(完整word版)铅水质自动在线监测仪技术要求和检测方法作业指导书

(完整word版)铅水质自动在线监测仪技术要求和检测方法作业指导书
(完整word版)铅水质自动在线监测仪技术要求和检测方法作业指导书

ZY

环境保护部环境监测仪器质量监督检验中心

作业指导书

HJC-ZY62-2014

铅水质自动在线监测仪技术要求和

检测方法作业指导书

参考《铅水质自动在线监测仪技术要求和检测方法(送审稿)》

自2014年03月01日起实施编写:贺鹏审核:王强批准:杨凯

1、适用范围

本作业指导书规定了铅水质自动在线监测仪的技术要求、性能指标及检测方法。针对应用于不同场合的铅水质自动在线监测仪(以下简称“仪器”),规定了两型仪器的检测范围。

I型仪器的检测范围为:(0.005~0.2)mg/L,??型仪器的检测范围为:(0.2~2)mg/L。

2、规范性引用文件

本作业指导书内容引用了下列文件或其中的条款。凡是不注明日期的引用文件,其有效版本适用于本标准。

GB 4208 外壳防护等级(IP代码)

GB/T 13306 标牌

HJ/T 212 污染源在线自动监控(监测)系统数据传输标准

3、术语和定义

下列术语和定义适用于本标准。

3.1

标样核查check with standard solution

仪器测量标准溶液,判定测量结果的准确性。

3.2

定量下限limit of quantification

在满足示值误差要求的前提下仪器能够测定待测物质的最小浓度。

3.3

记忆效应memory effect

仪器完成某一标准溶液或水样测量后对下一个测量结果的影响程度。

3.4

标样加入试验回收率recovery

仪器分别测量加入一定浓度的标准溶液前后的实际水样,计算加入标准浓液后测定值的增加量相对于理论加入量的百分率。

3.5

零点漂移zero drift

在未对仪器进行计划外的人工维护和校准的前提下,按规定周期连续测量浓度值为检

测范围下限值的标准溶液,仪器的测定值与初始值之间的偏差。

3.6

量程漂移range drift

在未对仪器进行计划外的人工维护和校准的前提下,按规定周期连续测量浓度值为检测范围上限值80%的标准溶液,仪器的测定值与初始值之间的偏差。

3.7

数据有效率availability of data

在最小维护周期内示值误差满足要求的测试数据占所有测试数据的百分率。

3.8

示值误差mean error

仪器的测定值与真值的偏差。

3.9

环境温度稳定性interference of environmental temperature

仪器在不同的环境温度下测量标准溶液,测定值与参考值的示值误差。

3.10

离子干扰interference of ions

仪器对加入干扰离子的标准浓液进行测量,测定值与真值的示值误差。

3.11

运行日志running record

在运行过程中仪器自动记录测试条件、故障、维护等状态信息及日常校准、参数变更等维护记录。

3.12

一致性conformity

在相同测试条件下多台仪器测定值的平行程度。

3.13

最小维护周期minimum period between maintenance operations

在检测过程中不对仪器进行任何形式的人工维护(包括更换试剂、校准仪器等),直到仪器不能保持正常测定状态或测定结果不满足相关要求的总运行时间(小时)。

4、检测实验条件相关要求

4.1 实验环境要求

4.1.1环境温度(5 ~ 40)℃

4.1.2相对湿度(65±20)%

4.1.3电源电压交流电压(220±22)V

4.1.4电源频率(50±0.5)Hz

4.1.5水样温度(0 ~ 50)℃

4.1.6水样酸碱度pH6~9

4.1.7水样悬浮物50mg/L以内

4.2检测用试剂

4.2.1 检测实验用水:不含铅的蒸馏水。

4.2.2铅标准溶液:由50mg/l或100mg/l的有证标准物质稀释得来。

4.2.3其他试剂:校正液等其它试剂由送检厂家自行提供。

4.2.4实际水样:含铅离子的实际废水经稀释得来。

4.3实验前准备

连接电源,按照仪器说明书规定的预热时间至仪器正常运行。按照仪器说明书规定,用校正液对仪器进行校验。

5 功能性指标和性能指标检测

5.1功能性指标检测

5.1.1基本要求

a)仪器在醒目处应标识产品铭牌,铭牌标识应符合GB/T 13306的要求。

b)显示器应无污点、损伤。所有显示界面应为中文,且字符均匀、清晰,屏幕无

暗角、黑斑、彩虹、气泡、闪烁等现象,能根据显示屏提示进行全程序操作。

c)机箱外壳应由耐腐蚀材料制成,表面无裂纹、变形、污浊、毛刺等现象,表面

涂层均匀,无腐蚀、生锈、脱落及磨损现象。

d)产品组装应坚固、零部件无松动,按键、开关、门锁等部件灵活可靠。

e)主要部件均应具有相应的标识或文字说明,应在仪器醒目位置标识分析流程

图。

5.1.2控制单元要求

a)应具有异常信息(超量程报警、缺试剂报警、部件故障报警和超标报警等)反

馈功能,宜采用声光电等方式报警。

b)在意外断电再度通电后应能自动排出断电前正在测定的待测物质和试剂,自动

清洗各通道并复位到重新开始测定的状态。若在断电前处于加热消解状态,再

度通电后能自动冷却,并复位到重新开始测定的状态。

c)数据处理系统应具有数据和运行日志采集、存储、处理、显示和输出等功能,

应能存储至少12个月的原始数据和运行日志,并具备二级操作管理权限,一般

操作人员只可查询相应日志和仪器设置参数。

d)仪器数据单位为mg/L或μg/L,并具有mg/L和μg/L单位相互转换功能。

e)应具备高低量程自动切换的功能,量程切换时不影响监测数据的正常显示和信

号的正常输出。I型仪器低量程为(0.005 ~ 0.2)mg/L,高量程为(0.2 ~ 0.4)

mg/L;II型仪器的低量程为(0.2 ~ 2)mg/L,高量程为(2 ~ 4)mg/L。

f)应具备对不同测试数据添加维护(M)、故障(D)、校验(C)和标样核查(SC)

等标识的功能。

g)数据处理系统应具有数据和运行日志采集、存储、处理、显示和输出等功能,

应能存储至少12个月的原始数据和运行日志,并具备二级操作管理权限,一般

操作人员只可查询相应日志和仪器设置参数。

5.2性能指标检测方法

以下性能指标的检测需满足表1的要求

5.2.1 示值误差

仪器分别对浓度值为检测范围上限值20%、50%的标准溶液连续测量6次,计算每个标准溶液6次测定值的平均值与已知标准溶液浓度的相对误差,取两个标准溶液相对误差值的较大值作为仪器示值误差的判定值。

标准溶液相对误差的计算方法见公式(1):

%100?-=

C

C

x Re ………………………………………(1) 式中:

Re ——标准溶液的相对误差,%; x ——标准溶液测定值的平均值; C ——标准溶液的浓度值。

5.2.2 定量下限

仪器在相同的条件下连续测量浓度值为检测范围下限值的标准溶液7次,计算7次测定值的标准偏差S ,所得标准偏差的10倍为仪器的定量下限。计算方法见公式(2)和(3):

S =

S LOQ ?=10 (3)

式中:

S —— 7次测定值的标准偏差; n ——测量次数;

i x —— 第i 次测定值;

x ——标准溶液测定值的平均值;

LOQ ——定量下限。 5.2.3 精密度

仪器测量浓度值为检测范围上限值50%的标准溶液,连续测量6次,计算6次测定值的相对标准偏差,以该相对标准偏差作为精密度的判定值。计算方法见公式(4):

()

00%1111

2

?--=

∑=x

x x n S n

i i r (4)

