可变气门配气相位和气门升程电子控制系统VTEC技术解析

可变气门配气相位和气门升程电子控制系统VTEC技术解析
可变气门配气相位和气门升程电子控制系统VTEC技术解析

可变气门配气相位和气门升程电子控制系统VTEC技术解析

the camshaft and rocker arms, but unlike ordinary engine is the number and control method of cam and rocker arm. Medium and low speed with a small angle of the cam, two valve timing and lift different at low speed, this time a valve lift is very small, almost do not participate in the intake process, the air intake channel basically the equivalent of two valve engine, but due to the flow direction of an intake air barrier gas cylinder center, so it can produce intake eddy current, strong for low speed, especially in the cold car conditions conducive to improving the mixture uniformity, increases the burning rate and decrease the effect of wall surface chilling effect and clearance, making the combustion more fully, thereby improving the economy, and significantly reduce HC and CO emissions; and at high speeds. Through to VTEC solenoid valve to control the hydraulic oil, so that the two intake rocker arms are connected as a whole and the intake cam from the opening of the longest and largest lift to drive the valve, this time two inlet valve according to the cam profile synchronization. Compared with the low speed operation, greatly increasing the inlet flow area and opening duration, so as to improve the power of the engine at high speed. This two kinds of entirely different performance curve of output, Honda engineers so that they are implemented in the same engine, and vividly described as "the usual soft driving" and "wartime intense driving".

But VTEC system for gas distribution phase change is still the stage, that is to say the change with gas phase only at a speed jump, but not in a speed range of continuous variable. In order to improve the performance of VTEC system, Honda constantly innovate, introduced the i-VTEC system.

Simply put, the i-VTEC system is based on VTEC, added a called VTC (Variable timing control "variable timing control device") -- a group of inlet valve camshaft timing variable control mechanisms, i.e. i-VTEC=VTEC VTC. At this point, the exhaust valve timing and overlapping time open is variable, controlled by VTC, into the VTC mechanism so that the engine can have suitable gas distribution phase in large range of speed, which improves the performance of the engine to a large extent.

A typical VTC system by the VTC actuator, VTC oil control valve, all kinds of sensors and ECU components. The VTC actuator, VTC oil control valve can generate action according to the ECU signal, the phase of inlet camshaft continuous change. VTC makes the valve overlap time more accurately, ensure the intake valve and exhaust valve, the best lap time, can improve engine power 20%.

由本田汽车开发的VTEC是世界上第一款能同时控制气门开闭时间及升程两种不同情况的气门控制系统,现在已演变成i-VTEC。i-VTEC发动机与普通发动机最大的不同是,中低速和高速会用两组不同的气门驱动凸轮,并可通过电子系统自动转换。此外,发动机还可以根据行驶工况自动改变气门的开启时间和提升程度,即改变进气量和排气量,从而达到增大功率、降低油耗的目的。

韩国的汽车工业一向不以技术先进闻名,所以所用技术也多是借鉴了德、日等国的经验,而CVVT正是在VVT-i和i-VTEC的基础上研发而来。以现代汽车的CVVT引擎为例,它能根据发动机的实际工况随时控制气门的开闭,使燃料燃烧更充分,从而达到提升动力、降低油耗的目的。但是CVVT不会控制气门的升程,也就是说这种引擎只是改变了吸、排气的时间。

VTEC发动机每缸有4气门(2进2排)、凸轮轴和摇臂等,但与普通发动机不同的是凸轮与摇臂的数目及控制方法。中、低转速用小角度凸轮,在中低转速下两气门的配气相位和升程不同,此时一个气门升程很小,几乎不参与进气过程,进气通道基本上相当于两气门发动机,但是由于进气的流动方向不通过气缸中心,故能产生较强的进气涡流,对于低速,尤其是冷车条件下有利于提高混合气均匀度、增大燃烧速率、减少壁面激冷效应和余隙的影响,使燃烧更加充分,从而提高了经济性,并大幅降低了HC、CO的排放;而在高转速时,通过VTEC电磁阀控制液压油的走向,使得两进气摇臂连成一体并由开启时间最长、升程最大的进气凸轮来驱动气门,此时两进气门按照大凸

轮的轮廓同步进行。与低速运行相比,大大增加了进气流通面积和开启持续时间,从而提高了发动机高速时的动力性。这两种完全不同性能表现的输出曲线,本田的工程师使它们在同一个发动机上实现了,并且形象地称之为“平时的柔和驾驶”与“战时的激烈驾驶”。

但是VTEC系统对于配气相位的改变仍然是阶段性的,也就是说其改变配气相位只是在某一转速下的跳跃,而不是在一段转速范围内连续可变。为了改善VTEC系统的性能,本田不断进行创新,推出了i-VTEC系统。

简单地说,i-VTEC系统是在VTEC系统的基础上,增加了一个称为VTC(Variable timing control“可变正时控制”)的装置——一组进气门凸轮轴正时可变控制机构,即i-VTEC=VTEC+VTC。此时,排气阀门的正时与开启的重叠时间是可变的,由VTC控制,VTC机构的导入使发动机在大范围转速内都能有合适的配气相位,这在很大程度上提高了发动机的性能。

典型的VTC系统由VTC作动器、VTC油压控制阀、各种传感器以及ECU组成。VTC作动器、VTC油压控制阀可根据ECU的信号产生动作,使进气凸轮轴的相位连续变化。VTC令气门重叠时间更加精确,保证进、排气门最佳重叠时间,可将发动机功率提高20%。

