热电偶温度与电势对照表

热电偶温度与电势对照表
热电偶温度与电势对照表

(完整word版)热电偶温度计的测温原理、选型及其应用

《自动检测技术及仪表》课程设计报告 热电偶温度计的测温原理、选型及其应用 学院: 班级: 姓名: 学号:

目录 一摘要 (3) 二热电偶温度计的测温原理 (3) 2.1 热电偶的测温原理 (3) 2.2 接触电势 (4) 2.3 温差电势 (4) 2.4 热电偶温度计闭合回路的总热电势 (4) 三热电偶温度计的组成结构及其作用和特 (5) 3.1 热电偶温度计的组成结构 (5) 3.2 热电偶温度计的作用及特点 (6) 四热电偶温度计测温技术中涉及到的定则 (7) 4.1 均质导体定则 (7) 4.2 中间导体定则 (7) 4.3 连接导体和中间温度定则 (8) 五热电偶温度计的误差分析及选型 (8) 5.1 影响测量误差的主要因素 (8) 5.1.1插入深度 (8) 5.1.2响应时间 (9) 5.1.3热辐射 (10) 5.1.4冷端温度 (11) 5.2 热电偶温度计的选型 (11) 六现场安装及其注意事项 (13) 七总结 (13) 八参考文献 (15)

一、摘要 热电偶温度计是一种最简单﹑最普通,测温范围最广的温度传感器,是科研﹑生产最常用的温度传感器。在使用时不注意,也会引起较大测量误差。针对当前存在的问题,详细探讨影响测量误差的主要因素:热电偶插入深度﹑响应时间﹑热辐射及冷端温度等因素对测量的影响;在使用时应该怎样选择热电偶温度计,以及使用时的一些安装注意事项,这对提高测量精度,延长热电偶寿命,都有一定的意义。 二、热电偶温度计的测温原理 热电偶温度计是一种感温元件 , 把温度信号转换成热电动势信号 , 通过电气仪表转换成被测介质的温度。 热电偶测温的基本原理是两种不同成份的均质导体组成闭合回路 , 当两端温度不同时 , 回路中就会产生电势,这种现象称为热电效应(或者塞贝克效应)。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系 , 制成热电偶分度表;分度表是自由端温度在 0°C 时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时 , 只要该材料两个接点的温度相同 , 热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此 , 在热电偶测温时 , 可接入测量仪表 , 测得热电动势后 , 即可知道被测介质的温度。 热电偶温度计测温原理图如图所示: 其中,T是热端、工作端或者测量端, T

K热电偶分度毫伏与温度换算表--实用.doc

K 型镍铬-镍硅(镍铬-镍铝)热电动势(mV)( JJG 351-84 )参考端温度为 0℃ 温度℃ 2 3 4 5 6 7 8 9 0 1 -50-1.889-1.925-1.961-1.996-2.032-2.067-2.102-2.137-2.173-2.208 -40-1.527-1.563-1.600-1.636-1.673-1.709-1.745-1.781-1.817-1.853 -30-1.156-1.193-1.231-1.268-1.305-1.342-1.379-1.416-1.453-1.490 -20-0.777-0.816-0.854-0.892-0.930-0.968-1.005-1.043-1.081-1.118 -10-0.392-0.431-0.469-0.508-0.547-0.585-0.624-0.662-0.701-0.739

-00-0.039-0.0790.118-0.157-0.1970.236-0.275-0.314-0.353 000.0390.0790.1190.1580.1980.2380.2770.3170.357 100.3970.4370.4770.5170.5570.5970.6370.6770.7180.758 200.7980.8380.8790.9190.960 1.000 1.041 1.081 1.122 1.162 30 1.203 1.244 1.285 1.325 1.366 1.407 1.448 1.489 1.529 1.570 40 1.611 1.652 1.693 1.734 1.776 1.817 1.858 1.899 1.940 1.981

基于热电偶的温度测量电路设计

燕山大学 课程设计说明书题目:基于热电偶的温度测量电路设计 学院(系):电气工程学院 年级专业: 学号: 学生姓名: 指导教师: 教师职称:

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位: 学号学生姓名专业(班级)设计题目基于热电偶的温度测量电路设计 设 计技术参数 设计基于运算放大器的热电偶传感器输出信号调理电路以及冷端补偿电路。自选一款热电偶,对其在500到1200度测温范围内的输出信号进行放大。输出信号为直流0到2.5V 设计要求1:完成题目的理论设计模型;2完成电路的multisim仿真; 工 作 量1:完成一份设计说明书(其中包括理论设计的相关参数以及仿真结果); 2:提交一份电路原理图;