式中:

r S ——仪器的精密度;

x ——标准溶液测定值的平均值; n ——测量次数; i x —— 第i 次测定值。

5.2.4 零点漂移

采用浓度值为检测范围下限值的标准溶液,以1小时为周期,连续测量24小时,取前三次测定值的平均值为初始测定值,计算后续测定值与初始测定值的最大变化幅度相对于检测范围上限值的百分率。计算方式见公式(5)和(6):

数据个数:x 1、x 2、x 3……x 24共24个。

||ΔZ C i i -=x

(5)

100%ΔZ ?=

A

ZD max

……………………………………………(6) 式中:

i ΔZ ——第i 次测定值相对于标准溶液浓度值的绝对误差;

i x —— 第i 次测定值;

C ——标准溶液初始测定值;

ZD ——仪器的零点漂移;

ΔZ max ——i 次测定值相对于标准溶液浓度值的绝对误差中的最大值; A ——检测范围上限值。

5.2.5 量程漂移

采用浓度值为检测范围上限值80%的标准溶液,以1小时为周期,连续测量24小时,取前三次测定值的平均值为初始测定值,计算后续测定值与初始测定值的最大变化幅度相对于检测范围上限值的百分率。计算方式见公式(7)和(8):

数据个数:x 1、x 2、x 3……x 24共24个。

||ΔZ C i i -=x (7)

100%ΔZ ?=

A

RD max

………………………………………… (8) 式中:

i ΔZ ——第i 次测定值相对于标准溶液浓度值的绝对误差;

ΔZ max ——i 次测定值相对于标准溶液浓度值的绝对误差中的最大值;

A ——检测范围上限值;

i x —— 第i 次测定值;

C ——标准溶液初始测定值;

RD ——仪器的量程漂移。

5.2.6 电压稳定性

采用浓度值为检测范围上限值20%的标准溶液,仪器在初始电压220V 条件下连续测试三次,三次测定值的平均值为初始值;调节电压至242V ,测定同一标准溶液三次;调节电压至198V ,测定同一标准溶液三次,按照公式(9)计算电压变化引起的相对误差,取两个电压下相对误差的较大值作为仪器电压稳定性的判定值。

7 100%?=

W W -X V 或100%?=W W

-Y V (9)

式中:

V ——电压变化引起的相对误差;

X ——工作电压242V 条件下的三次测定的平均值; W ——初始电压220V 条件下的三次测定的平均值;

Y ——工作电压198V 条件下的三次测定的平均值。

5.1.1 环境温度稳定性

将仪器置于恒温室内,测量浓度值为检测范围上限值20%和80%的标准溶液,依次得到20℃、5℃、20℃、40℃、20℃五个恒温条件下放置6小时后的测量结果。以三个20℃条件下测定值的平均值为参考值,按照公式(10)计算5℃、40℃两种条件下第一次测定值与参考值的相对误差,取相对误差的最大值作为仪器环境温度稳定性的判定值。

100%1?-=

X X X t W 或100%2?-=X

X

X t W ……………………(10) 式中:

t W ——环境温度稳定性;

1X ——5℃条件下第一次测定值;

2X ——40℃条件下第一次测定值;

X ——三个20℃条件下测定值的平均值。

5.1.2 离子干扰

将表2规定的干扰离子分别加入到标准溶液中,加入后的混合溶液中单一干扰离子的浓度应符合表2的要求,铅离子浓度为检测范围上限值的50%,仪器分别连续测量3次该混合溶液的铅离子浓度,计算3次测量结果的示值误差,取示值误差的最大值作为该离子对仪器干扰的判定值。

5.1.3 记忆效应

仪器连续测量3次浓度值为检测范围上限值20%的标准溶液后(测定结果不作考核),再依次测量浓度值为检测范围上限值80%和20%的标准溶液各3次,分别计算两个标准溶液第一次测定值的示值误差,取示值误差的较大值作为仪器记忆效应的判定值。 5.1.4 标样加入试验

取实际水样比对检测中任一水样进行标样加入试验。仪器连续测量水样3次并计算测定值的平均值,于1000.0 mL 同一水样中加入1.0 mL 的铅标准溶液,仪器连续测量加入标准溶液后的水样3次并计算测定值的平均值。按照公式(11)计算实际水样的标样加入试验回收率R 。

21

100%1.01000.0

A A R C -=

?? (11)

式中:

R ——标样加入试验回收率;

2A ——加入标准溶液后的水样3次测定值的平均值; 1A ——水样3次测定值的平均值; C ——标准溶液的浓度值。

注:标样加入试验中加标浓度一般为水样测定值的0.5 ~ 3倍,加入标准溶液后的浓度不超过仪器的检测范围上限。 5.1.5 实际水样比对检测

选择三种实际水样,其浓度从低到高基本覆盖仪器的检测范围,分别用仪器和实验室国标方法进行测量,每种水样用仪器测量次数应不少于15次,用实验室国标方法测量次数应不少于3次,在不同浓度区间分别计算每种实际水样测定值与实验室国标方法测定值的平均值之间误差绝对值的平均值或相对误差绝对值得平均值,作为仪器实际水样比对检测误差的判定值,计算方法见公式(12):

n

B x A n

i

i ∑=-=

1

|

|

或 1

100%n

i i x B

A nB

=-=

?∑ (12)

式中:

A ——每种实际水样测定误差绝对值的平均值,或相对误差绝对值的平均值; i x ——第i 次测定值;

B ——水样以实验室国标方法测定所得测定值的平均值。

5.1.6 最小维护周期

仪器以1小时为周期对水样进行连续测量,从测量开始记时,测量过程中不对仪器进行任何形式的人工维护(包括更换试剂、校准仪器、维修仪器等),直到仪器不能保持正常测量状态或连续三次测量结果示值误差均超过10%,同时期间各台仪器的数据有效率应达到90%以上,记录总运行时间(小时)为仪器的最小维护周期。数据有效率为有效数据与所有数据的比率,见公式(13):

%100?=t

e

D D D …………………………………………(13) 式中:

D ——数据有效率; e D ——有效数据; t D ——所有数据。

5.1.7 一致性

在最小维护周期期间,抽取三台仪器获得多组数据C i,j (其中i 是仪器编号,j 是时段编号),按照公式(14)计算第j 时段三台仪器测试数据的相对标准偏差CM j ,再按照公式(15)计算数据的一致性CM 。

,1

100%j i j i CM C t ==

∑ (14)

CM = (15)

式中:

C i,j ——第i 台仪器j 时段数据C i,j ,其中i =1,2,3,j=1,2,3,…,m ; CM j ——第j 时段三台仪器测试数据的相对标准偏差; CM ——一致性; t ——仪器的总台数; m ——仪器的数据组数。

