及贴片式电容,则整个电荷泵变换器的面积可做得很小。

5. 输出负电压可设定(调整)

一般的电荷泵变换器的输出负电压VOUT = -VIN,是不可调整的,但新型产品MAX1673可外接两个电阻R1、R2来设定输出负电压。输出电压VOUT 与R1、R2 的关系为:

VOUT = -(R2/R1)VREF

式中VREF为外接的基准电压。MAX881R、ADP3603~ADP3605、AIC1840/1841 等都有这种功能。

6. 两种新型的四倍压器件

MAX662A是一种输入5V 电压输出12V 带稳压的电荷泵变换器,输出电流可达30mA,它用于闪速存储器编程电源(Flash Memory Programming Supply)。该器件实际上是经两次倍压(四倍压)后其经稳压后输出。

LTC1502 是另一种工作原理与MAX662A 相同的四倍压器件(它是LT 公司1999 年一季度推出的新产品)。该器件用一节可充电电池或一节碱性电池就可输出3.3V 稳定的电压。另外,它最低的输入电压为0.9V,可充分利用电池的能量。输出电压精度为3.3V±4%,输出电流为10mA。该器件静态电流仅为40μA,并有关闭电源控制,外围元件仅5 个电容,若采用贴片式电容,整个电源面积小于0.125 平方英寸。

电荷泵

背景知识: 便携式移动设备大多以电池供电,其负载电路通常是微处理器控制的设备,比如移动电话、掌上电脑等等,此类设备要求供电电源效率高、输出纹波电压小。直流变换器就是把未经调整的电源电压转化为符合要求的电源。电池的广泛使用,给这一类电源带来特殊的要求:高效率、静态电流小、很小的面积、低重量并且价格便宜。传统的电源通常使用一个电感实现DC/DC变换,但是电感体积庞大、容易饱和、会产生EMI而且电感价格昂贵。为解决此类问题,现代电源通常采用电荷泵电路。电荷泵采用电容储存能量,外接组件少,非常适合用于便携式设备中,并且随着其电路结构的不断改进和工艺水平的提高,也可应用在需要较大电流的应用电路中。因此高效率电荷泵DC-DC转换器因其功耗小、成本低、结构简单、无需电感、二极管、MOSFET等外围组件、高EMI抑制等优点,在电源管理电路中己得到广泛应用。 基本原理: 电荷泵使用电容储存能量,并且随着电荷泵电路结构的改进,也可应用在需要大电流的应用电路中。一般电荷泵电路主要有两种工作模式——“LINEAR” 模式和“SKIP”模式。 当电荷泵工作在“LINEAR”模式下,可以获得较低的输出纹波,工作在“SKIP”模式下可以获得较低的静态电流。为描述方便,以下分析中的电荷泵四个开关管均用NMOS代替,而并非实际上电荷泵开关中既有PMOS又有NMOS。 无电感型电荷泵如图1所示,包含四个开关(M1-M4)、一个泵电容(flying capacitor) CF、输出电容(OutputCa pacitor)LOUT。一个简单的工作过程可分为三个阶段: 阶段A ( 充电阶段,M1和M2导通):泵电容被VIN充电,CF两端的平均压差为VIN减去充电电流在M1和M2产生压降。 阶段B (能量传输阶段,M3和M4导通):泵电容向负载电容放电,其两极平均电压为 阶段C (等待阶段,M1-M4均不导通):没有能量从VIN传输到CF和Cout。VCF =常量。在等待状态,CF两端电压保持恒定,这意味着:

CQ磁力泵 使用说明书

CQ型磁力驱动泵 使用说明书 地址:山东省烟台市福山高新技术产业区鑫海街188号电话:+86-535-6302098 6300668 传真:+86-535-6300568 邮编:265500

一、产品概述 CQ型磁力驱动泵(简称磁力泵)是将永磁联轴器的工作原理应用于离心泵的新产品,设计合理、工艺先进、具有全密封、无泄漏、耐腐蚀的特点,其性能达到国外同类产品的先进水平。 磁力泵以静密封取代动密封,使泵的过流部件处于完全密封状态,彻底解决了其它泵机械密封无法避免的跑、冒、滴之弊病。磁力泵选用耐腐蚀、高强度的工程塑料、刚玉陶瓷,不锈钢等作为制造材料,因此它具有良好的抗腐蚀性能,并可以使被输送介质免受污染。 二、主要材料及用途 磁力泵结构紧凑、外形美观、体积小、噪音低、运行可靠、使用维修方便。可广泛应用于化工、制药、石油、电镀、食品、电影照相洗印,科研机构。国防工业等单位抽送酸、碱液、油类,稀有贵重液、毒液、挥发性液体,以及循环水设备配套、过滤机配套。特别是易漏、易燃、易爆液体的抽送,选用此泵则更为理想。 三、磁力泵结构示意图 1、泵壳 2、静环 3、动环 4、叶轮 5、密封圈 6、隔板

7、隔离套8、外磁钢总成9、内磁钢总成10、泵轴11、轴套 12、联接架13、电机 四、磁力泵材质种类 (1)工程塑料泵(增强聚丙烯)型号有: 08CQ-2、10CQ-3、14CQ-5、16CQ-8、20CQ-12、32CQ-15、32CQ-25、40CQ-20、50CQ-25、50CQ-32。 (2)不锈钢泵(1Cr18Ni9Ti)型号有: 16CQ-8、20CQ-12、32CQ-15、32CQ-25、40CQ-20、40CQ-32、50CQ-25、50CQ-40、50CQ-50、65CQ-25、65CQ-35、80CQ-35、80CQ-50。 五、磁力泵特性曲线(以常温清水为测试介质)