工作计划周一,查阅资料; 周二到周四,理论设计及计算机仿真;周五,撰写设计说明书; 参考资料1:基于运算放大器和模拟集成电路的设计;2:模拟电子技术; 3:电路理论; 4:数字电子技术; 指导教师签字基层教学单位主任签字 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2011年6 月26 日燕山大学课程设计评审意见表

指导教师评语: 成绩: 指导教师: 年月日答辩小组评语:

成绩: 组长: 年月日课程设计总成绩: 答辩小组成员签字: 年月日

目录 第1章摘要 (2) 第2章引言 (2) 第3章电路结构设计 (2) 3.1 热电偶的工作原理 (2) 3.2 冷端补偿电路设计 (5) 3.3 运算放大器的设计 (6) 第4章参数设计及运算 (8) 4.1 补偿电路的计算 (8) 4.2 运算放大器的计算 (9) 4.3 仿真器仿真图示 (10) 心得体会 (12) 参考文献 (13)

基于单片机和K型热电偶的温度测量仪表设计

1.概述 1.1题目名 基于单片机和K 型热电偶的温度测量仪表设计 1.2功能和技术指标要求 (1)温度测量范围:室温~200℃; (2)温度检测元件:K 型分度号热电偶; (3)具有热电偶冷端温度自动补偿功能; (4)温度测量精度:1℃±FS*2%; (5)温度显示:LED 或LCD 数字显示,显示分辨率0.1℃ (6)具有温度上限、下线设置功能,当温度测量值越限时,进行声光报警; (7)电源:电网AC220V , 要求在电网电压变化±15%范围内能够正常工作。 1.3国内外相关情况概述 温度的测量的历史:第一个温度传感器是伽利略做出来的。而温度测量的里程碑是由法勒海 特设计的水银温度计。1740年瑞典人摄氏提出在标准大气压下,把冰水混合物的温度规定 为0度,而水的沸腾度为100度。温度测量在保证产品的质量,节约能源,安全生产起到至 关重要的作用。技术现状有点到线,线到面温度分布的测温技术;由表面到内部的测温技术。 发展趋势是由于环境的多样化,复杂化,测温对象的多样化,智能检测成为现在温度测试的 趋势。所以要加强新工艺的开发;向着智能化发展。 2.技术方案 2.1温度测量的基本方法与原理 常见的温度测量方法和测温原理有:接触式,原理是热胀冷缩,这种方法测温方便。液体式 (如毛细管,水银温度计),原理是受热,液体膨胀系数变大,从而液体上升。这种方法测 温比较准确。 2.2总技术方案 温度测量仪表功能结构 热电偶 放大器 ADC 单 片 机 环境温度测量 直流稳压电源 数字显示 声光报警 上下限设置

先读取环境温度,热电偶测得温度经过ADC转换器变成数字,测得冷端温度,用补偿法再计算出温度值,送到显示器显示。如果温度超过上限设置,下限设置则蜂鸣器报警,且LED 灯变红。 3.硬件设计 3.1热电偶放大器设计 冷端补偿专用芯片MAX6675的温度读取 芯片MAX6675采用标准SPI串行外设总线与MCU接口,MAX6675只能作为从设备。 温度值与数字对应关系为:温度值=1023.75×转换后的数字量/4095 3.2热电偶冷端温度补偿方法及电路 冷端补偿法:测冷端温度补偿法再计算出温度值送到显示器 (循环) LCD显示(循环)ASC码 电路: 3.3ADC电路 由MAX6675完成AD转换。 3.4稳压电源电路 学生电源。 3.5微处理器 STC52单片机,芯片MAX7765;按键;显示系统采用四位共阳极数码管7SEG-MPX4-CA,报警电路由PNP型三极管Q1和蜂鸣器构成。 3.6总体电路原理图

基于单片机的数码管显示的K型热电偶温度计的设计与仿真

武汉理工大学毕业设计(论文) 基于单片机的数码管显示的K型热电偶温度 计的设计与仿真 学院(系): 信息工程学院 专业班级: 信息工程xxxx班 学生姓名: xx 指导教师: xx

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包括任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名: 年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权省级优秀学士论文评选机构将本学位论文的全部或部分内容编入有关数据进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本学位论文属于1、保密囗,在年解密后适用本授权书 2、不保密囗。 作者签名:年月日 导师签名:年月日

摘要 本文主要介绍了基于热电偶温度传感器的测温系统的设计。利用转换芯片MAX6675和k型热电偶,将温度信号转换成数字信号,通过模拟SPI的串行通信方式输送数据,在通过单片机处理数据,最后由数码管显示数据。 本文采用了带有冷端补偿的温度转换芯片MAX6675、K型热电偶、89C51单片机、数码管等元器件设计了相应温度采集电路、温度转换电路、温度数码管显示电路。结合硬件电路给出了相应的软件设计,测温精度可达到0.25℃。本系统的工作流程是:首先热电偶采集温度,数据经过MAX6675内部电路的处理后送给单片机进行算法处理,最后通过数码管电路显示出测量温度。本设计最后对系统进行了proteus的调试和仿真,实现了设计的要求。 关键词温度传感器热电偶热时间常数冷端补偿