可变气门(连续)正时系统的原理

连续可变气门正时系统的原理 现代引擎多采用DOHC的缸盖设计,两根凸轮轴被设置在引擎顶部,通过齿形带轮或链条从曲轴端取力,并以2:1的速度驱动凸轮轴,此时凸轮轴商凸轮的旋转推动气门进行上下往复运动,从而控制气门的开启和闭合。而我们今天要关注的,其实就是气门开合的问题。 什么是“可变气门行程”? 活塞式四冲程引擎都由进气、压缩、做功、排气4个冲程完成,我们关注的是气门开启程度对引擎进气的问题。气缸进气的基本原理是“负压”,也就是气缸内外的气体压强差。在引擎低速运转时,气门的开启程度切不可过大,这样容易造成气缸内外压力均衡,负压减小,从而进气不够充分,对于气门的工作而言,这个“小程度开启”需要短行程的方式加以控制;而高速恰恰相反,转速动辄5000rpm,倘若气门依然羞羞答答不肯打开,引擎的进气必然受阻,所以,我们需要长行程的气门升程。往往,工程师们既要兼顾引擎在低速区的扭矩特性,又想榨取高速区的功率特性,只能采取一条“折中”的思路,到头来引擎高速没功率,低速缺 扭矩... 所以在这样的情况下,就需要一种对气门升程进行调节的装置,也就是我们要说的“可变气门正时技术”。该技术既能保证低速高扭矩,又能获得高速高功率,对引擎而言是一个极 大的突破。 80年代,诸多企业开始投入了可变气门正时的研究,1989年本田首次发布了“可变气门配气相位和气门升程电子控制系统”,英文全称“Variable Valve Timing and Valve Life Electronic Control System,也就是我们常见的VTEC。此后,各家企业不断发展该技术,到今天已经非常成熟,丰田也开发了VVT-i,保时捷开发了Variocam,现代开发了DVVT……几乎每家企业都有了自己的可变气门正时技术。一系列可变气门技术虽然商品名各异,但其 设计思想却极为相似。 可变气门正时技术之一:保时捷Variocam 保时捷911跑车引擎采用的可变气门正时技术Variocam. 当引擎在低转速工况时,气门座顶端的黄色的控制活塞落在气门座内。这样高速凸轮只能驱动气门座向下行程而不能带动整个气门动作,整个气门由低速凸轮驱动气门顶向下行程,这样获得的气门开度就较小。反之当发动机在高转速工况时,控制活塞在液压的驱动下从气门座推入到气门顶中,把气门座和气门刚性的连接,高速凸轮驱动气门座时就能带动气 门向下行程获得较大的气门开度。 可变气门正时技术之二:本田VTEC 凸轮轴上依然布置有高速凸轮与低速凸轮,但由于本田引擎的气门由摇臂驱动,所以不能像保时捷一样紧凑。控制高低速凸轮切换的是一组结构复杂的摇臂,通过传感器测出引擎转速,传送到ECU进行控制,并由ECU发出指令控制摇臂。简单地说,就是这套摇臂能够根据转速不同自动选取1进1排的2气门工作或者2进2排的4气门工作,从而让发动机在 高低速工况下都能顺畅自如。 通常,转速低于3500rpm时,各有一支进气、排气凸轮工作,此时发动机近似为一台2气门发动机,这样的好处是,能够增加负压,利于进气;转速超过3500rpm时,液压系伺服系统接到发动机中央控制器ECU指令,对摇臂内机油加压,压力机油推动定时柱塞移动,

可变气门正时及气门升程电子控制论文

可变气门正时及气门升程电子控制论文 本科毕业设计(论文) ( 2011届 ) 题目: 本田可变气门正时及气门升程电子 控制系统(VTEC)多媒体课件的开发 学院: 职业技术教育学院专业: 汽车维修工程教育学生姓名: 吕波学号: 07520129 指导教师: 曹红兵职称: 副教授合作导师: 职称: 完成时间: 2011 年 04 月 26 日 成绩: 浙江师范大学本科毕业设计(论文)正文 目录 摘 要 (1) 英文摘要 (1) 1 引言 (1) 2 可变气门正时技术 (2) 2.1 可变气门正时系统的原理 (2) 可变配气相位调整原理 ....................................... 3 2.1.1 2.1.2 可变配气相位技术条件 (4) 2.2 可变气门正时技术的现状 (4)

2.3 可变气门正时技术的发展趋势 (5) 3 本田可变气门VTEC结构及原理 (6) 3.1 本田汽车发动机VTEC结构 (6) 3.2 VTEC工作原理 (7) 3.2.1 低速状态 (7) 3.2.2 高速状态 (8) 3.3 正时机构工作原理 (9) 4 本田可变气门正时(VTEC)多媒体课件制作 (9) 4.1 多媒体课件的特点 (9) 4.2 教学内容分析和安排 (10) 4.3 逻辑结构的设计 (11) 4.4 多媒体课件的制作 (12) 4.5 多媒体动画课件的测试 ......................................... 16 4.6 多媒体动画课件的整理和发布 (17) 5 多媒体动画课件的使用说明 (17) 6 总结 (18) 参考文献: (19) 本田可变气门正时及气门升程电子控制系统(VTEC)多媒体课件的开发 本田可变气门正时及气门升程电子控制系统 (VTEC)多媒体课件的开发 职业技术教育学院汽车维修工程教育专业吕波(07520129) 指导老师:曹红兵(副教授)

宝马VANOS可变气门正时系统

宝马VANOS可变气门正时系统

宝马V ANOS可变气门正时系统 来源:末知作者:佚名发布时间:2008-01-14 宝马的V ANOS系统是一个由车辆发动机管理系统操纵的液压和机械相结合的凸轮轴控制设备。V ANOS系统基于一个能够调整进气凸轮轴与曲轴相对位置的调整机构。双V ANOS则增加了对进排气凸轮轴的调整机构。 V ANOS系统根据发动机转速和加速踏板位置来操作进气凸轮轴。在发动机转速达到最低时,进气门将随后开启以改善怠速质量及平稳度。发动机处于中等转速时,进气门提前开启以增大扭矩并允许废气在燃烧室中进行再循环从而减少耗油量和废气的排放。最后,当发动机转速很高

时,进气门开启将再次延迟,从而发挥出最大功率。 V ANOS系统极大增强了尾气排放管理能力,增加了输出和扭矩,提供了更好的怠速质量和燃油经济性。V ANOS系统的最新版是双V ANOS,被用于新M3车型上。该技术于1992年被首次应用于宝马5系车型的M50发动机上。 『双V ANOS系统即Double V ANOS』 在顶置凸轮轴发动机中,凸轮轴通过一根皮带

或者链条和齿轮与曲轴相连。在宝马V ANOS系统发动机内有一根链条和一些链轮。曲轴驱动排气凸轮上的链轮,排气凸轮链轮被螺栓固定于排气凸轮上,第二套齿轮驱动穿过进气凸轮的第二根链条,进气凸轮上的大链轮没有固定在凸轮上,因为其中间有个大孔,孔内有一套螺旋形的齿,在凸轮的一端有一个外侧也是螺旋形的齿轮,但它太小,无法与大链轮内侧的齿轮相连接。有一小块杯状带有螺旋形齿轮的金属,其内侧与凸轮相配合,外侧与链轮配合。V ANOS系统的可变性就是源于齿轮的螺旋形。杯状装置由作用于受DME(数字式电子发动机管理系统)控制依靠油压的液压机构驱动。 怠速时,凸轮正时延迟。在非怠速状态下,DME为电磁线圈通电控制油压推动杯状齿轮,在中等转速下推动凸轮提前12.5度,然后在5000转/分时,允许其回到初始位置。中速运转时推力越大气缸充气越好,扭矩也就越大。我们听到的噪声是因公差而造成的杯状装置进出时链轮 的轻微摆动声音。 在油门踏板位置和发动机转速的作用下,进排