注:当CM j >10%时则视为CM >10%。

6 质量保证和质量控制

质量控制和保证措施按照《水和废水监测分析方法》(第四版)(增补版)中第二篇质量管理和质量保证相关要求来执行。

水质监测解决方案的制定.doc

第三节水质监测方案的制定 一、地面水质监测方案的制订 (一)基础资料的收集 在制订监测方案之前,应尽可能完备地收集欲监测水体及所在区域的有关资料,主要有: (1)水体的水文、气候、地质和地貌资料。如水位、水量、流速及流向的变化;降雨量、蒸发量及历史上的水情;河流的宽度、深度、河床结构及地质状况;湖泊沉积物的特性、间温层分布、等深、线等。 (2)水体沿岸城市分布、工业布局、污染源及其排污情况、城市给排水情况等。 (3)水体沿岸的资源现状和水资源的用途;饮用水源分布和重点水源保护区;水体流域土地功能及近期使用计划等。 (4)历年的水质资料等。 (二)监测断面和采样点的设置 在对调查研究结果和有关资料进行综合分析的基础上,根据监测目的和监测项目,并考虑人力、物力等因素确定监测断面和采样点。 1、监测断面的设置原则 在水域的下列位置应设置监测断面: (1)有大量废水排入河流的主要居民区、工业区的上游和下游。 (2)湖泊、水库、河口的主要入口和出口。 (3)饮用水源区、水资源集中的水域、主要风景游览区、水上娱乐区及重大水力设施所在地等功能区。 (4)较大支流汇合口上游和汇合后与干流充分混合处;入海河流的河口处;受潮汐影响的河段和严重水土流失区。 (5)国际河流出入国境线的出入口处。 (6)应尽可能与水文测量断面重合,并要求交通方便,有明显岸边标志. 2、河流 (1)监测断面的设置原则: ①在确定的调查范围的两端应布设断面, ②调查范围内重点保护水域重点保护对象附近水域应设断面, ③水文特征突然变化处(支流汇入处)水质急剧变化处(污水排入处)重点水工构建物(取水口桥梁涵洞)水文站附近应设断面. 对于江、河水系或某一河段,要求设置三种断面,即对照断面、控制断面和削减断面。 ①对照断面: 为了解流入监测河段前的水体水质状况而设置。这种断面应设在河流进入城市或工业区以前的地方,避开各种废水、污水流入或回流处。一个河段一般只设一个对照断面。有主要支流时可酌情增加。 ②控制断面: 为评价、监测河段两岸污染源对水体水质影响而设置。控制断 面的数目应根据城市的工业布局和排污口分布情况而定。断面的位置与废水排放口的距离应根据主要污染物的迁移转化规律,河水流量和河道水力学特征确定.一般设在排污口下游500-1000m处.

污水水质采样作业指导书

污水采样作业指导书 文件编号:HDJCZ-ZY-02-2016 版本:第一版 编写人: 审核人: 审批人: 实施日期:2017年12月15日 北京市海淀区环境保护局监测站 2017年12月15日 1 目的 适用于环境监测中水质样品的现场采集工作,特制定此作业指导书。 2 编制依据 (依据标准: HJ 493-2009、HJ 586-2010、HJ 776-2015、HJ84-2016、HJ 637-2012、HJ 828-2017 、HJ 503-2009、HJ694-2014、HJ 505-2009、HJ484-2009、GB/T 14204-1993) 3 采样设备 4 采样程序 5 采样的安全防护 1·0 适用范围: 本指导书适用于环境监测中水质样品的现场采集工作 2·0 一般事项: 本指导书执行中华人民共和国环境保护行业标准《地表水和污水监测技术 规范》HJ/T91-2002、国家环保总局标准HJ/T 52-1999《水质河流采样 技术指导》和北京市海淀区环境监测站《质量手册(2016年版)》。3·0 采样设备

水质采样可选用聚乙烯塑料桶、单层采样器、泵式采水器、自动采样器或 自制的其它采样工具和设备。场合适宜时也可以用样品容器手工直接灌 装。 3·1 样品容器 使用硬质玻璃、聚乙烯、石英、聚四氟乙烯制的带磨口盖(或)塞瓶,原 则上有机类监测项目选用玻璃材质,无机类监测项目可用聚乙烯容器。4·0 采样程序 现场采样程序包括以下步骤: 接受采样任务单 采样的准备 现场采样的实施 样品的交接 4·1 接受采样任务单 根据北京市海淀区环境监测站《质量手册》2016年版的规定,采样人员从 站长室接受采样任务单后,详细了解该次采样任务的时间、地点、采样频 次、采样项目等内容。 4·2 采样的准备 根据采样任务单的内容,从样品室领取合适的采样工具、足够的样品容器 和现场固定剂等用品。并逐一清点。 4·3 现场采样的实施 4·3·1样品的采集: 、硫化物、油类、悬浮物、在分时间单元采集样品时,测定pH、CODcr、BOD 5 等项目的样品,不能混合采样,只能单独采样,全部用于测定。4·3·1·1 采样方法: 4·3·1·1·1 不同水体的采样方法 a. 从管道、水渠等落水口处取样:从管道、水渠等落水口处取样,直接用 容器或聚乙烯桶,要注意悬浮物质分取均匀。 b. 从排污管道中取样:在排污管道中采样,由于管道壁的滞留作用,同一

卡尔费休水分测定标准仪操作规程

建立卡尔费休水分测定仪标准操作程序。 2范围 梅特勒ET08型水分测定仪。 3使用原理 卡尔费休水分测定法是利用碘氧化二氧化硫时需要定量的水参加反应的原理来测定样品中的水分含量。 4 操作步骤 4.1 滴定前准备 4.1.1检查分子筛更换日期,超过3天需要更换分子筛。 4.1.2检查滴定系统密封性,检查滴定杯内各组件是否在正确位置。 4.1.3接通电源,按仪器开关键打开主机。 4.1.4按泵排空键排空滴定杯内液体。 4.1.5按泵加液键加入滴定杯约20ml无水甲醇。 4.2 滴定度标定 4.2.1进入操作屏主菜单,点击“滴定剂”图标进入标定模式。 4.2.2在“属性”项下确认滴定液信息,在“浓度测定”项下确认测定参数是否正确。 4.2.3在“浓度测定”项下点击图标,仪器进行预滴定平衡。 4.2.4用10ul微量注射器吸取10ul纯化水(约10mg)放在天平归零。 4.2.5待仪器达到平衡图标变绿,点击图标,再点击填加样品,快速将样品由液体进样口加入滴定杯。 4.2.6将注射器放回天平读取数据,数据输入仪器点√图标,仪器进行滴定。4.2.7 滴定结束,读取滴定结果并记录结果在《卡尔费休试液滴定度标定记录》上。 4.2.8重复“4.2.4”、“4.2.5”与“4.2.6”测试三个结果取平均值并计算RSD。 4.2.9 RSD小于2.0%标定通过,滴定度为三次标定结果平均值。 4.2.10在《卡尔费休试液滴定度标定记录》上登记滴定度并标明有效期,有效期7天。 4.2.11进入仪器主菜单,点击“滴定剂”图标,在“属性”项下修改滴定液浓度为标定浓度。 4.3 样品测试 4.3.1确认卡氏试液滴定度是否过期,如过期按照“4.2”进行重新标定。 4.3.2确认仪器上滴定度信息是否正确。 4.3.3点击主菜单“滴定分析”图标进入测试模式。 4.3.4查看测试参数是否符合要求。 4.3.5点击图标,仪器进行预滴定平衡。 4.3.6待仪器达到平衡图标变绿,选择注射器或是称量船移取一定量液体或固体样品,放在天平上归零。 4.3.7点击图标再点击填加样品,快速将样品由液体进样口或固定进样口加入滴定杯。 4.3.8注射器或称量船放在天平上读取数据,将数据输入仪器点√图标,仪器进行滴定。 4.3.9滴定结束读取滴定结果并记录。

气体检测仪安全操作规程通用版

操作规程编号:YTO-FS-PD313 气体检测仪安全操作规程通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

气体检测仪安全操作规程通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 一、适用范围 1. 本规程规定了XP314、XP702、XP500、ESP210等型号的检漏仪使用的安全要求。 2. 本规程适用于抢修中心一至四队、抽水队、调压维修队、调压维护队各班组。 二、安全操作规程 1. 设备操作人员必须熟知设备的构造、性能、特点,掌握设备的使用方法方准使用。 2. 设备应保持进气口/排气孔的通畅,进口处的过滤网需根据使用环境经常清理、更换。 3. 避免人为的经常用高浓度可燃性气体对设备进行冲击,以防传感器中毒。 4. 禁止设备的进气口/排气口外接压缩气体(气 体>1atm),以免损坏内部气泵、气室。 5. 操作时应用皮套对设备进行保护,以防跌落损坏机壳及内部元件。 6. 设备长时间不使用时,应将电池从设备中取出(充