大学物理实验 热电偶温度计设计

热电偶温度计的设计探讨 吉林建筑大学城建学院 土木工程系 交通工程12级-1班 1205000123 屈少伟 【内容摘要】 用温差电偶测温就是把非电学量转化为电学量测量,即把温度转化为温差电动势来测量温度。将两种不同金属导体的两端分别连接起来,构成一个闭合回路,一端加热,另一端冷却,则两个接触点之间由于温度不同,将产生电动势,导体中会有电流发生(温差效应)。这种温度计测温范围很大。本次实验选用铜-康铜两种金属形成闭合回路作为温差电偶装置,设计热电偶温度计。并通过恒温水浴锅、数字电压表、电热杯等设备为所设计的热电偶温度计定标。 【关键词】 温差效应铜-康铜温差电偶温差固定点法定标 一、引言 传统温度计测量范围相对较小,而热电偶温度计测量范围很大,本实验探究热电偶温度计的实验原理,并尝试制作热电偶温度计。 二、实验目的: (1)了解热电偶温度计的测温原理 (2)学会热电偶温度计的设计方法 (3)学会数字电压表(或电位差计)的原理和使用方 三、实验仪器: 铜-康铜温差电偶数字电压表(或电位差计)保温杯电热杯恒温水浴锅(含温度显示)等。 四、实验原理: 1、热电效应:两种不同成份的导体(本实验中选用铜-康铜)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。 2、测温原理:热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度。 【注意问题】 1、热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数 2 、热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关 3、当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。 五、测量方法: 理论和实验均表明,接触电势差的大小和相接处的两种金属的性质及接触处的温度有关。

热电阻温度计和热电偶温度计的比较与使用_许小华

热电阻温度计和热电偶温度计的比较与使用Ξ 许小华 (江苏省盐城技师学院,江苏盐城 224002) 摘 要:温度的测量是保证工业生产正常进行、确保产品质量和安全生产的关键环节。热电偶温度计及热电阻温度计在工业生产中应用广泛。本文主要对这两种温度计的工作原理、特点、选择及安装故障排除等作比较,以便于人们熟悉两种温度计的使用。 关键词:热电偶温度计;基本原理;选择;安装;注意事项 温度是表示物体冷热程度的物理量,温度的测量是保证化工生产实现稳产、高产、安全、优质、低消耗的关键之一。温度不能直接测量,只能借助于冷热不同的物体之间的热变换,以及物体的某些物理性质随冷热程度不同而变化的特征间接测量。 利用热平衡原理,我们可以选择某一物体同被测物体相接触来测量它的温度,当两者达到热平衡状态,选择物体与被测物体的温度相同,通过对选择物体的物理量的测量,便可得到被测物体的温度数值。其中,热电阻温度计和热电偶温度计在化工产业中广泛应用,但它们有各自的使用特点,下面从几个方面进行比较。 1 基本原理比较 两种温度计都属于接触式温度测量仪表。 1.1 热电偶温度计 热电偶温度计是根据热电效应来测量温度的。在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电势后,即可知道被测介质的温度。 1.2 热电阻温度计 热电阻温度计是利用导体或半导体的电阻值随温度变化的性质来测量温度的。大家知道,金属导体的电阻值是随温度的变化而变化的。实际证明,大多数金属在温度每升高1℃时,其阻值要增加0.4%~0.6%,热电阻温度计就是把温度变化所引起的导体电阻的变化,通过测量电路(电桥)转换成电压(毫伏)信号,然后送至显示仪表以指示或记录被测温度的。 由上可知,两种温度计的测量原理是不同的。热电偶温度计是把温度的变化通过测温元件—热电偶转化为热电势的变化来测量温度的;而热电阻温度计则是把温度的变化通过测温元件—热电阻转换为电阻值的来测量温度的。 2 结构、特点比较 2.1 结构比较 热电偶温度计外形很多,但各种热电偶的基本结构通常均由热电极、绝缘套管、保护套管和接线盒等主要部分构成。热电偶温度计测量精度高,测量范围广,常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。需冷端温度补偿。在低温段测量精度较低,一般适用于测量500℃以上的温度。 2.2 使用特点比较 对于500℃以下的中、低温利用热电偶进行测量,有时就不一定适合。例如在100℃时,热电偶的热电势仅为0.645m v,如此小的热电势,对电位差计的放大器和抗干扰措施要求很高,仪表维修也困难。另外,在较低的温度范围内,由于冷端温度变化和环境温度所引起的相对误差就显得很突出,且不易得到全补偿。所以在中、低温区,采用热电阻温度计测量是很适宜的。目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。热电阻温度计的主要特点是测量精度高,性能稳定,其中铂热电阻的测量精度最高。热电阻通常和显示仪表、记录仪和变送器配套使用。它可以直接测量各种生产过程中从-200至+600范围内的液体、蒸汽和气体及固体表面的温度。 这两种温度计的共同特点是都构造简单,使用方便。都便于远传、自动记录和集中控制,因而在化工生产中应用极为普遍。下面是我国已定型生产的几种温度计。 工业常用热电偶 热电阻类型测温范围℃分度号 铂铑30-铂铑6300~1600B 铂铑10-铂-20~1300S 镍铬-镍硅-50~1000K 镍铬-铜镍-40~800E 铁-铜镍-40~700J 铜-铜镍-40~300T w zp型铂电阻-200~420P t100 w zc型铜电阻-150~100Cu50 65内蒙古石油化工 2009年第23期 Ξ收稿日期:2009-07-14 作者简介:许小华(1970-),女,江苏盐城人。讲师,学士,主要从事化学技术应用的研究。