VVT技术细分详解

发动机“呼吸”术:VVT 技术细分详解 2008-02-02 08:41 来源:网络室 为了兼顾日益严格的排放法规和车主们油耗低动力足的要求,越来越多的新技术被各大汽车厂商加快步伐开发应用在发动机上。VVT-i ,VTEC ,DVVT ,这些新鲜的名词诚然能带来销售和竞争各种优势,同时一个个的缩略语也让广大的车友车主车迷们有点眩晕,现在我们便对这些汽车“芯”宠来一个汇总讲解。 机构及工作原理: 为了更好了解这几项技术,在此首先对发动机的配气机构及相关术语进行简单介绍: 配气机构:它是控制气门开闭的机构,就如发动机气缸的呼吸器一样,定时开启和关闭各气缸的进、排气门,使新鲜充量的空气得以及时进入气缸,废气得以及时从气缸排出。它一般由凸轮轴、凸轮、气门挺杆、气门和气门弹簧组成。 工作过程:曲轴通过链条或者皮带带动凸轮轴运转,凸轮工作面的旋转过程会顶压气门挺杆,随后气门顶杆就会推动气门向气缸内运动,从而气门被开打;凸轮工作面转过之后,气门会在气门弹簧的作用下回位,从而气门被关闭。 图1:4缸DOHC (双顶置凸轮轴)式发动机的气门驱动系统 气门正时与升程:气门的开闭决定了气门正时(进排气门开闭的时间)与 气门升程(气门打开的程度),这两个参数是影响发动机性能和充气效率的重要因素。发动机运转过程中,高速和低速时对气门正时的要求是不同的,如下图2所示,低速时应采用小的气门重叠角和升程,防止缸内新鲜空气倒流,以便增加低速扭矩,提高燃油经济性,而高速时却希望有大的气门升程气门重叠角,以便进入更多的混合气以满足高速时的动力性要求。 图2 气门正时、气门升程与发动机转速的理想关系

可变气门正时系统

可变气门正时系统 VVT Variable Valve Timing 可变气门正时系统。当今都是N/A(自然吸气)引擎技术。该系统通过配备的控制及执行系统,对发动机凸轮的相位进行调节,从而 使得气门开启、关闭的时间随发动机转速的变化而变化,以提高充气效率,增加发动机功率。 发动机可变气门正时技术(VVT,Variable Valve Timing)原理是根据发动机的运行情况,调整进气(排气)的量,和气门开合时间,角度。是进入的空气量达到最佳,提高燃烧效率。优点是省油,公升比大。缺点是中段转速扭矩不足。 韩系车的VVT是根据日本中的丰田的VVT-I和本田的VTEC技术模仿而来,但是相比丰田的VVT-I可变正时气门技术,VVT仅仅是 可变气门技术,缺少正时技术,所以VVT发动机确实要比一般的发动机省油,但是赶不上日系车的丰田和本田车省油。 其实像德国大众的速腾1.6升2气门发动机也有可变气门相位技术,不过并不像日系车和韩系车宣传的那么多。但是就发动机技术而言,日系车的发动机并不比德系车的发动机先进。很多人以为日系车省油是因为日本车的发动机先进,其实这是一个误区。 BMW在之前的一代发动机中早已采用该技术,目前如本田的VTEC、i-VTEC、;丰田的VVT-i;日产的CVVT;三菱的MIVEC;铃 木的VVT;现代的VVT;起亚的CVVT等也逐渐开始使用。总的说来其实就是一种技术,名字不同。 VVT--i VVT中文意思是“可变气门正时”,由于采用电子控制单元(ECU)控制,因此丰田起了一个好听的中文名称叫“智慧型可变气门正时系统”。该系统主要控制进气门凸轮轴,又多了一个小尾巴“i”,就是英文“Intake”(进气)的代号。这些就是“VVT-i”的字面含义了。VVT—i.系统是丰田公司的智能可变气门正时系统的英文缩写,最新款的丰田轿车的发动机已普遍安装了VVT—i系统。丰田的VVT—i系统可连续调节气门正时,但不能调节气门升程。它的工作原理是:当发动机由低速向高速转换时,电子计算机就自动地将机油压向进气凸轮轴 驱动齿轮内的小涡轮,这样,在压力的作用下,小涡轮就相对于齿轮壳旋转一定的角度,从而使凸轮轴在60度的范围内向前或向后旋转,从而改变进气门开启的时刻,达到连续调节气门正时的目的。 VVT-i是一种控制进气凸轮轴气门正时的装置,它通过调整凸轮轴转角配气正时进行优化,从而提高发动机在所有转速范围内的动力性、燃油经济性,降低尾气的排放。 VVT-i系统由传感器、ECU和凸轮轴液压控制阀、控制器等部分组成。ECU储存了最佳气门正时参数值,曲轴位置传感器、进气歧管空气压力传感器、节气门位置传感器、水温传感器和凸轮轴位置传感器等反馈信息汇集到ECU并与预定参数值进行对比计算,计算出修正参数并发出指令到控制凸轮轴正时液压控制阀,控制阀根据ECU指令控制机油槽阀的位置,也就是改变液压流量,把提前、滞后、保持不变等信号指令选择输送至VVT-i控制器的不同油道上。 VVT-i系统视控制器的安装部位不同而分成两种,一种是安装在排气凸轮轴上的,称为叶片式VVT-i,丰田PREVIA(大霸王)安装此款。另一种是安装在进气凸轮轴上的,称为螺旋槽式VVT-i,丰田凌志400、430等高级轿车安装此款。两者构造有些不一样,但作用是相同的。 叶片式VVT-i控制器由驱动进气凸轮轴的管壳和与排气凸轮轴相耦合的叶轮组成,来自提前或滞后侧油道的油压传递到排气凸轮轴上,导致VVT-i控制器管壳旋转以带动进气凸轮轴,连续改变进气正时。当油压施加在提前侧油腔转动壳体时,沿提前方向转动进气凸轮轴;当油压施加在滞后侧油腔转动壳体时,沿滞后方向转动进气凸轮轴;当发动机停止时,凸轮轴液压控制阀则处于最大的滞后状态。螺旋槽式VVT-i控制器包括正时皮带驱动的齿轮、与进气凸轮轴刚性连接的内齿轮,以及一个位于内齿轮与外齿轮之间的可移动活塞,活塞表面有螺旋形花键,活塞沿轴向移动,会改变内、外齿轮的相位,从而产生气门配气相位的连续改变。当机油压力施加在活塞的左侧,迫使活塞右移,由于活塞上的螺旋形花键的作用,进气凸轮轴会相对于凸轮轴正时皮带轮提前某个角度。当机油压力施加在活塞的 石侧,迫使活塞左移,就会使进气凸轮轴延迟某个角度。当得到理想的配气正时,凸轮轴正时液压控制阀就会关闭油道使活塞两侧压力 平衡,活塞停止移动。 现在,先进的发动机都有“发动机控制模块”(ECM),统管点火、燃油喷射、排放控制、故障检测等。丰田VVT-i发动机的ECM在各种行驶工况下自动搜寻一个对应发动机转速、进气量、节气门位置和冷却水温度的最佳气门正时,并控制凸轮轴正时液压控制阀,并通过各个传感器的信号来感知实际气门正时,然后再执行反馈控制,补偿系统误差,达到最佳气门正时的位置,从而能有效地提高汽车的功率与性能,尽量减少耗油量和废气排放。