电荷泵设计原理及在电路中的作用

1、电荷泵原理 电荷泵的基本原理是,电容的充电和放电采用不同的连接方式,如并联充电、串联放电,串联充电、并联放电等,实现升压、降压、负压等电压转换功能。 上图为二倍升压电荷示,为最简单的电荷泵电路。V2输出为方波信号,当V2为低电平的时候,V1通过D1、C1、V2对电容C2充电,C2两端电压上正下负;当V2为高电平输出的时候,V2输出电压与C1两端电压相叠加,通过D3对负载供电并对C2充电。如果忽略二极管压降,则C2两端电压Vo=V2+V1,其中V2为电压源V2的高电平输出电压。 由于电荷泵整个工作过程的核心部分为电容充放电过程,所以最重要的公式为电容充放电公式:I*T=ΔV*C,其中T为电容充放电周期,ΔV为每个充放电周期内电容两端电压波动,I为充放电电流。 电荷泵以非常简单的电路可以实现升压、降压、负压等功能,所以各种不同的场合为电路扩展小功率电路。 2、电荷泵在电路中的作用 1.功率电路中的电荷泵 电荷泵的一个非常广泛的用途就是在由N沟道MOSFET构成的半桥电路中为上桥臂提供浮驱电压。典型接法如下图所示,图中红框内的二极管D及电容Cboot与主电路中半桥的下桥臂T1构成电荷泵。当半桥的下臂T1开通时,Vcc 通过D与T1为电容Cboot充电;当T1关断T2导通时,Cboot为上臂T2提供MOSFET导通所必需的Vgs电压。这是由于T2在电路中的位置所决定的,当T2导通时,如果忽略导通压降Vds,T2的源极电压Vs=Vr,所以如果想要饱和导通,加上T2门极上的驱动电压需满足Vg=Vr+Vgs,对于功率型N沟道

MOSFET而言,Vgs通常需要15V左右。电荷泵以很少的元器件满足了这一设计要求,所以在此类应用中得到广泛应用。 虽然上图中所述的自举型电荷泵(采用半桥的下臂作为电荷泵的一部分)使电路设计变得非常简单,但实际使用过程中有些限制,如对桥臂的开通时序和占空比有限制等。所以,在某些要求比较高的应用场合,采用他驱型的电荷泵,即将电荷泵电路及驱动波形与主功率电路分离,采用外部电路构成电荷泵。这样的电路虽然结构比自举驱动电路略微复杂一些,但克服了自举驱动电路的一些问题,在某些场合也得到较广泛的应用。 2.RS-232电平转换中的升压、负压 电荷泵的另外一个极为广泛的应用就是为电平转换芯片提供符合RS-232标准的电源电压。电平转换芯片的供电通常为3.3V或者5V的单电源,而RS232电平标准要求,以-3~-15V表示逻辑电平“1”,以+3~+15V表示逻辑电平“0”,所以RS232转换芯片不仅要完成电平转换,还要提供符合要求的电源转换。 下图为RS232电平转换芯片的典型结构框图,首先以一个升压电荷泵将+3.3V或5V的输入电源进行二倍压升压,然后采用一个负压电荷泵将二倍压升压后的电源输出进行转换为负电压。

2019年MG磁力泵说明书(中文)

Omp磁力齿轮泵 使用说明书 一、概述: 磁力齿轮泵是一种通过磁力耦合传动的齿轮泵。壳体采用优质不锈钢316L制造,齿轮由PEEK 塑料精密注塑制成。具有高压力,小流量无渗漏,耐腐蚀,耐高温的特点。齿轮泵与微型电机组成的齿轮泵单元。广泛用于医疗、化工、科研、食品加工、清洗、印刷、水处理、喷涂、包装计量等领域。 二、型号说明 二、安装与使用: 1.打开泵进口的封口,注意打开封口后务必保持泵内的清洁,以免造成泵卡死。 2.泵的进出管道,请按泵壳上箭头表示位置安装, 3.泵的进出管应加密封处理和固定。(特别是进口如有漏气现象会造成泵工作时的噪音增大)。 4.泵在工作前应先将泵内充满液体,以保证泵能可靠的吸入液体。禁止泵在无液体状态下空转。 5.泵应安装在有减震装置的基础上,以减少泵的震动和噪音。 6.泵吸入的液体中颗粒的直径必须小于40微米。 7.电机的接线: ⑴三相交流电机:Y型接法输入380V三相交流电源。△型接法输入三相220V交流电源。 ⑵单相交流电机: 接线端子: D1 K1 D2 K2 :接220V单相电源,(MG200系列接2微法电容,MG300系列接4微法电容),短接。 (3)直流无刷电机: A:MG200系列 a.外置驱动器 ①:红色粗导线接DC24V+ ,黑色粗导线接地 ②:红,绿,黑色三根细线连接的电位器为泵的流量调节控制。 ③:白,蓝色二根细线与黑色细线同时短接,泵正转,同时断开,泵处于制动状态。 白色细线与黑色细线短接,泵反转,断开,泵处于制动状态 ④:黄色细线与黑色细线短接,泵停转,断开,泵运转。 b.内置驱动器 ①:红色导线接DC24V+ ,黑色导线接地, ②:C,D,F三根细线连接的电位器为泵的流量调节控制。