热电偶温度计的设计

热电偶温度计的设计 Xxx xxxxxxxx 计算机科学与工程学院 计算机科学与技术xxxxx 班 学号:xxxxxx 邮编:xxxxx 摘要 热电偶是温度测量仪表中常用的测温元件,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表转换成被测介质的温度。 在本实验中利用点热偶测量温度,其基本原理就是热电效应。将两种不同的金属两端分别连接起来,构成一个闭合回路,一端加热一端冷却,则两个接触点之间由于温度不同,将产生电动势,导体中会有电流发生。因为这种温差电动势是两个接触点温度差的函数,所以利用这一特性制成温度计测量温度。 关键字 热电偶,温度差,电动势,水浴锅 前言 在做热电偶温度计设计这一实验中时,了解了热电偶和温度差现象, 引发了我对它的兴趣,经过自己的查阅资料成功设计出该实验的设计 方案。 实验仪器介绍 铜- 康铜温差电偶、数字电压表、水浴锅、保温杯 实验原理 1)温度差现象 把两种不同的导体(称为热电偶丝材或热电极)两端接合连接成回路,并使两接点处于不同温度,则回路中就产生电动势。这种现象称为塞贝克效应(热电效应)。这种电动势与两接点的温度及两材料性质有关,所以称为热电动势温差电现是由温差而引起电动势以及由电流而引起吸热和放热的现象,又称热电现象。它包括塞贝克、珀耳帖及汤姆孙等三个效

应。 塞贝克效应将两个不同导体(或半导体)两端相连,组成一回路,当两个接头处在不同温度时,在回路中有电动势产生的现象。1821 年由德国物理学家T. 塞贝克发现。这电动势称为温差电动势。金属的塞贝克效应常被应用于测量温度,而半导体的塞贝克效应常可被用来将热能直接转化成电能,即制成半导体温差发电器。 珀耳帖效应当有电流通过由两种不同材料组成的回路时,在两种材料的接头处会发生吸热或放热的现象。1834年由法国物理学家J. 珀耳帖发现。汤姆孙效应当有电流流过存在温度梯度的导体(或半导体)时,除焦耳热外,还会产生附加的吸热或放热的现象。1856 年由英国物理学家W.汤姆孙发现,称为汤姆孙效应。 热电偶 是利用温差电现象制成的一种元件。利用两种能产生显著温差电现象的金属丝(如铜和康铜)焊接而成。温差电动势与温差的关系通常用幂函数表示,在常温范围内,要求准确度不太高时,可以取一级近似,写为 E=a+bt,式中,a 取决于参考点温度,b 称为温差系数,其大小决定了组成电偶材料的性质。热电偶就是由两种不同的金属材料焊接而成。其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为参考端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电动势。 使用时通常将一端(参考端)保持在一定的恒定温度(如0℃或