VVL可变气门升程技术

VVL可变气门升程技术 VVL概述 VVL是英文variable valve lift的简写,意味可变气门升程。 传统的汽油发动机的气门升程是固定不可变的。也就是凸轮轴的凸轮型线只有一种。这就造成了该升程不可能使发动机在高速区和低速区都得到良好响应。传统汽油机发动机的气门升程——凸轮型线设计是对发动机在全工况下的平衡性选择。其结果是发动机既得不到最佳的高速效率,也得不到最佳的低速扭矩。但得到了全工况下最平衡的性能。 VVL的采用,使发动机在高速区和低速区都能得到满足需求的气门升程。从而改善发动机高速功率和低速扭矩。 发动机VVL系统工作原理 VVL不仅可以改变气门开启时间,还能改变气门大小,从而进一步提高燃烧效率。在高转速时,采用长行程来提高进气效率,让发动机的呼吸更顺畅,在低速时,采用短行程,能产生更大的进气负压及更多的涡流,让空气和燃油充分混合,因而提高低转速时的扭力输出。 可变气门升程种类 可变气门升程按照其控制效果分类: 两可调式可变升程 技术代表就是大名鼎鼎的本田VTEC技术和保时捷的Vairocam技术以及比亚迪473QE发动机所采用的VVl技术。 连续可变升程 技术代表是宝马的“电控气门”技术。 VVL发动机对比VVT发动机 VVT是可变气门正时系统的简称,DVVT是双可变气门正时,而VVL是双升段可变气门升程系统! VVT和DVVT都只能改变气门开启闭合的时间,而VVL不仅可以改变气门开启时间,还能改变气门大小,从而进一步提高燃烧效率,比VVT更省油!但由于VVL制造成本高,特别是缸盖设计加工难度大,所以采用VVL的车型少, 目前只有本田的VTEC、保时捷Variocam、宝马Valvetronic,日产VVEL发动机大规模采用!比亚迪是自主品牌中,唯一掌握此技术的厂商! 比亚迪VVL 比亚迪公司顺应全球低碳环保的新趋势、响应国家节能减排的号召,在其新推出的BYD473QE 发动机上使用了VVL系统,并将运用在其车型上。采用VVL技术的发动机,气门行程能随发动机转速的改变而改变。在高转速时,采用长行程来提高进气效率,让发动机的呼吸更顺畅,在低速时,采用短行程,能产生更大的进气负压及更多的涡流,让空气和燃油充分混合,因而提高低转速时的扭力输出。 使用VVl技术的BYD473QE发动机高效环保、经济节油,搭载全新此发动机的比亚迪L3车型已登录国家工信部229 批汽车产品目录,并在工信部轻型汽车燃油消耗量通告中获百公里综合工况油耗为6.2L。 目前比亚迪L3已经进入新一批的节能惠民补贴车型,这也证明了VVL技术对于经济节油的贡献。

宝马VANOS可变气门正时系统

宝马V ANOS可变气门正时系统 来源:末知作者:佚名发布时间:2008-01-14 宝马的VANOS系统是一个由车辆发动机管理系统操纵的液压和机械相结合的凸轮轴控制设备。V ANOS系统基于一个能够调整进气凸轮轴与曲轴相对位置的调整机构。双 V ANOS则增加了对进排气凸轮轴的调整机构。 V ANOS系统根据发动机转速和加速踏板位置来操作进气凸轮轴。在发动机转速达到最低时,进气门将随后开启以改善怠速质量及平稳度。发动机处于中等转速时,进气门提前开启以增大扭矩并允许废气在燃烧室中进行再循环从而减少耗油量和废气的排放。最后,当发动机转速很高时,进气门开启将再次延迟,从而发挥出最大功率。 V ANOS系统极大增强了尾气排放管理能力,增加了输出和扭矩,提供了更好的怠速质量和燃油经济性。V ANOS系统的最新版是双V ANOS,被用于新M3车型上。该技术于1992年被首次应用于宝马5系车型的M50发动机上。

『双V ANOS系统即Double V ANOS』 在顶置凸轮轴发动机中,凸轮轴通过一根皮带或者链条和齿轮与曲轴相连。在宝马V ANOS 系统发动机内有一根链条和一些链轮。曲轴驱动排气凸轮上的链轮,排气凸轮链轮被螺栓固定于排气凸轮上,第二套齿轮驱动穿过进气凸轮的第二根链条,进气凸轮上的大链轮没有固定在凸轮上,因为其中间有个大孔,孔内有一套螺旋形的齿,在凸轮的一端有一个外侧也是螺旋形的齿轮,但它太小,无法与大链轮内侧的齿轮相连接。有一小块杯状带有螺旋形齿轮的金属,其内侧与凸轮相配合,外侧与链轮配合。V ANOS系统的可变性就是源于齿轮的螺旋形。杯状装置由作用于受DME(数字式电子发动机管理系统)控制依靠油压的液压机构驱动。 怠速时,凸轮正时延迟。在非怠速状态下,DME为电磁线圈通电控制油压推动杯状齿轮,在中等转速下推动凸轮提前12.5度,然后在5000转/分时,允许其回到初始位置。中速运