电磁泵的分类与工作原理

电磁泵的分类与工作原理解读 电磁泵是一种技术成熟并且广泛应用的泵类产品,具有结构紧凑,输出压力高,无泄漏,体积小,价格相对低廉,输出流量较小等特点。 电磁泵(electromagnetic pump )利用现代磁力学原理,利用永磁体实现无接触间接传动的一种化工流程泵。利用磁场和导电流体中电流的相互作用,使流体受电磁力作用而产生压力梯度,与可运动的泵体形成交互作用,带动泵体振动,推动液体输出。 大型电磁泵与结构(图1) 电磁泵主要分为:直流电磁泵和交流电磁泵两大类。直流电磁泵包括传导式电磁泵(平面式和螺旋式)和热电-电磁泵;交流电磁泵包括单相交流电磁泵(平面传导式、环形感应式)和三相交流电磁泵(平面感应式、螺旋感应式、圆形感应式)<直流传导式的工作原理 一般来说直流传导式结构比较简单,它由磁极、电极、泵沟等组成。在定向 恒稳磁场N-S极之间,通过泵沟两侧的电极向液态金属中通入直流电,直流电方

向与磁场方向垂直,按左手定则产生产生电磁力驱动金属溶液流动,改变磁极或

泵阀英才网 pv Jdjob88,com 电极极性可改变流动方向。调节磁场强度或直流电流大小可改变驱动强度 直流无刷电磁泵(图2) 交流传导式电磁泵工作原理 交流传导式电磁泵由电极,铁心,主副线圈和泵沟组成。当主线圈通以工频 交流电时,在铁心的气隙中产生一交变磁场,该交变磁场作用在泵沟内的金属上,同时铁心中产生的交变磁场感应铁心上的副线圈,从,而在副线圈上产生感应电动势,电极及液态金属所组成的回路中便有交流电,在任意瞬间泵沟有效区磁场的方向和通过液态金属的电流方向按左手定则判断所产生的电磁力的方向是一定的,电磁力驱动液态金属在泵沟中定向流动。

磁力泵操作手册

第一章磁力泵操作维护手册 1.概述 BGMA联合罐区磁力泵是由杭州大路实业有限公司生产的单级单吸卧式MDCA型磁力泵,所有泵无冷却水和密封冲洗等辅助系统,从泵进口方向看泵轴其转动方向为逆时针。泵共26台,共13个位号,每个位号两台互相备用。杭州大陆磁力泵具有优点: ●安全无泄漏 ●钛合金或哈氏合金定子屏蔽套 ●碳化硅滑动轴承 ●轴向力自动平衡 ●噪音低 ●维修费用低 2.用途 BGMA联合罐区磁力泵是为联合装置输转原料和产品的,共26台,常压一罐区6台、常压二罐区12台、球罐一8台,具体明细见下表 序号位号设备名称(用途)型号单元装置 1 AP-3102A/B 丁二烯输送泵MDCA80-40-315 球罐一 2 AP-3103A/B 丁二烯产品泵MDCA50-25-250 球罐一 3 AP-3106A/B 丁烯-1输送泵MDCA80-40-250 球罐一 4 AP-3107A/B 丁烯-1产品泵MDCA80-40-250 球罐一 5 AP-3201A/B 裂解汽油输送泵MDCA100-80-315 常压一 6 AP-3209A/B MTBE输送泵MDCA80-40-315 常压一 7 AP-3210A/B 汽油组分产品泵MDCA100-50-400 常压一 8 AP-3221A/B 加氢汽油输送泵MDCA80-50-250 常压二 9 AP-3222A/B 不合格芳烃产品泵MDCA50-25-250 常压二 10 AP-3223A/B 湿溶剂输送泵MDCA80-40-315 常压二 11 AP-3224A/B 干溶剂输送泵MDCA80-40-315 常压二 12 AP-3225A/B 苯倒罐泵MDCA 常压二 13 AP-3226A/B 苯输送泵MDCA80-50-250 常压二 3.结构及原理 结构 该泵为单级单吸、卧式、径向剖分、轴向吸入径向排出、后开门结构,主要由泵、磁力驱动装置和其它零部件共三部分组成(详见剖面图)。泵主要由叶轮、泵体、轴