热电阻热电偶温度阻值对照表

工业铂热电阻温度与电阻值对照表 Pt100BA1BA2 温度(℃)阻值(Ω)温度(℃)阻值(Ω)温度(℃)阻值(Ω) -20018.49-2007.95-20017.28 -19022.80-1909.96-19021.65 -18027.08-18011.95-18025.98 -17031.32-17013.93-17030.29 -16035.53-16015.90-16034.56 -15039.71-15017.85-15038.80 -14043.87-14019.79-14043.02 -13048.00-13021.72-13047.21 -12052.11-12023.63-12051.38 -11056.19-11025.54-11055.52 -10060.25-10027.44-10059.65 -9064.30-9029.33-9063.75 -8068.33-8031.21-8067.84 -7072.33-7033.08-7071.91 -6076.33-6034.94-6075.96 -5080.31-5036.80-5080.00 -4084.27-4038.65-4084.03 -3088.22-3040.50-3088.03 -2092.16-2042.34-2092.04 -1096.09-1044.17-1096.03 0100.00046.000100.00 10103.901047.8210103.96 20107.792049.6420107.91 30111.673051.4530111.85 40115.544053.2640115.78 50119.405055.0650119.70 60123.246056.8660123.60 70127.077058.6570127.49 80130.898060.4380131.37 90134.709062.2190135.24 100138.5010063.99100139.10 110142.2911065.76110142.10

R型热电偶温度电压对照表

版本: 1 ROBOT停炉、点火、调气作业指导书Page: 1 / 3 发布实施日: 20130814 拟制 W Paul审核 R 批准 A Charley R分度号表(溫度單位:℃、電壓單位:mV)參考溫度點:0℃(冰點) 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 0 0 -0.0261 -0.0515 -0.0761 -0.1 -0.1232 -0.1455 -0.167 -0.1877 -0.2075 -0.2265 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 0 0 0.0268 0.0543 0.0824 0.1112 0.1406 0.1706 0.2012 0.2324 0.2642 0.2965 0.3294 0.3627 0.3967 0.4311 0.466 0.5013 0.5372 0.5735 0.6102 0.6474 100 0.6474 0.685 0.723 0.7614 0.8003 0.8395 0.8791 0.919 0.9593 1 1.041 1.0824 1.1241 1.1661 1.2084 1.251 1.294 1.3372 1.3807 1.4245 1.4686 200 1.4686 1.5129 1.5576 1.6024 1.6476 1.6929 1.7386 1.7844 1.8305 1.8769 1.9234 1.9702 2.0172 2.0644 2.1118 2.1595 2.2073 2.2553 2.3035 2.352 2.4006 300 2.4006 2.4493 2.4983 2.5474 2.5968 2.6463 2.6959 2.7457 2.7957 2.8459 2.8962 2.9467 2.9973 3.0481 3.099 3.1501 3.2013 3.2527 3.3042 3.3559 3.4077 400 3.4077 3.4596 3.5117 3.5639 3.6163 3.6687 3.7214 3.7741 3.827 3.88 3.9331 3.9864 4.0397 4.0933 4.1469 4.2006 4.2545 4.3085 4.3626 4.4169 4.4713 500 4.4713 4.5257 4.5804 4.6351 4.6899 4.7449 4.8 4.8552 4.9105 4.9659 5.0215 5.0771 5.1329 5.1888 5.2449 5.301 5.3573 5.4136 5.4701 5.5267 5.5835 600 5.5835 5.6403 5.6973 5.7543 5.8115 5.8688 5.9263 5.9838 6.0415 6.0993 6.1572 6.2152 6.2733 6.3316 6.39 6.4485 6.5071 6.5658 6.6247 6.6836 6.7427

热电阻温度计的结构和原理

ZYl200A智能型全自动新型墙体砖液压成型机是中冶重工在ZYl200机型的基础上开发出的一款高端产品,该产品吸收了ZYl200机型的技术优点,创新设计采用进口工业机器人码垛,配备柔性夹砖机械手,减少了码砖的中间环节,大大提高了生产效率。 其优点如下: 1、循环周期9~13秒,生产效率高,—条线年产标砖6000万块。 2、蒸养车可码放砖坯16层,有效利用蒸压釜,节约蒸压能耗23%。 3、整机布局结构紧凑,占地面积小,能节省土建投资成本达28%。 4、抓坯和码垛定位精度高,减少中间周转过程,提高制品的成品率。 5、自动化程度高,操作简单方便,实现单机单人操作。

热电阻温度计的结构和原理? 热电阻是近年来发展起来的一种新型半导体感温元件。由于它具有灵敏度高、体积小、重量轻、热惯性小、寿命长以及价格便宜等优点,因此应用非常广泛。负系数热敏电阻热敏电阻与普通热电阻不同,它具有负的电阻温度特性,当温度升高时,电阻值减小 热敏电阻的阻值---温度特性曲线是一条指数曲线,非线性度较大,因此在使用时要进行线性化处理,线性化处理虽然能改善热敏电阻的特性曲线,但比较复杂。热敏电阻的应用是为了感知温度为此给热敏电阻以恒定的电流,测量电阻两端就得到一个电压,然后就可以求得温度。如能测得热敏电阻两端的电压,再知道参数和系数K,则可计算出热敏电阻的环境温度,也就是被测的温度。这样就把电阻随温度的变化关系转化为电压温度变化的关系了。电阻温度计就