三种气门升程可变介绍

异曲同工之妙 3种可变气门升程技术介绍 目前市面在售的车型中,包括我们熟悉的多款自主品牌车型在内,已经有很大部分的发动机装配了可变气门正时系统,尽管各个厂商和车型间的技术水平还有一定差距,但整体来看可变气门正时系统已经成为了比较大众化的技术而显得有些习以为常了。 但我们知道所谓的可变气门正时技术,其功能主要是改变发动机气门开启和闭合的时间,以达到更合理的控制相应发动机转速所需的空气量,作用主要还是为了降低油耗,提高经济性。而发动机的实质动力表现却是和单位时间内进入到汽缸内的氧气量有关,可变气门正时系统无法有效改变这一点,因此它对动力的提升帮助不大。

既然可变气门正时系统无能为力,那现在就该轮到本文的主角可变气门升程系统登场了。相比可变气门正时,气门升程系统目前还比较少见,尤其是连续可变气门升程技术更是只掌握在几个大厂商手中的绝密核心技术,因此我们能买到的装备可变气门升程系统的车型也不多。下面就让我们来看看有哪些车型可供选择。 阅前说明: 本文将主要介绍三大厂商的可变气门升程系统,但由于各自技术差异以及品牌层次不同,本文涉及的车型档次差别较大,因此我们只做技术性分析而各车型间并无对比之意,请各位网友注意。 本田可变气门升程技术:VTEC、i-VTEC 应用车型:国内所有在售本田及讴歌车型

『本田和讴歌的众多车型的发动机均装配了VTEC或i-VTEC系统』 本田是最早将可变气门升程技术应用到车载发动机上的厂商,而且不同于其它厂商先使用可变气门正时,后追加可变气门升程技术的做法,本田的工程师在研发项目之初就将这两种技术同步进行。结构简单、设计巧妙是本田可变气门升程机构的特点,具体工作方式我们下文会有介绍。

宝马发动机VANOS(双可变凸轮轴控制系统)详解

宝马Double-VANOS/Valvetronic 1992年,宝马推出了气门无级调节管理——Double-V ANOS双凸轮轴可变气门正时系统,是应用在BMW M3上的世界首创技术。V ANOS系统是一个由车辆发动机管理系统操纵的液压和机械相结合的凸轮轴控制设备。此控制系统的优点是可以根据发动机运行状态,通过凸轮轴精确的角度控制对进气门和排气门的气门正时进行无级调节,并且不受油门踏板位置和发动机转速的影响。V ANOS系统基于一个能够调整进气凸轮轴与曲轴相对位置的调整机构。在实际驾驶中,这意味着在发动机转速较低时可以提供充足的扭矩,而在高转速范围内则可达到最佳的功率。此外,Double-V ANOS增加了对进排气凸轮轴的调整机构,双凸 轮轴可变气门正时系统可极大地减少未燃烧的残余气 体,从而改进了发动机的怠速性能。 V ANOS系统根据发动机转速和加速踏板位置来操 作进气凸轮轴。Valvetronic电子气门是具有可变进气门 升程控制功能的气门驱动系统,发动机的进气完全由无 级可变进气门升程控制,不再需要以往对于内燃式汽油 发动机来讲必不可少的节气门。在发动机转速达到最低 时,进气门将随后开启以改善怠速质量及平稳度。发动 机处于中等转速时,进气门提前开启以增大扭矩并允许 废气在燃烧室中进行再循环从而减少耗油量和废气的排放。最后,当发动机转速很高时,进气门开启将再次延迟,从而发挥出最大功率。 电子气门技术的另一重要优点,是踩踏油门时发动机产生反应的时间加快。传统发动机以油门控制节气阀的方式,油门踩下节气阀打开,还要等待空气流入填满进气歧管之后,才会大量进入发动机气缸,产生所需要的动力。而电子气门发动机油门踩下时可直接控制加大进气阀门开启深度,大量空气立刻流入发动机气缸,产生所需要的动力。电子气门发动机进气阀门开启深度最浅0.25mm,最深可以到9.7mm,相差近40倍,然而从最浅变化到最深,电子气门整体机构所需要的反应时间大约只要0.3s。 V ANOS系统极大增强了尾气排放管理能力,增加了输出和扭矩,提供了更好的怠速质量和燃油经济性。V ANOS系统的最新版是双V ANOS,被用于新M3车型上。该技术于1992年被首次应用于宝马5系车型的M50发动机上。 在顶置凸轮轴发动机中,凸轮轴通过一根皮带或者链条和齿轮与曲轴相连。在宝马V ANOS系统发动机内有一根链条和一些链轮。曲轴驱动排气凸轮上的链轮,排气凸轮链轮被螺栓固定于排气凸轮上,第二套齿轮驱动穿过进气凸轮的第二根链条,进气凸轮上的大链轮没有固定在凸轮上,因为其中间有个大孔,孔内有一套螺旋形的齿,在凸轮的一端有一个外侧也是螺旋形的齿轮,但它太小,无法与大链轮内侧的齿轮相连接。有一小块杯状带有螺 旋形齿轮的金属,其内侧与凸轮相配合,外侧与链轮配合。 V ANOS系统的可变性就是源于齿轮的螺旋形。杯状装置由作 用于受DME(数字式电子发动机管理系统)控制依靠油压的 液压机构驱动。 怠速时,凸轮正时延迟。在非怠速状态下,DME为电磁 线圈通电控制油压推动杯状齿轮,在中等转速下推动凸轮提 前12.5度,然后在5000转/分时,允许其回到初始位置。中 速运转时推力越大气缸充气越好,扭矩也就越大。我们听到 的噪声是因公差而造成的杯状装置进出时链轮的轻微摆动声