1水分测定标准操作规程

1目的 规范水分测定的标准操作规程。 2范围 适用于水分测定的操作。 3责任 质量部组织制订、化验室负责实施。 4内容 4.1.依据:中国药典2015年版一部。 4.2.第一法(烘干法):本法适用于不含或少含挥发性成分的药品。 4.2.1 测定法:取供试品1g,精密称定,加水2ml,加热溶解后,置水浴上蒸干,使厚度不超过2mm,打开瓶盖在100~105℃干燥5小时,将瓶盖盖好,移置于干燥中,冷却30分钟,精密称定,再在上述温度干燥1小时,冷却,称重,至连续两次称重的差异不超过5mg为止。根据减失的重量,计算供试品中含水量(%)。 阿胶水分的检测根据第一烘干法进行检测。 4.3.第二法(甲苯法)本法适用于含挥发性成分的药品。 4.3.1 仪器装置:A为500ml的短颈圆底烧瓶;B为水分测定管;C为直形冷凝管,外管长40cm。使用前,全部仪器应清洁,并置烘箱中烘干。 4.3.2 测定法:取供试品适量(约相当于含水量1~4ml),精密称定,置A瓶中,加甲苯约200ml,必要时加入干燥、洁净的玻璃珠数粒,将仪器各部分连接,自冷凝管顶端加入甲苯至充满B管的狭细部分。将A瓶置电热套中或用其他适宜方法缓缓加热, 待甲苯开始沸腾时,调节温度,使每秒钟馏出2滴。待水完全馏出,即测定管刻度部 分的水量不再增加时,将冷凝管内部先用甲苯冲洗,再用饱蘸甲苯的长刷或其他适宜方法,将管壁上附着的甲苯推下,继续蒸馏5分钟,放冷至室温,拆卸装置,如有水

黏附在B管的管壁上,可用蘸甲苯的铜丝推下,放置使水分与甲苯完全分离(可加亚甲蓝粉末少量,使水染成蓝色,以便分离观察)。检读水量,并计算成供试品的含水量(%)。 【附注】用化学纯甲苯直接测定,必要时甲苯可先加水少量,充分振摇后放置,将水层分离弃去,经蒸馏后使用。 4.4.第三法(减压干燥法):本法适用于含有挥发性成分的贵重药品。 4.4.1 减压干燥器:取直径12cm左右的培养皿,加入五氧化二磷干燥剂适量,使铺成0.5~1cm 的厚度,放入直径30cm的减压干燥器中。 4.4.2 测定法:取供试品2~4g,混合均匀,分取约0.5~1g,置已在供试品同样条件下干燥并称重的称量瓶中,精密称定,打开瓶盖,放入上述减压干燥器中,减压至2.67kPa(20mmHg)以下持续半小时,室温放置24小时。在减压干燥器出口连接无水氯化钙干燥管,打开活塞,待内外压一致,关闭活塞,打开干燥器,盖上瓶盖,取出称量瓶迅速精密称定重量,计算供试品中的含水量(%)。 五氧化二磷和无水氯化钙为干燥剂,干燥剂应及时更换。 4.5.第四法(气相色谱法): 4.5.1 色谱条件与系统适用性试验:用直径0.18~0.25mm的二乙烯苯-乙基乙烯苯型高分子多孔小球为载体,柱温为140~150℃,热导检测器检测。注入无水乙醇,照气相色谱标准操作规程测定,应符合下列要求: 4.5.1.1 理论板数按水峰计算应大于1000,理论板数按乙醇峰计算应大于150; 4.5.1.2 水和乙醇两峰的分离度应大于2. 4.5.1.3 用无水乙醇进样5次,水峰面积的相对标准偏差不得大于3.0%。 4.5.2 对照溶液的制备:取纯化水约0.2g,精密称定,置25ml量瓶中,加无水乙醇至 刻度,摇匀,即得。 4.5.3 供试品溶液的制备:取供试品适量(含水量约0.2g),剪碎或研细,精密称定,置具塞的锥形瓶中,精密加入无水乙醇50ml,密塞,混匀,超声处理20分钟,放置 12小时,再超声处理20分钟,密塞放置,待澄清后倾取上清液,即得。 4.5.4 测定法:取无水乙醇、对照溶液及供试品溶液各1~5μl,注入气相色谱仪,测定,即得。 4.5.5 附注:

水质监测方案

水质监测方案 ——嘉陵江凤县段 一.监测目的 环境监测的目的是准确,及时,全面的反映环境质量现状和发展趋势,为环境管理,污染源控制和环境规划提供科学依据。具体归纳为: 1.对污染物作时间和空间上的追踪,掌握污染物得来源,扩散转移,反应,转化,了解污染物对环境质量的影响程度,并在此基础上,对环境污染物作出预测,预报和预防。 2.了解和评价环境质量的过去,现在和将来,掌握其变化规律。 3.收集环境背景数据,积累长期监测资料,为制定和修订各类环境标准,实施总量控制目标管理提供依据。 4.实施准确可靠的污染源的污染监测,为执法部门提供执法依据。 5.在深入广泛开展环境监测的同时,结合环境状况的改变和监测技术的发展,不断改革和更新监测方法和手段,为实现环境保护和可持续发展提供可靠的技术保障。 2).目标与要求 此次是针对嘉陵江凤县段的地标径流状况进行监测,从而了解嘉陵江源头水体状况,观察分析嘉陵江有害物质的分布,对水体质量进行评述并提出一定对策与建议来保护嘉陵江的水体环境,利用我们学过的知识来解决实际的问题。巩固和加深我们对水体监测的基本理论,同时加强布点,采样,分析,测定等步骤与方法,为毕业后尽快适应实际工作打下良好的基础。 二、基础资料的收集 本次监测选取了宝鸡市凤县段嘉陵江进行检测。根据相关的文档和网上搜寻的资料可知,嘉陵江是长江上游的一条支流,发源于秦岭北麓的宝鸡市凤县。水域的有关资料如下: 1. 地形地貌 凤县位于陕西省西南部,东经106°24′54″——107°7′30″,北纬33°34′57″——34°18′21″。因地连陕甘,又处入川孔道,北依秦岭主脊,南接紫柏山,古栈道贯通全境,故有“秦蜀咽喉,汉北锁钥”之称。县境海拔在915—2739米之间,县城所在地双石铺镇海拔960米,西北隅与甘肃省两当县交界处透马驹峰海拔2739米,为境内最高点。紫柏山、代王山等海拔在2500米以上。最低海拔915米,位于温江寺乡西部河谷。嘉陵江为境内最大河流,发源于境内代王山南侧,自东北向西南斜贯,在境内长76公里,在县境西南部形成凤州——双石铺宽谷构造盆地,小峪河、安河等为其主要支流,呈枝状分布。东部中曲河为褒河支流西河上源,南流出境,属汉江水系。 2.气象

水质 采样 样品的保存与管理作业指导书

水质采样、样品的保存与管理作业指导书 (依据标准: HJ493-2009、HJ494-2009、HJ495-2009) 一、适用范围 本指导书适用于环境监测中水质样品的现场采集工作 二、一般事项 本指导书执行中华人民共和国环境保护行业标准《水质采样样品的保存和管理技术规定》、《》和《》。 三、器具 采样设备 水质采样可选用聚乙烯塑料桶、单层采样器、泵式采水器、自动采样器或自制的其它采样工具和设备。场合适宜时也可以用样品容器手工直接灌装。 样品容器 使用硬质玻璃、聚乙烯、石英、聚四氟乙烯制的带磨口盖(或)塞瓶,原则上有机类监测项目选用玻璃材质,无机类监测项目可用聚乙烯容器。 四、采样程序 接受采样任务单 采样人员接受采样任务单后,详细了解该次采样任务的时间、地点、采样频次、采样项目等内容。 采样的准备 根据采样任务单的内容,准备合适的采样工具、足够的样品容器和现场固定剂等用品,并逐一清点。 现场采样的实施 样品的采集 在分时间单元采集样品时,测定pH、CODcr、BOD5、硫化物、油类、悬浮物、等项目的样品,不能混合采样,只能单独采样,全部用于测定。 采样方法 不同水体的采样方法 从管道、水渠等落水口处取样:从管道、水渠等落水口处取样,直接用容器或聚乙烯桶,要注意悬浮物质分取均匀。