是把热敏电阻两端电压值经A/D 转换变成数字量,然后通过软件方法计算得到温度值,再通过进行显示。 热电阻温度计的工作原理 热电阻 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 1、热电阻测温原理及材料 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 2、热电阻的类型 1)普通型热电阻 从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。 2)铠装热电阻 铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。 3)端面热电阻 端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 4)隔爆型热电阻 隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla--B3c级区内具有爆炸危险场所的温度测量。

热电偶温度对照表

铂铑 10 -- 铂热电偶分度表 分度号 S ( 参考端温度为 0℃ ) ───┬────────────────────────────────────────────温度│热电动势 ( mV ) ├────────────────────────────────────────────℃│ 0 1 2 3 4 5 6 7 8 9 ───┴──────────────────────────────────────────── -50 -0.236 -40 -0. -0. -0.203 -0.207 -0.211 -0.215 -0.220 -0.224 -0.228 -0.232 -30 -0.150 -0.155 -0.159 -0.164 -0.168 -0.173 -0.177 -0.181 -0. -0.190 -20 -0.103 -0.108 -0.112 -0.117 -0.122 -0.127 -0.132 -0.136 -0.141 -0.145 -10 -0. -0. -0. -0.068 -0. -0.078 -0. -0.088 -0. -0.098 - 0 0 -0.005 -0.011 -0.016 -0. -0.027 -0.032 -0. -0. -0. 0 0 0.005 0.011 0.016 0. 0.027 0.033 0.038 0.044 0.050 10 0. 0.061 0.067 0.072 0.078 0.084 0.090 0.095 0.101 0.107 20 0.113 0.119 0.125 0.131 0.137 0.142 0.148 0.154 0.161 0.167 30 0.173 0.179 0.185 0.191 0. 0.203 0.210 0.216 0.222 0.228 40 0.235 0.241 0.247 0.254 0.260 0.266 0.273 0.279 0.236 0.292 ──────────────────────────────────────────────── 续分度号 S 续表 1 ───┬────────────────────────────────────────────温度│热电动势 ( mV ) ├────────────────────────────────────────────℃│ 0 1 2 3 4 5 6 7 8 9 ───┴──────────────────────────────────────────── 50 0.299 0.305 0.312 0.318 0.325 0.331 0.338 0.345 0.351 0.358 60 0.365 0.371 0.378 0.385 0.391 0.398 0.405 0.412 0.419 0.425 70 0.432 0.439 0.446 0.453 0.460 0.467 0.474 0.481 0.488 0.495 80 0.502 0.509 0.516 0.523 0.530 0.537 0.544 0.551 0.558 0.566 90 0.573 0.580 0.587 0.594 0.602 0.609 0.616 0.623 0.631 0.638 100 0.645 0.653 0.660 0.667 0.675 0.682 0.690 0.697 0.704 0.712 110 0.719 0.727 0.734 0.742 0.749 0.757 0.764 0.772 0.780 0.787 120 0.795 0.802 0.811 0.818 0.825 0.833 0.841 0.848 0.856 0.864 130 0.872 0.879 0.887 0.895 0.903 0.910 0.918 0.926 0.934 0.942 140 0.950 0.957 0.965 0.973 0.981 0.989 0.997 1.005 1.013 1. 150 1. 1. 1. 1. 1.061 1.069 1. 1. 1. 1.101 160 1.109 1.117 1.125 1. 1.141 1.149 1.158 1.166 1.174 1.182 170 1.190 1. 1.207 1.215 1.223 1.231 1.240 1.248 1.256 1.264 1.273 1.281 1.289 1.297 1.306 1.314 1.322 1.331 1.339 1.347 190 1.356 1.364 1.373 1.381 1.389 1.398 1.406 1.415 1.423 1.432

基于51单片机的数字温度计设计19874

题目:基于51单片机的数字温度计设计 学生姓名:杨宝 班级:自动化083班 学号:20084460318 指导老师:李兰君,唐耀庚 2011年12月26日 基于51单片机的数字温度计设计 摘要:随着时代的进步和发展,单片机技术已经普及到我们生活,工作的方方面面。单片机已经走进了我们的生活,并有了不可替代的地位。而在工业五大基