汽车发动机可变气门正时系统及其故障检测

汽车发动机可变气门正时系统及其故障检测 摘要发动机可变气门正时技术(VVT)是近年来被逐渐应用于现代轿车发动机的一种新技术。它的主要优点包括节省燃油、降低污染和噪音等。但是VVT 技术的引入也增加了汽车发动机系统的复杂性,对汽车的保养维护及故障检测提出了较高的要求。首先对汽车发动机VVT技术进行概述,然后结合一起发动机故障实例,介绍汽车发动机VVT相关故障诊断的方法。 关键词可变气门正时系统;VVT;故障检测 近几十年来,基于提高汽车发动机动力性、经济性和降低排污的广泛需求,许多国家和厂商、科研机构投入了大量的人力、物力进行新技术的研究与开发。发动机可变气门正时技术(VariableValve Timing, VVT)是近些年来被逐渐应用于现代轿车发动机的一种新技术。 VVT 技术的基本思想是调节发动机进气、排气系统的升程、重叠时间与正时(部分或者全部)。这样可以提高进气充量,使充量系数增加,发动机的扭矩和功率可以得到进一步的提高。以日本丰田汽车公司的智能正时可变气门控制系统VVT-i为例,该技术应用于3L6缸双凸轮轴发动机,可以节省燃油6%,减少CO2排出量40%,降低HC排放量10%,输出扭矩可增加10%。 但是,VVT系统的引入不可避免地增加了汽车发动机整体的复杂性。对汽车的保养维护和故障诊断提出了较高的要求。本文首先对汽车发动机VVT技术做概括性介绍,然后结合一起悦达起亚赛拉图轿车发动机故障实例,介绍VVT汽车发动机故障诊断和排除的一般流程。 1 VVT技术简介 VVT技术的雏形最早出现在19世纪的火车蒸汽机车上。20世纪80年代,许多汽车企业开始了内燃发动机VVT技术的研究。1989年本田首次发布了“可变气门配气相位和气门升程电子控制系统”。时至今日,许多汽车企业都开发了自己的VVT技术。 活塞式内燃发动机通常通过提升节流阀来进气与排气。提升阀直接或间接地被凸轮轴上的凸轮驱动。凸轮轴上凸轮的轮廓与位置通常是为特定的发动机转速而优化的,通常这会降低发动机在低转速情况下的扭矩和高转速情况下的功率。VVT技术能够使其根据发动机工况进行改变,提高了发动机的效率与动力。 常见汽车发动机的VVT系统由:VVT机油控制阀、VVT机油滤清器、VVT 执行器及其他传感器、ECM等组成。VVT机油滤清器通过缸盖油道向VVT机油控制阀供油;发动机控制模块ECM根据发动机的转速、负荷等参数控制滑阀式的VVT机油控制阀,向VVT执行器的气门正时提前油室或气门正时滞后油室供油;VVT执行器根据供给的油压直接改变排气凸轮轴的相位,通过链条传动,间接

发动机可变气门生成技术

呼吸有道解析汽车发动机可变气门升程技术 2010-07-23 01:15:36 来源: 网易汽车跟贴 0 条手机看新闻版权声明:本文版权为网易汽车所有,转载请注明出处。 网易汽车7月23日报道在上节技术大讲堂中,我们想大家解析了关于汽车发动机可变气门正时技术,简单来说它是通过电脑控制发动机气门的开启时间,利用进气门与排气门不同的开启时间来控制汽车发动机的效率与经济性,但这种技术对于汽车发动机性能方面的提升却不大。随着汽车行业的发展,发动机的性能如何已经成为一款车能否取得成功的关键,这也就促使各大汽车厂家的工程师们对发动机技术进行了进一步研究。通过研究后,他们发现了可以弥补发动机可变气门正时技术不足的方法,而这也就是我们今天这节技术大讲堂要说的发动机可变气门升程技术。

>>技术大讲堂:呼吸有道解析汽车发动机可变气门正式技术<<众所周知,发动机的动力表现主要取决于单位时间内汽缸的进气量,上一节技术大讲堂我们说过,气门正时代表了气门开启的时间,而气门升程则代表的是气门开启的大小,从原理上看,可变气门正时技术也是通过改变进气量来改善动力表现的,但实际上气门正时则只能增加或者缩小气门开启时间,并不能有效改善汽缸内单位时间的进气量,从数学角度上看,气门正时是将分母和分子同时等比例放大,而这对于数字的扩大或缩小则没有任何改善,也正式因此对于可变气门正时技术队于发动机动力性的帮助并不大。 而当气门开启大小也可以实现可变调节的话,那么就可以针对不同的转速使用合适的气

门开启大小,从而提升发动机在各个转速内的动力性能,这就是和可变气门正时技术相辅相承的可变气门升程技术。 正如我们在用皮管接水时,当我们将皮管口的面积变小后,从皮管中喷出的水压力将变大,而这样一来单位时间内流出的水量也将增多,发动机可变气门升程技术利用的就是这种原理,用增加单位时间内发动机进气量的方法来提高发动机的动力性能。

VTEC可变气门正时和升程电子控制系统方案

VTEC全写为Variable valve Timing and lift Electronic Control . VTEC系统全称是可变气门正时和升程电子控制系统,是本田的专有技术,它能随发动机转速、负荷、水温等运行参数的变化,而适当地调整配气正时和气门升程,使发动机在高、低速下均能达到最高效率。+在VTEC系统中,其进气凸轮轴上分别有三个凸轮面,分别顶动摇臂轴上的三个摇臂,当发动机处于低转速或者低负荷时,三个摇臂之间无任何连接,左边和右边的摇臂分别顶动两个进气门,使两者具有不同的正时及升程,以形成挤气作用效果。此时中间的高速摇臂不顶动气门,只是在摇臂轴上做无效的运动。当转速在不断提高时,发动机的各传感器将监测到的负荷、转速、车速以及水温等参数送到电脑中,电脑对这些信息进行分析处理。当达到需要变换为高速模式时,电脑就发出一个信号打开VTEC电磁阀,使压力机油进入摇臂轴顶动活塞,使三只摇臂连接成一体,使两只气门都按高速模式工作。当发动机转速降低达到气门正时需要再次变换时,电脑再次发出信号,打开VTEC电磁阀压力开头,使压力机油泄出,气门再次回到低速工作模式。

燃机的作用是把燃料的化学能转化成机械动能,其基本原理是可燃混合气在汽缸燃烧,产生的高压推动活塞旋转曲轴,输出扭力。扭力与转速结合,就是发动机的功率。在发动机的工作过程中,大约只有30%的原始能量做了有用功,因此,最大限度地提高发动机的工作效率成为人们长期的奋斗目标。 按照物理学定律,要产生更强的动力,发动机就要消耗更多的燃料。显而易见,增加燃油燃烧的方法之一是加大发动机尺寸,因为大排量的汽缸相比小型发动机能燃烧更多的燃油;另一种方法是把可燃混合气进行预压缩,这样在固有的发动机也能填入更多的燃料。 与上述方法不同,本田在发动机技术上采用了另一条道路:即保留发动机尺寸不变,加快燃油的燃烧速度。也许用下面的例子更能说明问题:用杯子把爆米花从甲地运送到乙地,你可以加大杯子的尺寸,也可以压紧杯中之物以加大每次的运送量,或者也可以简单地加快运送的速度,最终的结果是一样的。 随着发动机转速的增加,其“吐呐”的混合气量相应增长,进排气门的开合需要更精密和更宽阔,否则的话,进气阻力将使发动机得不到足够的燃料。