海兰德磁力泵原理

综述原理 无刷直流磁力驱动泵的磁铁与叶轮注塑成一体组成电机的转子,转子中间有直接注塑成型的轴套,通过高性能陶瓷轴固定在壳体中,电机的定子与电路板部分采用环氧树脂胶灌封于泵体中,定子与转子之间有一层薄壁隔离,无需配以传统的机械轴封,因而是完全密封。电机的扭力是通过矽钢片(定子)上的线圈通电后产生磁场带动永磁磁铁(转子)工作运转。对磁体进行n (n为偶数) 级充磁使磁体部分相互组成完整耦合的磁力系统。当定子线圈产生的磁极与磁铁的磁极处于异极相对,即两个磁极间的位移角Φ=0,此时磁系统的磁能最低;当磁极转动到同极相对,即两个磁极间的位移角Φ=2π/n,此时磁系统的磁能最大。去掉外力后,由于磁系统的磁极相互排斥,磁力将使磁体恢复到磁能最低的状态。于是磁体产生运动,带动磁转子旋转。 无刷直流水泵通过电子换向,无需使用碳刷,磁体转子和定子矽钢片都有多级磁场,当磁体转子相对定子旋转一个角度后会自动改变磁极方向,使转子始终保持同级排斥,从而使无刷直流磁力隔离泵有较高的转速和效率。 海兰德泵业磁力隔离泵的定子与转子完全隔离,完全避免了传统的电机式无刷直流水泵存在的液体泄漏问题。而且可以完全潜水使用并且完全防水,有效的提高了泵的使用寿命及性能。 组成分解 无刷直流水泵(磁力隔离泵)由泵体(隔离件),电机定子,轴,轴承和转子水叶(磁体和叶轮)几部分组成: 磁体(钕铁硼永磁体) 由稀土永磁材料制成的永磁体工作温度范围广(-45-400℃),矫顽力高,磁场方向具 有很好的各向异性,在同极相接近时也不会发生退磁现象,是一种很好的磁场源。 隔离件 在采用金属隔离套时,隔离套处于一个正弦交变的磁场中,在垂直于磁力线方向的截面上感应出涡电流并转化成热量。涡流的表达式为:其中Pe-涡流;K—常数;n—泵的额定转速;T-磁传动力矩;F-隔套内的压力;D-隔套内径;一材料的电阻率;—材料的抗拉强度。当泵设计好后,n、T是工况给定的,要降低涡流只能从F、D等方面考虑。选用高电阻率、高强度的非金属材料制作隔离套,在降低涡流方面效果十分明显。 轴 由于无刷直流磁力隔离泵是通过通电线圈带动转子旋转来工作的,旋转为了保持转子转动的平稳及噪音,采用高性能陶瓷轴与轴套配合,可以达到很高的精度,有效的减少了旋转阻力及噪音。 滑动轴承

负压电荷泵的工作原理

负压电荷泵的工作原理 由Dickson 电荷泵理论可以推广得到产生负电压的电荷泵电路,负压电荷 泵的工作原理如图1 所示。其基本原理与Dickson 电荷泵是一致的,但是利用 电容两端电压差不会跳变的特性,当电路保持充、放电状态时,电容两端的电 压差将保持恒定。在这种情况下将原来的高电位端接地,就可得到负电压的输 出。该电路实际上是一个由基准、比较、转换和控制电路组成的系统。具体而 言,它由振荡器、反相器及四个模拟开关组成,并外接两个电容C1、C2 从而 构成电荷泵电压反转电路。 图1 负压电荷泵的工作原理 振荡器输出的脉冲直接控制模拟开关S1 及S2,此脉冲经反相器反相后控制 模拟开关S3 及S4。当模拟开关S1、S2 闭合时,模拟开关S3、S4 断开;模拟开关S3、S4 闭合时,模拟开关S1、S2 断开。 当模拟开关S1、S2 闭合,模拟开关S3、S4 断开时,输入的正电压+UIN 向 C1 充电(上正下负),C1 上的电压为+UIN;当模拟开关S3、S4 闭合,模拟开关 S1、S2 断开时,C1 向C2 放电(上正下负),C2 上充的电压为-UIN,即 UOUT=-UIN。当振荡器以较高的频率不断控制模拟开关S1、S2 及模拟开关 S3、S4 的闭合及断开时,在输出端可输出变换后的负电压(电压转换率可达99%左右)。 由如图1 所示的原理图分析可知,当时钟信号为高电平时,模拟开关S1、S2 同时导通,S3、S4 同时关断,UIN 对电容C1 进行充电,Ucl+=UIN-Utp- Utn(Utp 为开关S1 的电压降,Utn 为开关S2 的电压降),Ucl-=Utn;当时钟信号 为低电平时,S1、S2 关断,S3、S4 同时导通,C1 上存储的电荷通过S3、S4 传送到C2 上,由于C2 高电位端接地,故输出端电压为UOUT=-(UIN-Utp)。

化工泵的分类及工作原理

化工泵的分类及工作原理 化工泵按照工作原理、结构分类有容积式泵、其他形式的泵、叶片泵;按化工用途分类有管路输送泵、辅助用途泵、公用工程泵、工艺流程泵;按输送介质分类有油泵、水泵、杂质泵、耐腐蚀泵。因为它丰富的种类,所以化工泵在化工等领域具有霸主的地位。 化工泵具有稳定的工作性能,它的密封性相对其他泵设备更具优势,同时它的造型美观,也能满足现代人的审美需要,检修方便也是它的一大特色。随着化工泵的发展,它的家族逐渐壮大,那么化工泵分类有哪些呢? 化工泵的分类: 1、按照工作原理、结构分类: 1)容积式泵:利用泵缸体内容积的连续变化输送液体的泵,如往复泵、活塞泵、齿轮泵、螺杆泵。 2)其他形式的泵:有利用电磁输送液态电导体态的电磁泵;利用流体能量来输送液体的泵,如喷射泵、空气升液器等。 3)叶片泵:通过泵轴旋转时带动各种叶轮叶片给液体以离心力或轴向力,输送液体到管道或容器,如离心泵、旋涡泵、混流泵、轴流泵。 2、按化工用途分类: 1)管路输送泵:输油管线用泵、装卸车用泵等。 2)辅助用途泵:包括润滑油泵、密封油泵、液压传动用泵等。