本参数中,温度的测量尤其广泛,可见精确的温度对于工业发展来看有多大的作用。本文将介绍一种基于单片机的简单数字温度计,本温度计可以毕竟精确地测量并显示温度,并实现上下限的报警功能。 关键字:AT89C2051单片机 DS18B20 温度测量报警 正文: 第一章绪论 温度计这个词对于我们来说应该都算是家喻户晓了,即使在我们孩提时,温度计也是屡见不鲜。那时候我们见得最多的就当体温计了,每次感冒生病了,量体温是必不可少的,再后来我们又见到了气温计等一系列的温度计。但是,这些温度计总的来说都是模拟的,在数字化越来越普及的当代,数字产品的有点已被我们没个人知晓。和传统的温度计相比,数字温度计具有读数方便,测温范围广,测温准确等优点。在一些需要对温度有准确测量的场所,数字温度计有传统温度计无法替代的作用。在社会发展的方向来看,数字式仪表也是科技发展的潮流。该设计是以AT89C2051单片机为控制器,DS18B20为温度传感器,三位共阴极LED 数码管为显示单元,发光二极管当报警装置的数字温度计,基本能够满足实际使用的需要。 目前的智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对传感器的要求也越来越高,现在的温度传感器正在基于单片机的基础上从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展,并朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展,本文将介绍智能集成温度传感器DS18B20的结构特征及控制方法,并对以此传感器,89C51单片机为控制器构成的数字温度测量装置的工作原理及程序设计作了详细的介绍。和传统的温度计相比,其具有读数方便,测温范围广,测温准确,输出温度采用数字显示,主要用于对测温要求比较准确的场所,或科研实验室使用。该设计控制器使用ATMEL公司的AT89C51 单片机,测温传感器使用DALLAS公司DS18B20,用液晶来实现温度显示。

热电偶温度计的特性研究

图1-1 热电偶结构图 热电偶温度计的特性研究 [内容摘要]根据赛贝尔效应把两种不同材料的导体连接成回路,并使两接点处于不同温 度,通常将一端保持在一定的恒定温度,另一端加热时,则在回路中就产生电动势。这种电动势与两接点的温度及材料性质有关,而与热电偶的粗细和长短无关。当测量端的温度改变后,热电动势也随之改变,并且温度和热电动势之间有一固定的函数关系,再利用温差电偶来测量温度的温度计得到各个温度的值画出函数关系。 [关键词] 热电效应 水浴锅 铜-铜镍合金 赛贝克效应 一、引言 在学习《大学物理实验》中“热电偶温度计设计”实验时,我第一次感受到实验的准确性,我深为它那些未知晓的秘密而吸引着。由于我很想根据自己的所学到东西来安排一门实验的方法和内容,于是就产生了对热电偶温度计的爱好,并且探讨了热电偶温度计实验的原理、内容等。并且在实验室完成操作以达到实验的预期效果,同时在这次实验得到的结论我以一种小论文的形式来将实验所得到的结果做一个统计并且详细分析。 二、实验仪器介绍 铜-铜镍合金 TE-2温差电偶装置 恒温水浴锅 数字电压表 电热杯 保温杯 三、实验原理和实验内容 实验原理: 早在19世纪初,人们就发现两种不同的金属组成的回路中(如图1-1所示),如果在两个接头端存在温度差,则回路中就会产生电流。这种现象就称为温差电现象,这两种不同金属组成的电路称为热电偶。产生电流的电动势称为温差电动势。温差电动势的产生机制,限于篇幅,在此不再多讲。但从实用的角度出发,热电偶的一些特点和性质我们却是应该掌握的: 1.一般来说,任意两种不同的金属组成的回路都可以构成一对热电偶。只要两个接头端有温度差,回路中就有温差电动势,进 而会产生温差电流。(利用这一特点,我们就可以把非电量的温度转化为可以用 王海桥 吉林建筑大学 城建学院 土木工程系 建工12-5班

热电偶温度计的课程设计1剖析

热电偶温度计的毕业设计 题目:热电偶温度计的设计与制作 系别:机电工程系 专业:检测技术及应用 班级:计量 学生姓名:刘一 指导老师:陆晓强 完成日期:2013年3月15日

河南质量工程职业学院 河南质量工程职业学院 毕业设计 1.设计指标 ①实现智能数字显示仪表。要求8位数码管显示,4位显示测量值,4 位显示设定值; ②4输入按钮:功能选择、数码管选择、数字增加、数字减少; ③可设定上下限报警蜂鸣器报警; 2.设计要求 ①画出电路原理图(或仿真电路图); ②元器件及参数选择; ③电路仿真与调试; ④PCB文件生成与打印输出。 3.制作要求自行装配和调试,并能发现问题和解决问题。 4.编写设计报告写出设计与制作的全过程,附上有关资料和图纸,有心 得体会。 热电偶测温计的设计与制作 设计任务和要求