可变气门正时技术

发动机可变气门正时技术 发动机可变气门正时:简称VVT(Variable Valve Timing);随着发动机转速的提高,短促的进排气时间往往会引起发动机进气不足,排气不净等现象,因此可变气门正时系统出现,它就是根据轿车的运行状况,随时改变配气相位,改变气门升程和气门开启的持续时间(气门升程就像门开启的角度,气门正时就像门开启的时间,进气歧管就像各个闸道的栏杆)。 发动机上的气门可变驱动机构可以通过两种形式实现,一种是通过凸轮轴或者凸轮的变换来改变配气相位和气门升程;另一种就是工作时凸轮轴和凸轮不变动,而气门挺杆(摇臂或拉杆)依靠机械力或者液压力的作用而改变,从而改变配气相位和气门升程。 发动机进排气过程中,会出现一个进气门和排气门同时开启的时刻,在配气相位上称为“重叠阶段或气门重叠角”。在高转速下,为了达到更好的进气量,提高发动机的功率,就要求气门重叠角更大(进气门提前打开、或者排气门晚关);但在低转速或者怠工时,过大的重叠角则会导致废气过多的进入进气歧管,使缸内气流混乱,从而导致低速扭矩较低,因此低速时需要减小重叠角(进气门延时打开),此时燃烧会更充分更稳定。因此孕育出可变气门正时技术。 从原理上可以看出,可变气门正时只是增加或减少了气门的开启时间,并没有改变单位时间的进气量,因此对于发动机的动力性的帮助并不显著,但是气门开启角度大小(气门升程)可以随时间改变的话,就可以显著提升发动机在各个转速的动力性能。 可变气门升程:可以使发动机在不同的转速提供不同的气门升程,低转速时使用较小的气门升程,有利于缸内气流的合理混合,增加发动机的低速输出扭矩;在

高速时使用较大的升程,可以提高发动机的进气量,从而提高功率输出。本田公司的i-VTEC是目前使用最广泛的可变气门升程系统(i-VTEC拥有连续可变气门正时、分段可调气门升程技术)。 本田 VTEC:分级可变气门升程+分级可变气门正时 i-VTEC:分级可变气门升程+连续可变气门正时(进、排气) 丰田 VVT-i:连续可变气门正时(进气门) Dual VVT-i:智能连续可变气门正时(进、排气门分别独立控制,有2个气门开启时刻)VVTL-i:分级可变气门升程+连续可变气门正时(进、排气门) 宝马 Valvetronic连续可变气门升程(省去“节气门”部件) Double V ANOS:连续可变气门正时(进、排气门分别独立控制) 现代 CVVT:连续可变气门正时(进气门) 日产 C-VTC:连续可变气门正时(日产的“VQ”发动机上使用,技术类似丰田) 标致 VTCS:可变涡流控制阀 1、VVT-i原理:当发动机由低速向高速转换时,电子计算机(ECU)通过分析就自动地将机油压向进气凸轮轴驱动齿轮内的小涡轮,在压力的作用下,小涡轮就相对于齿轮壳旋转一定的角度,从而使凸轮轴在60度的范围内向前或向后旋转,从而改变进气门开启的时刻,达到连续调节气门正时的目的。VVT-i系统是通过调整凸轮轴转角配气正时进行优化,从而提高发动机在所有转速范围内的动力性、燃油经济性,降低尾气的排放。VVT-i系统由传感器、ECU和凸轮轴液压控制阀、控制器等部分组成。

发动机VVT技术详解

近几十年来,基于提高汽车发动机动力性、经济性和降低排污的要求,许多国家和发动机厂商、科研机构投入了大量的人力、物力进行新技术的研究与开发。目前,这些新技术和新方法,有的已在内燃机上得到应用,有些正处于发展和完善阶段,有可能成为未来内燃机技术的发展方向。 发动机可变气门正时技术(VVT,V ariable V alve Timing)是近些年来被逐渐应用于现代轿车上的新技术中的一种,发动机采用可变气门正时技术可以提高进气充量,使充量系数增加,发动机的扭矩和功率可以得到进一步的提高。 如今如本田的i-VTEC、丰田的VVT-i等也都是源自VVT的发动机控制技术。 对于一台4冲程发动机,按照很多人的理解,做功冲程末,活塞处于下止点时排气门开始打开,发动机进入排气冲程,直到活塞到达上止点,排气门关闭,进气门打开,发动机进入吸气冲程。当活塞正好运行一周重新回到下止点时,进气门关闭,发动机进入压缩冲程。这样来理解气门的动作是否正确呢?差不多是吧。 然而,可能和与人们的直觉不同的是,这样的气门正时效率并不是最优的。让我们先来考虑一下排气门开启的时机。如果比活塞到达下止点提前一点就开启排气门会怎么样呢?从直觉上,这时废气仍可推动活塞做功,如果打开排气门开始排气,此时气缸内的压强就会降低,能量的利用率也就降低了,发动机性能也会随之下降。是这样吗?其实也不一定。 我们知道,排气时活塞会压迫废气从而反过来对废气做功,这个过程会消耗一部分发动机已经获得的能量。如果在缸内压强相对较高时提前开始排气,排气过程就会更顺畅,从而在排气冲程减少了能量消耗。这样,一得一失,怎么才会最合算呢?考虑到活塞在下止点附近一定角度内垂直运动距离其实非常短,实际的发动机略微提前打开排气门效果会更好一些。再来看进气门关闭的时机。 如果在活塞越过下止点一定角度,开始压缩冲程之后再关闭进气门。如何呢?直观的感觉可能是,这时活塞已经开始上升,刚刚吸入的可燃混合汽岂不是又要被排出去一部分?性能会不会下降?答案是:只要时机适当,这样做反而可以增加吸气量,改善性能。因为在吸气冲程可燃混合汽被活塞抽入汽缸,进气门附近的气流速度可以高达每秒两百多米,而我们前面说过,在下止点附近活塞的垂直运动相对很慢,汽缸内体积变化并不大。此时进气岐管内的可燃混合汽靠惯性继续冲入气缸的趋势还是占了上风。 说到这里,对一些VVT技术有所了解的兄弟可能要不耐烦了:讲了这么多,和VVT边还没沾呢!不要急,还没讨论排气门的关闭时机和进气门的开启时机呢。这是大家可能都想到了,排气时同样会形成高速气流,如果排气门也在活塞越过上止点一定角度之后再关闭,虽然活塞已经开始下降,排气门附近的废气仍就会继续排出。但是此时进气门不是已经开启了吗?废气难道不会涌入进气岐管? 事实上,这又是个时机问题,燃烧室内的废气涡流的方向决定了废气短时间内是不会流向排气门对侧的进气门的,于是,一边进气一边排气的局面是完全可以实现的。事情还可以更理想。由于大部分废气在排气冲程中前期就已排出,并且在排气岐管中形成了高密度的高速气流,冲向排气管方向。这部分废气越是远离气缸,对于缸内尚未排出的废气来说,其需要填