从排污管道中取样:在排污管道中采样,由于管道壁的滞留作用,同一断面不同部位流速有差异,污染物分布不均匀,浓度相差颇大。因此当排污管道水深大于1m时,可由表层起向下到1/4深度处采样,作为代表平均浓度的废水样。如果小于或等于1m时,可只取1/2深度的废水样即可。 从容器、贮罐、废水池等处取样:对盛有废液的小型容器,采样前先充分搅匀,然后取样。废液分三层以上,不能搅匀时,可按各层量的多少的比例分层取样。 对污染物分布不均匀的大型贮罐或废水池,根据具体情况,可多点分层采样。可采用自制的负重架,架内固定聚乙烯塑料样品容器,沉入废水中采样。 从地面水如河流、湖泊等水体取样:采集表层水样时,可直接用容器或聚乙烯桶进行;采集表层以下各层面的水样时,可用单层采样器采样。 各种采样器的采样方法 采样器用水样冲洗三次后(不可先加固定剂),正式取样。 用单层采样器采样:采样时在架底固定好铅坠,检查采样瓶是否牢靠,带软绳的瓶塞是否合适;一手抓软绳,一手将水瓶慢慢放入水中;到达预定水层时,提拉软绳,使瓶塞打开,待水灌满后迅速提出水面,倒掉上部一层水,便得到所需的水样。 利用自动采样器采样:当利用自动采样器采样时,应把自动采样器的采水用配管沉到适当的深度(一般在中心部分),配管的尖端附近装上2mm筛孔的耐腐蚀的筛网,以防止杂质进入配管及泵内。由于筛孔容易堵塞以及泵内易黏附油脂物质,所以要定期清洗。 聚乙烯塑料桶采样:到达采样站位正式采样前,用水样冲洗桶体2-3次。当用桶采集的水样为离表层零~几十厘米深处混合水样时,应避免水面漂浮物体进入采样桶。采样时,使桶口迎着水流方向浸入水中,水充满桶后,应迅速提出水面。 特殊项目的采样方法 pH:测定样品的pH值,应使用密封性好的容器。采样器采集样品后,应立即灌装,将样品容器完好充满并且紧密封严,以隔绝空气的作用。 油类:含油的废水样品,应单独定容采样,全部用于测定。测定油类的样品容器禁止预先用水样冲洗。测定水体中包刮油膜的含油量时,要一并采集水面上的油膜样品,同时测量油膜厚度和覆盖面积。测定水面上薄层油膜的油分含量时,可用一个已知面积的不锈钢格架,格架上步好不锈钢丝网,网上固着容易吸收油料介质,(如厚滤纸,硅藻土,和成纤维等),将不锈钢网格放在水面上吸收漂油的油分。

水分测定操作规程

水分测定操作规程 一、目的 了解采用常压干燥法测定水分的方法;熟练和掌握分析天平使用方法。 二、范围 本操作规程适用于本工厂食品的水分测定。 三、职责 本作业规程由本厂化验室人员负责执行。 四、操作程序 1、原理: 食品中的水分一般是指在100℃左右直接干燥的情况下,所失去物质的总量。直接干燥法适用于在95-10 5℃下,不含或含其他挥发性物质甚微的食品。 2、试剂: a、6N盐酸:量取100ml盐酸,加水稀释至200ml。 b、6N氢氧化钠溶液:称取24克氢氧化钠,加水溶解并稀释至100 m1。 c、海砂:取用水洗去泥土的海砂或河砂,先用6N盐酸煮沸0.5小时,用水洗至中性,再用6N氢氧化 钠溶液煮沸0.5小时,用水洗至中性,经105℃干燥备用。 3、操作方法: a、固体样品:取洁净铝制或玻璃制的扁形称量瓶,置于95-105℃干燥箱中,瓶盖斜支于瓶边,加热0. 5/1.0小时取出盖好,置干燥器内冷却0.5小时,称量,并重复干燥至恒重。称取2.00-10.0克切碎或磨细的样品,放入此称量瓶中,样品厚度约为5mm,加盖称量后,置95-105℃干燥箱中,瓶盖斜支于瓶边,干燥2 -4小时后,盖好取出,放入干燥器内冷却0.5小时后称量。然后再放入95-105℃干燥箱中干燥1小时左右,取出,放干燥器内冷却0.5小时后再称量。至前后两次质量差不超过2mg,即为恒重。 b、半固体或液体样品:取洁净的蒸发器,内加10.0克海砂及一根小玻璃棒,置于95-105℃干燥箱中,干燥0.5-1.0小时后取出,放入干燥器内冷却0.5小时后称量,并重复干燥至恒量。然后精密称取5-10克样品,置于蒸发器中,用小玻璃棒搅匀放在沸水浴上蒸干,并随时搅拌,擦去皿底的水滴,置95-105℃干燥箱中干燥4小时后盖好取出,放入干燥器内冷却0.5小时后称量。以下按a自“然后再放入95-105℃干燥箱中干燥1小时左右”起依法操作。 4、计算: X=(m1-m2)/( m1 - m3)×100 X:样品中水分的含量,% m1:称量瓶(或蒸发皿加海砂,玻棒)和样品的质量,g; m2:称量瓶(或蒸发皿加海砂,玻棒)和样品干燥后的质量,g; m3:称量瓶(或蒸发皿加海砂、玻棒)的质量,g。 五、相关记录 《水分测定的原始记录》

水质监测方案的制定-2

水质监测方案的制定 The formulation of water quality monitoring programme 摘要:目前我国水资源紧缺,水污染严重,水质监测是水资源管理与保护的重要基础。水质监测可以帮助解决现存的或潜在的水环境问题,对改善生活环境和生态环境,最终实现人类的可持续发展的活动中起着举足轻重的作用【1】。所以,制定合理的水质监测方案有重要作用。 Abstract:At present our country is short of water resources,and water pollution is serious.The water quality monitoring is the Important basis of the Water resources management and protection. W ater quality monitoring can help to solve the existing and potential Water environment problems, it plays a vital role to improve the living environment and the ecologic environment,to realize the sustainable development activities.So, it is important to formulate a reasonable water quality monitoring programme. 关键词:水质监测目的,调查研究,测定项目,监测网点,采样时间和频率,采样方法,分析技术,质量保证。 Ke y words: purpose of water quality monitoring, investigation, M easuring items, M onitoring network, The sampling time and frequency, Sampling method, Analysis technology, quality assurance 引言:水质监测是监视和测定水体中污染物的种类、各类污染物的浓度及变化趋势,评价水质状况的过程。监测范围十分广泛,包括未被污染和已受污染的天然水(江、河、湖、海和地下水)及各种各样的工业排水等。主要监测项目可分为两大类:一类是反映水质状况的综合指标,如温度、色度、浊度、Ph、电导率、悬浮物、溶解氧、化学需氧量和生物需氧量等;另一类是一些有毒物质,如酚、氰、砷、铅、铬、镉、汞和有机农药等。为客观的评价江河和海洋水质的状况,除上述监测项目外,有时需进行流速和流量的测定。要对上述要素做到完善的测定就需要制定一个合理的监测方案。 监测方案是完成一项监测任务的程序和技术方法的总体设计,制定时须首先明确监测目的,然后在调查研究的基础上确定监测项目,布设监测网,合理安排采样频率和采样时间,选定采样方法和分析测定和技术,提出检测报告要求,制定质量控制和保证措施及实施计划等【2】。 内容: 1、水质监测的目的: 地表水及地下水:经常性监测。 生产和生活过程:监视性监测。 事故监测:应急监测。 为环境管理及科学研究提供数据和资料。 2、进行调查研究: 收集预测水体及其周围的有关资料,例如水体的水体的水文资料,附近城市布局,工业布局以及污染源的排污情况,历年该处水质监测资料等。 3、确定测定项目: 测定项目要依据水体被污染的情况,水体功能和废(污)税种所含污染物的量以及经济条件等因素确定。一般地表水监测项目有基本监测项目,集中式