1.设计指标 ①实现智能数字显示仪表。要求8位数码管显示,4位显示测量值,4位显示设定值; ②4输入按钮:功能选择、数码管选择、数字增加、数字减少; ③可设定上下限报警蜂鸣器报警; 2.设计要求 ①画出电路原理图(或仿真电路图); ②元器件及参数选择; ③电路仿真与调试; ④PCB文件生成与打印输出。 3.制作要求自行装配和调试,并能发现问题和解决问题。 4.编写设计报告写出设计与制作的全过程,附上有关资料和图纸,有心得体会。 1.1选题的意义 热电偶具有构造简单、适用温度范围广、使用方便、承受热、机械冲击能力强以及响应速度快等特点,常用于高温区域、振动冲击大等恶劣环境以及适合于微小结构测温场合;但其信号输出灵敏度比较低,容易受到环境干扰信号和前置放大器温度漂移的影响,因此不适合测量微小的温度变化。 1.2 设计方案 通过B型(铂铑30)热电偶测量的答题思路为 1.3热电偶测温计的设计 1.3.1.智能仪表基本模块硬件电路 智能仪表基本模块由单片机、输入按钮、硬件显示和通信接口组成 原理图:

K热电偶分度号毫伏与温度换算表

0.758 1.162 1.570 1.981 2.394 2.809 3.224 3.639 4.054

温度'C 1 2 6 4 5 7 | 100 | | 4.095 || \ 4.261 4.302 4.384 4.673 4.796 unco il 5.124 | 130 | 5.409 5.531 5.571 140 5.733 150 6.539 6.619 6.659 | 180 | ii 7.418 iin^nt I 170 I 5.205 5.612 5.083 5.490 4.714 | | 4.755 4.137 4.178 | 110 14.508 || | 4.549 I I 4.590 1( 6.177 6.579 6.378 6.779 6.419 6.819 5.855 6.258 5.936 6.338 6.739 6.298 6.699 0 4.343 | 120 | | 4.919 Hl" 4.960 5.368 6.218 160 7.498 7.538 7.618 7.139 7.099 | 190 | Il 7.737 ||[ 7.378 7.777 ]|[ 7.817 7.578 7.857 7.897 7.937 | 8.137 ||「8.177 | [ 8.216 | | 8.256 || [ 8.537 | 8.577 | | 8.617 | 8.657 8.938 8.978 9.018 9.058 9.099 8.296 | | 8.697 | 7.977 | 8.336 | | 8.416 | | 8.737 | | 8.777 230 240 I 9.745 II [ 9.786 9.826 〕l 9.867 ||[ 9.907 9.139 9.179 9.220 9.543 9.989 10.029 | 9.948 | 8.817 | 250 260 10.192 10.600 10.233 10.641 10.274 10.882 10.315 10.723 10.355 | | 10.396 10.764 | | 10.805 || [ 1 8 | 1 9 | | 4.426 | | 4.467 | | 4.837 | | 4.878 | [5.246 | | 5.287 | | 5.65 2 | | 5.69 3 | | 6.057 | | 6.097 | 6.459 | | 6.499 | 6.859 | | 6.899 | 7.259 | | 7.299 | 7.658 | | 7.697 | [8.057 | | 8.097 | 8.456 | | 8.497 | | 8.857 | | 8.898 | | 9.260 | L 9.300 | 9.664 | | 9.705 | 10.070 | | 10.111 | | 10.478 | | 10.519 | | 10.887 | | 10.928 | 8.017 10.437 10.848

基于单片机的数码管显示的K型热电偶温度计的设计与仿真

理工大学毕业设计(论文) 基于单片机的数码管显示的K型热电偶温度 计的设计与仿真 学院(系): 信息工程学院 专业班级: 信息工程xxxx班 学生: xx 指导教师: xx

学位论文原创性声明 本人重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的容外,本论文不包括任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名: 年月日 学位论文使用授权书 本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权省级优秀学士论文评选机构将本学位论文的全部或部分容编入有关数据进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

本学位论文属于1、囗,在年解密后适用本授权书 2、不囗。 作者签名:年月日 导师签名:年月日 摘要 本文主要介绍了基于热电偶温度传感器的测温系统的设计。利用转换芯片MAX6675和k型热电偶,将温度信号转换成数字信号,通过模拟SPI的串行通信方式输送数据,在通过单片机处理数据,最后由数码管显示数据。 本文采用了带有冷端补偿的温度转换芯片MAX6675、K型热电偶、89C51单片机、数码管等元器件设计了相应温度采集电路、温度转换电路、温度数码管显示电路。结合硬件电路给出了相应的软件设计,测温精度可达到0.25℃。本系统的工作流程是:首先热电偶采集温度,数据经过MAX6675部电路的处理后送给单片机进行算法处理,最后通过数码管电路显示出测量温度。本设计最后对系统进行了proteus的调试和仿真,实现了设计的要求。

相关文档
最新文档