汽车智能可变气门正时系统

汽车智能可变气门正时系统 一、智能可变气门正时系统(VTT-I系统) 1、概述 VTT-I系统用来控制进气凸轮轴在40度角范围内保持最佳的气门正时,以适应发动机善,从而实现在所有速度范围提高扭矩和燃油经济性,减少废气排放量。VTT-I系统结构图见下图。 VVT-I系统结构图 轮 轴 正 进 机 油 控 制 阀 2、部件结构 1)VTT-I控制器。

VTT-I控制器由与进气凸轮轴耦合的叶片和从动正时链的壳体组成。在进气凸轮轴上的提前或滞后油路传送机油压力,VTT-I控制器叶片沿圆周方向旋转,连续改变气门正时。VTT-I控制器结构如下图。 当发动机停机时,进气凸轮轴多处在滞后状态,以确保启动性能。液压没有传递至VTT-I控制器紧接着就启动发动机,锁销会锁止VTT-I控制器,以防止产生爆震声。 2)凸轮轴正时机油控制阀。 凸轮轴正时机油控制阀根据来自发动机ECU的负荷控制,控制滑阀的位置,从而分配液压控制VTT-I控制器至提前和至提前和滞后侧。当发动机停机时,凸轮轴正时机油控制阀多自在滞后位置。凸轮轴正时机油控制阀结构图见下图。

3)部件控制 根据来自发动机ECU的提前、滞后或保持信号,凸轮轴正时机油控制阀选择至VTT-I控制器的通路。 4)提前。 根据来自发动机ECU的提前、滞后或保持信号,凸轮轴正时机油控制阀选择至VTT-I控制器的通路。作用到正时提前叶片室,使凸轮轴向正时提前方向转动。 5)滞后。根据来自发动机ECU的滞后信号,凸轮轴正时机油控制阀自在如下图的位置,总油压作用到正时滞后侧叶片室,使凸轮轴向正时滞后方向转动。 6)保持。发动机ECU根据移动计算出预定的正时角,预定正时被设置后,使凸轮轴正时机油控制阀在空档位置,保持气门正时直到移动状况改变。调整气门正时在预期目标位置,防止发动机机油在不必要时流出。凸轮轴正时机油控制阀位置(保持状态)如下图。

详解奥迪AVS可变气门升程系统

详解奥迪AVS可变气门升程系统 在动力方面,欧洲市场上销售的新奥迪A4提供了五种发动机可供选择,分别是带奥迪可变气门升程系统(Audi Valvelift System)的3.2升V6 FSI缸内直喷汽油发动机、1.8T FSI直列4缸缸内直喷汽油发动机、3.0升V6 TDI涡轮柴油发动机、2.7升V6 TDI涡轮柴油发动机,以及2.0升TDI涡轮柴油发动机。 新一代奥迪A4有前驱与Quattro四驱两种驱动方式可供选择,而且全新开发的6速手动变速器、6速Tiptronic自动变速器和Multitronic CVT无级变速器,可以为上述多款发动机提供不同的搭配。率先上市的国产奥迪A4L将匹配的发动机有2.0TFSI缸内直喷汽油发动机和3.2升V6 FSI缸内直喷汽油发动机,1.8T FSI发动机将有望于今年年底国内上市。 奥迪2.0 TFSI内有乾坤 欧洲市场上销售的奥迪A4入门级车型采用的是1.8升T FSI涡轮增压缸内直喷发动机,其最大功率为120kW,250 Nm的峰值扭矩可从1500转至4500转。采用手动变速箱的前驱车型,从静止到100 km/h加速时间为8.6秒,最高车速为225 km/h。这台涡轮增压发动机较老款相比的性能得到很大提升,在2000转时的扭矩输出比老款发动机提高了10%,油门响应速度也提高了30%。搭载这款发动机的奥迪A4L目前仍在国内路测,有媒体报道搭载1.8TFSI发动机的国产奥迪A4L车型将可能在今年年底才能上市。 图1:欧洲市场上销售的奥迪A4入门级车型采用的是1.8升T FSI涡轮增压缸内直喷发动机,搭载这款发动机的国产奥迪A4L车型将可能在今年年底才能上市。

可变气门配气相位和气门升程电子控制系统VTEC技术解析

可变气门配气相位和气门升程电子控制系统VTEC技术解析 the camshaft and rocker arms, but unlike ordinary engine is the number and control method of cam and rocker arm. Medium and low speed with a small angle of the cam, two valve timing and lift different at low speed, this time a valve lift is very small, almost do not participate in the intake process, the air intake channel basically the equivalent of two valve engine, but due to the flow direction of an intake air barrier gas cylinder center, so it can produce intake eddy current, strong for low speed, especially in the cold car conditions conducive to improving the mixture uniformity, increases the burning rate and decrease the effect of wall surface chilling effect and clearance, making the combustion more fully, thereby improving the economy, and significantly reduce HC and CO emissions; and at high speeds. Through to VTEC solenoid valve to control the hydraulic oil, so that the two intake rocker arms are connected as a whole and the intake cam from the opening of the longest and largest lift to drive the valve, this time two inlet valve according to the cam profile synchronization. Compared with the low speed operation, greatly increasing the inlet flow area and opening duration, so as to improve the power of the engine at high speed. This two kinds of entirely different performance curve of output, Honda engineers so that they are implemented in the same engine, and vividly described as "the usual soft driving" and "wartime intense driving".

相关文档
最新文档