3)公用工程泵:包括锅炉用泵、凉水塔泵、消防用泵、水源用深井泵等。 4)工艺流程泵:包括给料泵、回流泵、循环泵、冲洗泵、排污泵、补充泵、输出泵等。 3、按输送介质分类: 1)油泵:冷油泵、热油泵、油浆泵、液态烃泵等。 2)水泵:包括清水泵、锅炉给水泵、凝水泵、热水泵。 3)杂质泵:包括浆液泵、砂泵、污水泵、煤粉泵、灰渣泵等。 4)耐腐蚀泵:包括不锈钢泵、高硅铸铁泵、陶瓷耐酸泵、不透性石墨泵、衬硬胶泵、硬聚氯乙烯泵、屏蔽泵、隔膜泵、钛泵等。 通过以上对化工泵分类的介绍,我们可以进一步发现化工泵能在众多领域独占鳌头的原因了。一类产品如果想保持强大的竞争力,需要衍生各种适合市场需要的产品。很庆幸的化工泵正朝着这个方向发展。

最新CQB型磁力泵说明书汇总

C Q B型磁力泵说明书

目录 一、概述 (1) 二、型号与性能 (1) 三、结构 (2) 四、安装尺寸 (3) 五、安装与调试 (4) 六、使用与操作………………………………………………………………………………… 4-5 七、维护与保养 (5) 七、故障原因及排除方法 (5)

■概述 CQB型磁力传动离心泵(简称CQB磁力泵)。主要特点是利用磁传动器的外磁钢旋转时,磁力线穿过间隙和隔离套,作用于内磁钢上,使泵轴与电动机同步旋转,无接触地传递扭矩。在泵轴的动力输入端,由于液体被封闭在静止的隔离套内,没有动密封,因而杜绝了石油化工行业中免不了的跑、冒、滴、漏现象,完全无泄漏。此种类型的泵适用于输送有毒、有害、易燃、易爆和贵重液体介质,是创建无泄漏、无污染文明车间、文明工厂的理想用泵。 ●主要用途及适用范围 CQB磁力泵适用于石油、化工、制药、电镀、环保、食品、影视洗印、水处理、国防等行业。是输送易燃、易爆、易挥发、有毒、贵重和各种腐蚀性液体的理想设备。 ●使用环境及工作条件 CQB磁力泵其过流部件材质以Ⅱ类和Ⅲ类金属材质为主,也可以带非金属衬里或热固体性塑料,这类泵统称金属磁力泵,适用于输送液体的吸入压力必须大于其汽化压力0.1MPa, 最大出口压力4.0MPa,密度不大于1600kg/m3,粘度不大于30×10-6m2/S的不含铁磁性质颗粒和纤维的液体。 ■型号与性能 CQB磁力泵性能范围(按额定点性能)

流量 3.2~100m3/h 扬程 12.5~80m 温度 -20~100℃ 泵吸入口直径 32~100mm 功率 1.1~55kW ●型号说明 例:CQB—50—32—160 泵叶轮名义直径(mm) 泵出口直径(mm) 泵进口直径(mm) 磁力泵 ■结构 ●结构形式 CQB磁力泵主要由泵体、叶轮、泵轴、轴承、轴承体、隔离套、止推环、联接架、磁传动器等零部件组成。性能参数见表a,其结构型式见图一。 ▲CQB型磁力泵系列性能参数表a

磁力泵的工作原理、结构原理(正式版)

文件编号:TP-AR-L4729 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 磁力泵的工作原理、结构原理(正式版)

磁力泵的工作原理、结构原理(正式 版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 磁力泵由泵、磁力传动器、电动机三部分组成。 关键部件磁力传动器由外磁转子、内磁转子及不导磁 的隔离套组成。当电动机带动外磁转子旋转时,磁场 能穿透空气隙和非磁性物质,带动与叶轮相连的内磁 转子作同步旋转,实现动力的无接触传递,将动密封 转化为静密封。由于泵轴、内磁转子被泵体、隔离套 完全封闭,从而彻底解决了“跑、冒、滴、漏”问 题,消除了炼油化工行业易燃、易爆、有毒、有害介 质通过泵密封泄漏的安全隐患,有力地保证了职工的 身心健康和安全生产。

一、磁力泵工作原理 将n对磁体(n为偶数)按规律排列组装在磁力传动器的内、外磁转子上,使磁体部分相互组成完整藕合的磁力系统。当内、外两磁极处于异极相对,即两个磁极间的位移角Φ=0,此时磁系统的磁能最低;当磁极转动到同极相对,即两个磁极间的位移角Φ=2π/n,此时磁系统的磁能最大。去掉外力后,由于磁系统的磁极相互排斥,磁力将使磁体恢复到磁能最低的状态。于是磁体产生运动,带动磁转子旋转。 二、结构特点 1.永磁体 由稀土永磁材料制成的永磁体工作温度范围广(-