气体检测仪操作规程

便携式四合一气体检测仪操作规程 1 范围: 本规程规定了设备启动前,对罐内气体实施检测,四合一气体检测仪的检查准备,检测操作步骤及安全注意事项。 本规程适用于机械清洗项目对各类储油罐清洗前的气体检测操作。 2规范性引用文件 SY6503-2000 可燃气体检测报警器使用规范 3 四合一气体检测仪检测前的检查准备 3.1检查电池电量是否充足(3.3V以上),不充足及时充电; 3.2检查进气口气滤有无杂物堵住,堵住需清理干净或更换; 4 操作步骤: 4.1开机操作: 4.1.1按[MODE]键并保持1秒,LCD显示“on”,LED亮,峰鸣器响一声,仪器开机; 4.1.2LCD显示版本号,同时进行预热和自检。 4.1.3预热和自检完成致10秒倒计时结束,仪器进入检测模式,确认仪器运行正常。 4.1.4确认确实在抽新鲜空气,确认氧气指示计的指示值确实为20.9%。 4.1.5将取样管端部插入测试点中,待测试值变化稳定后,读数并记

录。 4.1.6从测试点中拿出取样管,置于空气中,待LED显示值回复到空气中状态后,再进行下一测试点测试。 4.2关机操作: 4.2.1按住按键不放,LCD显示5秒倒计时,倒计时结束后LCD显示“off”,随后仪器无显示,仪器关机。 5注意事项: 5.1仪器更换电池或简单维修时应在安全场所进行。 5.2传感器和仪器要注意防水和杂质。 5.3仪器长期不工作时,应关机,置于干燥、无尘、符合储存温度的环境中。 5.4调整好的仪器不要随便打开盖。

硫化氢气体检测报警仪操作规程 1 范围: 本标准规定了设备启动前,对罐内气体实施检测,硫化氢检测仪的检查准备,检测操作步骤及安全注意事项。 本标准适用于机械清洗项目对各类储油罐清洗前的气体检测操作。 2规范性引用文件 《COWS施工手册》 3 硫化氢检测仪检测前的检查准备 3.1检查电池电量是否充足,不充足更换; 3.2检查进气口不被杂物堵住,堵住清理干净; 4 操作步骤: 4.1开机操作 4.1.1确认电池已经装入仪器,按住按键3秒,LCD显示“on”,红色LED亮,蜂鸣器响一声,振动器振动,仪器开机。 4.1.2LCD显示版本号,同时进行预热和自检。 4.1.310秒倒计时预热和自检完成后,仪器进入检测模式,显示实时读数。 4.2关机操作 按住按键不放,LCD显示5秒倒计时,倒计时结束后LCD显示“off”,随后仪器无显示,仪器关机。 4.3检测模式说明:

最新分析实验室用水检测作业指导书资料

1.目的 为了规范实验室用水,保证分析测定结果的准确可靠,确保实验数据的科学性和公证性,特制订此管理规定。 2.适用范围 本规定适用于检测中心分析实验用水的管理。 3. 责任 3.1 试剂管理员负责实验室用水的制备、检查分析、参与检验和贮存管理。 3.2 技术员在使用纯水的过程中应保证器皿或容器等的清洁,避免水的污染。 4. 内容 4.1 实验室用水的要求 4.1.1 外观:实验室用水目视观察应为无色透明的液体; 4.1.2 实验室用水分类、用途和检验标准: 表1 实验室用水的技术指标与检验频率

4.2 实验室超纯水的制备及检验检测(参照GB/T6682“一级水”检测) 4.2.1 按照超纯水机的说明书要求制备超纯水; 4.2.2电导率检验:Arium 611超纯水机具有电阻率的“在线”监测功能,并按校准周期要求进行校准。4.2.3吸光度检验:将水样分别注入1cm和2cm的石英比色皿中,在紫外分光光度计上,于254nm处,以1cm比色皿中水为参比,测定2cm比色皿中水的吸光度。 4.2.4可溶性硅检验:量取520mL超纯水,注入铂皿中,在防尘条件下,用亚沸蒸发至约20mL,停止加热,冷却至室温,加1.0mL钼酸铵溶液(50g/L),摇匀,放置5min后,加1.0mL草酸溶液(50g/L),摇匀,放置1min后,加1.0mL对甲氨基酚硫酸盐溶液(2g/L),摇匀。移入比色管中,稀释至25mL,摇匀,于60℃水浴中保温10min。溶液所呈蓝色不得深于标准比色溶液。 标准比色溶液的制备是取0.50mL二氧化硅标准溶液(10mg/L),用水样稀释至20mL后,与同体积试液同时同样处理。 4.3实验室纯化水的检验检测(按《中国药典》二部“纯化水”项下检测) 4.3.1 酸碱度:取本品10ml,加甲基红指示液2滴,不得显红色;另取10ml,加溴麝香草酚蓝指示液5滴,不得显蓝色。 4.3.2硝酸盐:取本品5ml,置试管中,于冰浴中冷却,加10%氯化钾溶液0.4ml与0.1%二苯胺硫酸溶液0.1ml,摇匀,缓缓滴加硫酸5ml,摇匀,将试管与50℃水浴中放置15分钟,溶液产生的蓝色与标准硝酸盐溶液(取硝酸钾0.163g,加水溶解并稀释至100ml,再精密量取1ml,加水稀释成100ml,摇匀,即得(每1ml相当于1μgNO3))0.3ml,加无硝酸盐的水4.7ml,用同一方法处理后的颜色比较,不得更深(0.000006%)。 4.3.3亚硝酸盐:取本品10ml,置纳氏管中,加对氨基苯磺酰胺的稀盐酸溶液(1→100)1ml与盐酸萘乙二胺溶液(1→100)1ml,产生的粉红色,与标准亚硝酸盐溶液(取亚硝酸钠0.750g(按干燥品计算),加水溶解,稀释至100ml,摇匀,精密量取1ml,加水稀释成100ml,摇匀,再精密量取1ml,加水稀释成50ml,摇匀即得(每1ml相当于1μgNO2))0.2ml,加无亚硝酸盐的水9.8ml,用同一方法处理后的颜色比较,不得更深(0.000002%)。

环境监测方案制定

环境监测方案制定

污染源调查: 水污染源 污水排放量汇总 固体废物污染源 (1) 生活垃圾 经调查,拟建项目区周边地区的生活垃圾固体废物主要来自项目规划范围内及周边居民产生的生活垃圾。 (2)固体废弃物:主要是少量农户生活垃圾和少量农作废料,对环境影响不大 空气环境:本项目的南边是东京大道,道路扬尘和汽车尾气是主要大气污染源。但是公路两侧设有50~100米的绿化缓冲带, 使其对周围环境影响不大。 校园空气污染物的排放源、数量、燃料种类和污染物名称及排放方式等,为空气环境监测项目的选择提供依据。 表1 校园空气污染源情况调查