RS232接口芯片双电荷泵电平转换器原理

RS232接口芯片双电荷泵电平转换器 原理 电子工业协会Electronic Industries Association Electronic Industries Association(EIA)电子工业协会(EIA) 1924年成立的EIA是美国的一个电子制造商组织。 EIA-232,就是众所周知的RS-232,它定义了数据终端设备(DTE)和数据通信设备(DCE)之间的串行连结。这个标准被广泛采用。 EIA-RS-232C电气特性: 在TxD和RxD上:逻辑1=-3V~-15V 逻辑0=+3~+15V 在RTS、CTS、DSR、DTR和DCD等控制线上: 信号有效(接通,ON状态,正电压)=+3V~+15V 信号无效(断开,OFF状态,负电压)=-3V~-15V RS-232-C电平采用负逻辑,即逻辑1:-3~-15V,逻辑0:+3~+15V。 注意,单片机使用的CMOS电平中,高电平(3.5~5V)为逻辑1,低电平(0~0.8V)为逻辑0。 单片机的SCI口要外接电平转换电路芯片把与TTL兼容的CMOS高电平表示的1转换成RS-232的负电压信号,把低电平转换成RS-232的正电压信号。典型的转换电路给出-9V和+9V。

典型的电平转换电路MAXx2xx系列芯片因单电源+5V供电,均有电荷泵电平转换器产生±10V电源,以供RS232电平所需。 一般是接4个泵电容,采用双电荷泵进行电平转换。标准接法如下图。 图1 芯片内带振荡器驱动双电荷泵,分双相四步工作,如下图。 图2电荷泵框图

第一步:S1、S3闭合,电源+5V向C1充电(图3)。C1电压最高可至5V。 图3 第二步:S2、S4闭合,C1所储电荷经S2、S4转移至C3,C3电压最高也可至5V。 C1电荷转移充电途径如红色虚线所示。 C3电压和电源+5V迭加起来提供10V的V+电源。 这时C1负端电位应等于电源+5V,所以C1负端电压波形应是0-+5V 的方波。 第三步:S5、S7闭合,C3所储电荷和电源+5V迭加经S5、S7向C2充电。 C2电压最高可至10V。充电途径如棕色虚线所示。 第二、三步实际同时进行(图4)。

电磁泵介绍及分类

电磁泵介绍及分类 处在磁场中的通电流体在电磁力作用下向一定方向流动的泵。利用磁场和导电流体中电流的相互作用,使流体受电磁力作用而产生压力梯度,从而推动流体运动的一种装置。实用中大多用于泵送液态金属,所以又称液态金属电磁泵。 电磁泵没有机械运动件,结构简单,密封性好,运转可靠,不需要轴密封,因此在化工、印刷行业中用于输送一些有毒的重金属,如汞、铅等,用于核动力装置中输送作为载热体的液态金属(钠或钾、钠钾合金),也用于铸造生产中输送熔融的有色金属。流量可达13000米3/时,压力达1.7兆帕,温度达1200℃。 电磁泵按电源形式可分为交流泵和直流泵。 按液态金属中电流馈给的方式可分为传导式(电导式)电磁泵和感应式电磁泵。电导式电磁泵用直流或交流电。它有一根非磁性难熔金属制的管(见图),管周围是磁铁,磁力线与管垂直。当通入与管和磁力线均垂直的电流时,根据左手定则,产生机械力把导电流体压送出管。电导式一般为小型泵,用于低压和小流量。传导式电磁泵中,电流由外部电源经泵沟两侧的电极直接传导给液态金属。感应泵中,感应式使用多相交流电。电流则由交变磁场感应产生。最新式的感应式电磁泵是直线感应泵,装有布置成扁平的、直线状的定子绕组,感应力呈轴向,尺寸较大,大流量泵均属这种类型。 按结构不同可分为平面泵和圆柱泵等。 利用磁场和导电流体中电流的相互作用,使流体受电磁力作用而产生压力梯度,从而推动流体运动的一种装置。实用中大多用于泵送液态金属,所以又称液态金属电磁泵。电磁泵按电源形式可分为交流泵和直流泵;按液态金属中电流馈给的方式可分为传导式电磁泵和感应式电磁泵;按结构不同可分为平面泵和圆柱泵等。传导式泵中,电流由外部电源经泵沟两侧的电极直接传导给液态金属;感应泵中,电流则由交变磁场感应产生。电磁泵没有转动部件,结构简单,密封性好,运转可靠,因此在化工、印刷行业中用于输送一些有毒的重金属,如汞、铅等;在原子能动力工业中用于输送化学性质特别活泼的金属,如钠、钾、钠钾合金等。电磁泵的缺点是效率较低, 电磁泵的缺点是效率较低,在冶炼、铸造工业中尚未普遍采用。 电磁泵类似普通电磁阀,它以交流电为工作动力,电流通过电磁绕组形成交变固定磁场,与可运动的泵体形成交互作用,带动泵体振动,推动液体输出。

稳压电荷泵和电感式DCDC转换器的比较

稳压电荷泵和电感式DC/DC转换器的比较 电荷泵(也称为无电感式DC/DC转换器)是利用电容作为储能元件的特殊类型开关DC/DC转换器。与采用电感作为储能元件的电感式开关DC/DC转换器相比,电荷泵式转换器所具有的独特特点使其对于某些最终应用非常具有吸引力。本文将对比稳压电荷泵转换器与最常用的电感式DC/DC转换器(如电感式降压稳压器、升压稳压器以及单端初级电感式转换器(SEPIC))的结构和工作特点。 稳压式电荷泵转换器 最简单也是最常用到的电荷泵结构之一是倍压电荷泵。倍压电荷泵结构包括四个开关、一个用于存储和转移能量的外部电容(常称为“快速电容”),以及一个外部输出电容(常称为“储能电容”)。 图1是倍压电荷泵的结构图。这种倍压电荷泵的工作由两个阶段组成——充电(能量储存)和放电(能量转移)。 在充电阶段,开关S1/S3闭合(导通),S2/S4打开(关断)。快速电容CF被充电到输入电压VIN,并储存能量,储存的能量将在下一个放电阶段被转移。储能电容CR,在上一个放电周期就已经被从CF转移过来的能量充电到2VIN 电压,并提供负载电流。 在放电阶段,开关S1/S3打开,S2/S4闭合。CF的电平被上移了VIN,而 CF在上一充电阶段已经充电至VIN,因此CR两端的总电压现在成为2VIN(这也是“倍压”电荷泵名称的由来)。然后,CF放电将充电阶段存储的能量转移到CR,并且提供负载电流。 充电/放电周期的频率取决于时钟频率。通常倾向于采用较高的时钟频率来降低对快速电容和储能电容容值的要求,从而减小体积。 图1所示简单倍压电荷泵没有对输出电压进行稳压,因此其输出电压随着输入电压和负载的变化而变化。对需要稳压电源的应用,这并不合适。然而,只需要增加一个简单的反馈回路就可以容易地解决这一问题。图2给出了一个非常简单的、具有稳定输出的倍压电荷泵,通常称为“稳压式电荷泵”。 图2中,增加了一个开关S5来对开关S2/S4提供更多控制。由 VOUT 经过电阻R1 和 R2分压后与高精度电压参考源的差值确定比较器输出,并由这一输出来控制S5的状态。比较器通常都内置滞后特性,以防止出现振荡。比较器、电阻分压器、参考电压和S5开关共同构成了反馈回路。反馈回路通过控制放电阶段中开关S5 和 S2/S4的开关状态来调整电荷泵的输出电压。

易威奇(iwaik)MD磁力泵使用说明书

IWAKI AMERICA MAGNETIC DRIVE PUMP MD/WMD SERIES

Contents 1SAFETY INSTRUCTION (1) 2UNPACKING AND INSPECTION (3) 3OPERATING PRINCIPLE (3) 4MODEL IDENTIFICATION GUIDE (4) 5SPECIFICATIONS (5) Construction/Materials (6) 6HANDLING INSTRUCTIONS (7) 7INSTALLATION, PIPING, AND WIRING (8) 7.1Installation (8) 7.2 Piping instructions (9) 7.3Wiring (9) 8 ASSEMBLY (11) 9OPERATION (12) 10 MAINTENANCE/INSPECTION AND CONSUMABLE PARTS (14) 11 PARTS DESCRIPTION AND EXPLODED VIEW (14) 12 DIMENSIONS (15) 13 TROUBLESHOOTING (16) P/N 180243 Rev. C Jan 2010

1 SAFETY INSTRUCTIONS Turn off the power supply Working without disconnecting the power supply may cause an electrical shock. Before performing any assembly or maintenance procedures involving the pump, make sure to turn the power supply switch off and to stop the pump and other related devices. Terminate operation When you detect any signs of abnormal operation, terminate pump operation immediately. For specified application only The use of a pump in any applications other than those clearly specified may result in injury or damage to the pump. Use the pump strictly in accordance with the pump specifications and application capabilities. Modification Never modify the pump. Iwaki America will not be responsible for any accident or damage of any kind caused by the user remodeling the pump without first obtaining permission or instructions from Iwaki America. Protective clothing If application involves the handling of hazardous liquids, protective gear (gloves, glasses, clothing, etc) must be worn before performing any maintenance on the pump. Please follow safety guidelines established for such applications. Operation Operation of the pump and related system must be by experienced or knowledgeable personal. The pump operator or pump operation supervisor must not allow any personal who have little or no knowledge of the pump to operate the unit. Power Do not operate the pump at a different voltage than specified on the nameplate. This may result in damage to the unit or fire. Only the specified voltage must be used. Do not submerge If the motor or power cable becomes wet or damp fire or electric shock may occur. The unit should be installed in such a manner to prevent contact with fluids or in a wet environment. Follow all local, state and government regulations for the installation and wiring of the pump. Spill accident Protective measures should be taken against any accidental spill or leakage of any hazardous liquids as a result of unexpected damage to the pump or the related piping. Please follow safety guidelines established for such occurrences. Operating site must be free of water and humidity The pump is not designed to be water-proof or dust-proof. The use of the pump in places with splashing water or humidity above 90% may result in an electrical shock or short circuit.