大气污染物排放总量(单位:t/a ) 大气污染物烟尘SO2 NO x CO THC 排放量(t/a) 声环境:东京大道及西边金明大道的交通噪声是评价区目前最主要的噪声源,对局部地区有一定的影响。 电磁辐射:规划用地范围内有一架空高压线通过,产生一定的电磁辐射污染。

1、地表水环境现状监测 (1)监测断面布设 根据该项目水体的水文、气候、地质和地貌资料。如水位、水量、流速及流向的变化,河流的宽度、深度以及水体沿岸的资源现状和水资源的用途,饮用水源分布和重点水源保护区等来确定监测断面及数目。 因为水面宽≤50米则设一条(中泓垂线)而且断面上垂线的布设应避开岸边污染带。水深≤5米则设一点(水面下0.5米处) 。 依据该项目的水污染特性,并结合项目所在区域地表水的分布状况,在评价区内共设置6个监测断面。 (2)监测项目

流量、流速、水温(℃)、pH值、石油类、氨氮、总氮、BOD5、COD Cr、溶解氧、高锰酸盐指数、总磷、粪大肠菌群、铜、铅、锌、六价铬。 (2)采样时间及频率 监测时期为一期(枯水期),连续采样三天. (3)分析方法 采样和监测方法根据《地表水和污水监测技术规范》(HJ/T 91-2002)和《地表水环境质量监测实用分析方法》进行。 (4)地表水环境质量现状评价 根据检测结果表明六个断面均有部分指标超标,主要超标指标为BOD5、CODcr、TP,另外,北沙河与京包线交界处阴离子表面活性剂也出现超标,从超标的水质指标来看,造成东沙河和北沙河水质超标的主要原因应来自生活污染源,应加强沿河的生活污水治理。 2、大气环境质量监测方案 (1)空气环境分析与监测因子的筛选 根据国家环境空气质量标准和校园及其周边的大气污染物排放 情况来筛选监测项目;我校无特征污染物排放,结合大气污染源调查结果,可选TSP、PM10、SO2、NO2、CO等作为大气环境监测项目。 (2)采样点的布设

H2S气体检测仪使用操作规程

H2S气体检测仪使用操作规程 1、H2S气体检测仪设置 ⑴打开仪表开关的同时按住翻页按钮。 ⑵翻页和复位按钮修改口令使出现需要的口令,然后按下开关按钮确定口令进入设置功能模块。 2、低报警设置 ⑴用翻页和复位按钮设置低报警值(10ppm)。 ⑵按下开关按钮接受设置值并进入高报警页。 3、高报警设置 ⑴用翻页和复位按钮设置低报警值(20ppm)。 ⑵按下开关按钮接受设置值并进入STEL/TWA使能页。 4、H2S气体检测仪使用步骤 ⑴校准检查 a.新鲜空气中打开仪表。 b.确认读数指示当前没有气体存在。 c.校验导管一端接检验气瓶、一端接仪表测试口。 d.打开标定气瓶,校验显示屏上的读数是否在校准气筒的限制范围之内。假如校验检测气体浓度超过仪表报警点,必须有一个报警指示显示。 ⑵H2S测量

a.检测仪在检测界面能显示1%的气体浓度。仪表保持在这页,直到其他页面被选或仪表关闭。 b.假如气体浓度超过报警设置点,发出报警声,报警灯闪烁,报警类型和报警图标交换闪烁。 c.低报警:只要气体浓度降低到不报警浓度点以下仪表自动复位,按下复位按钮可保持5秒的消音,气体浓度一直在低报警以上时仪表一直报警。 d.高报警:在气体浓度降到高报警点以下不会复位,按下复位按钮可保持5秒的消音,当气体浓度一直保持在高报警点以上,报警继续。 三、干粉灭火器使用操作规程 1、穿戴好劳动保护用品,准备好工具用具。 2、检查出粉管是否畅通,是否老化,检查灭火机重量或压力是否符合铭牌规定标准。 3、灭火器必须置于上风头使用,喷管对准火源根部。 4、发现着火首先切断油、气、电源,放掉容器内压力,隔离或搬掉易燃物。 5、操作完毕,将工具用具擦洗干净收回。

水质采样作业指导书

水质采样作业指导书 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

水质采样作业指导一、适用范围 本指导书适用于本公司环境检测水质采样样品的现场采集工作 二、依据标准 1.《地表水和污水监测技术规范》(HJ/T 91-2002) 2.《水质河流采样技术指导》(HJ/T 52-1999) 3.《地下水环境监测技术规范》(HJ/T 164-2004) 三、器具 1.采样设备 水质采样可选用聚乙烯塑料桶、单层采样器、泵式采样器、自动采样器或自制的其他采样工具和设备。场合适宜时也可以用样品容器手工直接灌装。 2.样品容器 四、采样程序 现场采样程序包括以下步骤 ·接受采样任务单 ·采样准备 ·现场采样实施 ·样品交接 1、接受采样任务单 根据山东嘉源检测技术有限公司《程序文件》JYJC/A-2014(第一版)的规定,中心化验室从营销管理部接受采样任务单同时详细了解该次采样任务的时间、地点、项目、频次等内容。

2、采样准备 根据采样任务单的内容,中心化验室安排采样人员(须两人以上)准备合适的采样工具、足够的样品容器和现场固定剂等用品,并逐一清点。携带相应的水质采样原始记录表格,并根据现场情况详细填写表格内容。 3、现场采样的实施 、废水采样方法 3.1.1 测定pH、COD、BOD5、DO、硫化物、油类、有机物、余氯、粪大肠菌群、悬浮物、放射性等项目的样品,不能混合,只能单独采样。 对不同的监测项目应选用的容器材质、加入的保存剂及其用量与保存期、应采集的水样体积和容器的洗涤方法等见表 1—1。 实际的采样位置应在采样断面的中心,当水深大于1M时,应在表层下1/4深度处采样;水深小于等于1M时,在水深1/2处采样。 一类污染物(总共、烷基汞、总镉、总铬、六价铬、总砷、总铅、总镍、苯并芘、总铍、总银、总α放射性、总β放射性)一律在车间或车间处理设施排放口采样。 二类污染物(ph值、悬浮物、五日生化需氧量、化学需氧量、石油类、动植物油、挥发酚、总氰化物、硫化物、氨氮、氟化物、磷酸盐、甲醛、苯胺类、硝基苯类、阴离子表面活性剂、总铜、总锌、总锰、彩色显影剂、显影剂及氧化物总量、元素磷、有机磷农药、粪大肠菌群、总余氯)在排污单位排放口采样。 3.1.2、注意事项 a.用样品容器直接采样时,必须用水样冲洗三次后再行采样。但当水面有浮油时,采油的容器禁止预先用水样冲洗,应单独定容采样,全部用于测定。

水分检测作业指导书

水分检测作业指导书 一、原理 利用食品中水分的物理性质在101.3 kPa (一个大气压),温度101 ℃~105 ℃下采用挥发方法测定样品中干燥减失的重量,包括吸湿水、部分结晶水和该条件下能挥发的物质,再通过干燥前后的称量数值计算出水分的含量。 二、操作流程 海沙烘干→称样→干燥→恒重→计算 三、仪器与设备 1. 仪器 铝制称量瓶、天平(万分之一)、玻璃棒、电热鼓风干燥箱 2. 试剂 海沙 四、操作步骤 取洁净的称量瓶,内加10g 海沙及一根小玻璃棒,置于101 ℃~105 ℃干燥箱中,干燥一小时后取出,放入干燥器内冷却0.5h 后称量,并重复干燥至恒重。然后称取5g ~10g 试样(精确至0.0001),搅拌均匀,置于101 ℃~105 ℃干燥箱中干燥4h 后盖好取出,放入干燥器内冷却0.5h 后称量。然后再放入干燥箱中干燥1h 左右,取出,放入干燥器内冷却0.5h 后再称量。并重复以上操作至前后两次质量差不超过2mg ,即为恒重。 五、计算 X=3 121m m m m --×100 X ------------试样中水分的含量,单位为克每百克。 m1---------称量瓶(加海沙、玻璃棒)和试样的质量,单位为克(g ) m2---------称量瓶(加海沙、玻璃棒)和试样干燥后的质量,单位为克(g ) m3---------称量瓶(加海沙、玻璃棒)的质量,单位为克(g ) 六、精密度 在重复性条件下获得的两次独立测定结果的绝对差值不得超过算数平均值的5%。 七、依据标准 本指导书按照《GB5009.3-2016食品安全国家标准 食品中水分的测定》中的“直接干燥法”编写。