磁力泵工作原理及常见故障分析

磁力泵概述 磁力泵由泵、磁力传动器、电动机三部分组成。关键部件磁力传动器由外磁转子、内磁转子及不导磁的隔离套组成。 当电动机带动外磁转子旋转时,磁场能穿透空气隙和非磁性物质,带动与叶轮相连的内磁转子作同步旋转,实现动力的无接触传递,将动密封转化为静密封。由于泵轴、内磁转子被泵体、隔离套完全封闭,从而彻底解决了“跑、冒、滴、漏”问题,消除了炼油化工行业易燃、易爆、有毒、有害介质通过泵密封泄漏的安全隐患,有力地保证了职工的身心健康和安全生产。 磁力泵的工作原理 将n对磁体(n为偶数)按规律排列组装在磁力传动器的内、外磁转子上,使磁体部分相互组成完整藕合的磁力系统。当内、外两磁极处于异极相对,即两个磁极间的位移角Φ=0,此时磁系统的磁能最低;当磁极转动到同极相对,即两个磁极间的位移角Φ=2π/n,此时磁系统的磁能最大。去掉外力后,由于磁系统的磁极相互排斥,磁力将使磁体恢复到磁能最低的状态。于是磁体产生运动,带动磁转子旋转。 结构特点 1.永磁体 由稀土永磁材料制成的永磁体工作温度范围广(-45-400℃),矫顽力高,磁场方向具有很好的各向异性,在同极相接近时也不会发生退磁现象,是一种很好的磁场源。 2.隔离套 在采用金属隔离套时,隔离套处于一个正弦交变的磁场中,在垂直于磁力线方向的截面上感应出涡电流并转化成热量。涡流的表达式为:其中Pe-涡流;K—常数;n—泵的额定转速;T-磁传动力矩;F-隔套内的压力;D-隔套内径;一材料的电阻率;—材料的抗拉强度。当泵设计好后,n、T是工况给定的,要降低涡流只能从F、D等方面考虑。选用高电阻率、高强度的非金属材料制作隔离套,在降低涡流方面效果十分明显。 3.冷却润滑液流量的控制 泵运转时,必须用少量的液体对内磁转子与隔离套之间的环隙区域和滑动轴承的摩擦副进行冲洗冷却。冷却液的流量通常为泵设计流量的2%-3%,内磁转子与隔离套之间的环隙区域由于涡流而产生高热量。当冷却润滑液不够或冲洗孔不畅、堵塞时,将导致介质温度高于永磁体的工作温度,使内磁转子逐步失去磁性,使磁力传动器失效。当介质为水或水基液时,可使环隙区域的温升维持在3-5℃;当介质为烃或油时,可使环隙区域的温升维持在5-8℃。 4.滑动轴承

电磁泵工作原理和应用范例

电磁泵工作原理和应用范例 电磁泵是一种电磁铁驱动高压微型泵.其特点:结构紧凑,输出压力工,无泄漏, 体积小,动态调节好等 1.工作原理:当电磁泵线圈通电时,滑杆在电磁场力作用下向右运动,密封仓容积增大,压力小于进口处气压时,液体流入密封仓.当电磁泵断电时,滑杆在弹簧力作用下向左运动,密封仓容积减小,压力大于出口处压力时,流体从出口处流出.电源整流后脉冲频率为50Hz或60Hz,滑杆左右运动的频率也是50Hz或60Hz,这样流体就连续不断地从进口流入,出口流出. 2.电磁泵主要用于饮料冲饮机,蒸气清洗机,冲牙器,喷雾加湿器,过滤器增压, 地毯清吸机等. 电磁泵选用考虑的因素 1.产品输出条件: A.流体的种类特性:流体的温度,粘性,腐蚀等. B.压力差:电磁泵能产生的或者克服的泵体两端最大压力差. C.自吸高度:进液管为空时,流体源处到泵体的垂直高度. 流体源处到泵体的管道长度. D.自吸长度:进液管为空时, E.自吸时间:进液管为空时,从通电到液体抽吸到泵体出口所用的时间. F.工作周期:一次工作通电以及之后的断电时间之和. G.周期负载=[通电时间/ (通电时间+断电时间)]*100.电磁泵通电会发热,所以周期负载和最长通电时间决定了电磁泵温升.电磁泵的温升和环境温度决定了电磁泵绝缘等级的选择:(绝缘等级=?:A=105/E=120/B=130/F=155/H180/N=200/C=220) 2.输入条件:电流类型及功率 不同的输入电流波形决定了电磁泵的动作方式:具体应用中会有:交流/直流(恒压源/恒流源/电瓶/干电池//直流发电机/电容)/整流滤波方式等.二极管整流:电压

电荷泵转换器工作原理

Charge Pump Converter Operation Principles Aje Tu 19/08/2005 Abstract This paper analyzes the charge pump circuit operation principles. Useful formulas are derived based practical approximations. Some characteristics of charge pump converter are well explained by the derived formulas. Introduction Charge pump converters have been widely used in modern electronic products. Comparing to conventional boost converters, charge pump converters feature several advantages including: 1.) less EMI emission due to inductorless design, 2.) less PCB area since only small MLCC capacitors are used, 3.) less expensive. Charge pump converters will keep dominating in industry for low power applications like white LED backlight in hand held devices. However, charge pump converter is not well understood today. Aimtron and AIC analyze operation principles of charge pump converter in [1, 2]. The analysis is based on some impractical assumptions, and some errors occur during the derivation procedures. This paper analyzes the charge pump circuit operation principles. Useful formulas are derived based practical assumptions. Some characteristics of charge pump converter are well explained by the derived formulas. Charge Pump Converters Figure 1 shows a 2X charge pump converter. Q1/Q2 and Q3/Q4 turn on and off alternatively. V I N V I N D S(O N) V C D S(O N) O U T V I N D S(O N) (a) (b) (c) Figure 1. Charge pump converter circuitry on different operation stages.

相关文档
最新文档