水质采样作业指导书

水貭现场采样作业指导书。 (依据标准: HJ/T92-2002、HJ/T91-2002、HJ/T52-1999) 1·适用范围: 本指导书适用于环境监测中水质样品的现场采集工作2·一般事项: 本指导书执行中华人民共和国环境保护行业标准《地表水和污水监测技术规范》HJ/T91-2002、国家环保总局标 准HJ/T 52-1999《水质河流采样技术指导》。 3·器具 a . 采样设备 水质采样可选用聚乙烯塑料桶、单层采样器、泵式采水器、自动采样器或自制的其它采样工具和设备。场合适 宜时也可以用样品容器手工直接灌装。 b . 样品容器 使用硬质玻璃、聚乙烯、石英、聚四氟乙烯制的带磨口盖 (或)塞瓶,原则上有机类监测项目选用玻璃材质,无机 类监测项目可用聚乙烯容器。 4. 采样程序 现场采样程序包括以下步骤: ● 接受采样任务单 ● 采样的准备 ● 现场采样的实施

样品的交接 a 接受采样任务单 根据贵州博联检测公司《质量手册》2013年版的规定, 采样人员从接受采样任务单后,详细了解该次采样任务的 时间、地点、采样频次、采样项目等内容。 b. 采样的准备 根据采样任务单的内容,从样品室领取合适的采样工具、 足够的样品容器和现场固定剂等用品。并逐一清点。 c. 现场采样的实施 d .样品的采集: 在分时间单元采集样品时,测定pH、CODcr、BOD5、硫化物、油类、悬浮物、等项目的样品,不能混合采样,只能单独 采样,全部用于测定。 5’采样方法: 不同水体的采样方法 a. 从管道、水渠等落水口处取样:从管道、水渠等落水 口处取样,直接用容器或聚乙烯桶,要注意悬浮物质 分取均匀。 b. 从排污管道中取样:在排污管道中采样,由于管道壁 的滞留作用,同一断面不同部位流速有差异,污染物 分布不均匀,浓度相差颇大。因此当排污管道水深大 于1m时,可由表层起向下到1/4深度处采样,作为

水分测定作业指导书

制订人:认可人:审批人: 日期:2012 年12 月15 日日期:年月日日期:年月日

一目的: 为使进厂原材料、出厂成品水份检测有所依循,特制订本标准。 二范围: 适用于谷物及其制品中的水份检验。 三作业标准: 3.1 原理: 食品中的水分一般是指在100℃左右直接干燥的情况下,所失去物质的总量 直接干燥法适用于在95℃~105℃下,不含或含其他挥发性物质甚微的食品 3.2 仪器 3.2.1 扁形铝制或玻璃制称量瓶:内径60㎜~70㎜,高35㎜以下 3.2.2 玻璃干燥器 3.2.3 分析天平 3.2.4 电热恒温干燥箱 3.3 方法: 3.3.1固体样的测定: a) 取洁净铝制或玻璃制的扁形称量瓶,置于95~105℃干燥箱中,瓶盖斜支于瓶边, 加热0.5-1h,取出盖好,置干燥器内冷却0.5h,并重复干燥至恒重 器内,冷至室温称重。 b) 称取2.00~10.00g切碎或磨细的试样,放入此称量瓶中,试样厚度约为5㎜ c) 加盖,精密称量后,置于95~105℃干燥箱中,瓶盖斜支于瓶边,干燥2-4h后, 盖好取出,放入干燥器内冷却0.5h后称量。 d) 然后再放入95~105℃干燥箱中干燥1h左右,取出,放干燥器内冷却0.5h后在 称量。至前后两次质量差不超过2mg,即为恒重 3.3.2半固体样的测定: a)取洁净的蒸发皿内加10g海砂和一根小玻璃棒,置于95~105℃干燥箱中,,干燥 0.5-1h后取出,放入干燥器内冷却0.5h后称量,并重复至恒量 b)精密称取5~10g试样,置于蒸发皿中,用小玻璃棒搅匀放在沸水浴上蒸干,并随 时搅拌

c) 擦去皿底的水滴,置95~105℃干燥箱中干燥4h 后盖好取出,放入干燥器内冷却0.5h 后称量 d) 然后再放入95~105℃干燥箱中干燥1h 左右,取出,放干燥器内冷却0.5h 后在称量。至前后两次质量差不超过2mg ,即为恒重 3.4 结果计算: 试样中的水分的含量按下式进行计算 X= ×100% 式中: X ——试样中水分的含量 m 1—— 称量瓶(或蒸发皿加海沙、玻棒)和试样的质量,单位为克(g ) m 2——称量瓶(或蒸发皿加海沙、玻棒)和试样干燥的质量,单位为克(g ) m 3——称量瓶(或蒸发皿加海沙、玻棒)质量,单位为克(g ) 计算结果保留三位有效数字 3.5精密度 在重复性条件下获得的两次独立测定结果的绝对差值不得超过算术平均值的5% m 1-m 2 m 1-m 3

企业如何编制自行监测方案

企业如何编制自行监测方案从2013年7月国家环境保护部发布《国家重点监控企业自行监测及信息公开办法》以来,要求国家重点监控企业开展自行监测及信息公开。按照国务院《控制污染物排放许可制实施方案》(国办发【2016】81号)及生态资源部《关于全国重点污染源监测数据管理系统联网情况的通报》(环办监测函【2017】2032号)要求,对已核发排污许可证的企业应依法依归开展自行监测及信息公开。需要编制自行监测方案。如何编制一份高质量的企业自 )、《排 (3)立足当前,适度前瞻。为了提高可行性,设计监测方案时应立足于当前管理需求和监测现状。 三、自行监测方案内容 自行监测方案内容应包括企业基本情况、监测点位、监测频次、监测指标、执行排放标准及其限值、监测方法和仪器、监测质量控制、监测点位示意图、监测结果公开时限等。

四、监测方案制定 监测内容中应该包含污染物排放监测、周边环境质量影响监测、关键工艺参数监测。 (1)污染物排放监测包含废气污染物(有组织或无组织)、废水污染物(直接排入环境或排入公共污水处理系统)及噪声污染等。对以上污染物排放监测点位、监测指标、监测频次、监测技术、采样方法、监测分析方法、监测频次分别制定。 **公司环境保护自行监测方案 按照环境保护部《排污许可管理办法(试行)》(部令第48号)要求,**公司对厂区现有所有排口和排放所有污染物开展自行监测,并制定自行监测方案。 一、污染源及污染物

公司共设置*个废水排放口、*个雨水排放口、*个废气排放口,各排放口污染源及污染物见下表。 表1 污染源及污染物 二、监测内容及监测方法 污染物采样方法、监测频次及监测方法见下表,其监测点位及示意图见图1【在厂区平面图上画出排气筒、废水排放口监测位置,厂界废气无组织监测点位根据实际风向确定】。

相关文档
最新文档