高等数学极限习题集500道汇总

高等数学极限习题集500道汇总
高等数学极限习题集500道汇总

求证:存在,且,=时,设当βα

=β+βα+αβ

α

β=βαα→→→→000

lim lim lim )()(1

1110x x x x x x o o x x

答( )

.. . . .是等价无穷小,则与时,若当2

32123211cos )(1)

1()(03

1

2--=

-=β-+=α→D C B A a x x ax x x

( )

答 阶的是时,下述无穷小中最高当x

x D x C x B x A x sin 11cos 1022----→

[]之值.

求)12ln()12ln(lim --+∞

→n n n n .求极限)2sin()1(lim 2+π-+∞

→n n n n .求极限)1

1ln()21(lim n

n n ++∞

→ _____________sin 1lim 32

02

=--→的值x

x x e x x

及求证:,,设有数列n n n n n n n n

n n a a a y a a a a b b a a a ∞

→+∞

→∞

→++-=+=≠==lim )(lim lim 2)( 11221

及,求记:,

 .,设n n n n n

n n n n n n n x y x x y x x x x x a b b x a x ∞→∞→++++-=

+=>>==lim lim 112)0(1

1

1

221

求极限之值.lim ()cos sin x x x x

x

→+-0212

设,;且试证明:.

lim ()lim ()lim ()

()

x x x x x x v x B

u x A A v x B

u x A →→→=>==0

[] 答( )

. . . .2

ln 01)1ln(lim 2)1(1

1

D C B A x x x ∞=

+-→

答( )

. . . .2

1)

21(lim 2sin 0

D e C e B A x x

x x =

+→

[]的结果.

之值,并讨论及求:设1

)(1)(lim )(lim 11)(lim )( .1

sin

1)(0012----=+=→→→x u x u f x u u u f u u f x

x x u x x u

_____________6

9lim 223的值等于---→x x x x

.不存在 . . .D C B A e e e e x

x x

x x 123

1

234lim =++--∞→

答:( )

lim ()()()

....x x x x A B C D →∞-+-=-?236111

23

35853

不存在

答:( )

____________)61()31()21(lim 15220

10=+++∞→x x x x ____________lim 0的值等于x x x e e x -→- .求极限123lim 2331+--+-→x x x x x x 求之值.lim ()

x x x

x x →+--+03

416125

已知:,问?为什么?

lim ()lim ()()lim ()x x x x x x u x u x v x A v x →→→=∞=≠=0

关于极限结论是:

不存在 答( )

lim

x x

e

A B C D →+0

1

535305

4

答( ) ,则极限式成立的是

,设 )(lim .)()(lim .)

()(lim .0

)

()

(lim

.)(lim )(lim )(0

000

=∞=∞==∞==→→→→→→x g x x x x x x x x x x x x x f D x g x f C x f x g B x g x f A x g A x f

是不是无穷大量.时,,问当)(cos )(x f x x e x f x +∞→=

答( ) 不存在 2

.2.

..0.1

arctan

tan lim 0

π-π=?→D C B A x

x x

答( ) 2

.

1..0.)arctan(lim 2π

∞=∞→D C B A x

x x

答( )

不存在

.2.2.2.3

1

2lim

2

D C B A x x x ±-=

++∞

___________)0(23)(1=-+=

f e

x f x

,则设

答( ) 不存在 2

.

...0.1cot

arc lim 0

π

π=→D C B A x

x

lim

cos ln ....x a x

x

a A B C D →--==

0100123,则其中

答( )π

____________cos 13lim 20的值等于x

x

e e x x x ----→

lim

(cos )

.....x x x

A B C D →-=

-0212220

不存在 答:(

设,其中、为常数.

问:、各取何值时,;

、各取何值时,;

、各取何值时,.

f x px qx x p q p q f x p q f x p q f x x x x ()()lim ()()lim ()()lim ()=++-===→∞

→∞

→25

5

5

112031

求极限.lim ()()()()x n n n n x x x x →∞+--++-2222222211 求极限.lim ()()x x x →∞++322323

32

[]

之值.

、、试确定已知C B A x x c x B A x x 0)1()1()1(3lim

2

2

41

=--+-+-+→

之值.,,,试确定常数.,,满足已知d c b a x f x f x x d

cx bx ax x f x x 0)(lim )2(1)(lim )1(2

)(1223==-++++=→∞→ 之值.,,试确定已知b a x x b x b a x 43

13)(lim

1

=+-+++→

为什么?

"上述说法是否正确?,则"若∞=α=α→→)

(1

lim

0)(lim 0

x x x x x x

当时,是无穷大,且,

证明:当时,也为无穷大.

x x f x g x A x x f x g x x x →=→+→000

()lim ()()()

.用无穷大定义证明:+∞=-+→11

2lim

1

x x x .用无穷大定义证明:-∞=+

→x x ln lim 0 +∞=-π

→x x tan lim 0

2

用无穷大定义证明: .用无穷大定义证明:+∞=-+→1

1

lim

1x x

"当时,是无穷小"是""的:

充分但非必要条件必要但非充分条件充分必要条件

既非充分条件,亦非必要条件 答( )

x x f x A f x A A B C D x x →-=→00

()lim ()()()()()

若,,但.

证明:的充分必要条件是

lim ()lim ()()lim

()

()

lim ()()

()x x x x x x x x f x g x g x f x g x b f x b g x g x →→→→==≠=-?=0

000000

其中,:用数列极限的定义证明)10(0lim <<=∞

→a a n

n .

:用数列极限的定义证明)10(1lim 1

<<=∞

→a a n

n .:用数列极限的定义证明2152)2(lim 2=++∞→n n n n ___________)

1ln(2)cos(sin 1lim 2

0的值等于x x x +-→

[]之值.

求极限3

sin 0

1

)

(cos lim

x x x

x -→

设,试证明:对任意给定的,必存在正数,使得对适

含不等式;的一切

、,都有成立。lim ()()()x x f x A x x x x x x f x f x →=><-<<-<-<0

00010201221εδδδε

.,试用极限定义证明:已知:A x f A x f x x x x =>=→→)(lim 0)(lim 00

{}{}{}是否也必发散?同发散,试问数列与若数列n n n n y x y x + 求的表达式f x x x x n n n ()lim =-+→∞+2121

设 其中、为常数,,

求的表达式;

确定,之值,使,.f x x x a bx x a b a f x a b f x f f x f n n n x x ()lim sin cos()()()()()lim ()()lim ()()=+++<<==-→∞-→→-2121121

021211ππ

.求极限应用等阶无穷小性质,x x x x )1arctan()1arctan(lim 0--+→ 求极限.lim x x x x x

→+--+0215132 求极限.lim ()()x x x x →--+012131416 求极限 为自然数..lim ()()x n ax x

n a →+-≠01110 求极限.lim

()x x x x →-+--31

35223

设当时,与是等价无穷小,

且,,证明:.x x x x f x x a f x x g x A f x x g x A x x x x x x →=≠-=-=→→→00001αβααβ()()lim ()()lim ()()()

lim ()()()

设当时,,是无穷小

且证明:.x x x x x x e e x x x x →-≠--00

αβαβαβαβ()()()()~()()()()

若当时,与是等价无穷小,是比高阶的无穷小.

则当时,与是

否也是等价无穷小?为什么?

x x x x x x x x x x x x →→--0101ααβααβαβ()()()()()()()()

[][]

设当时,、是无穷小,

且证明: 与是等价无穷小.

x x x x x x x x x x →-≠+-+-0011αβαβαβαβ()()()().

ln ()ln ()()()

设当时,是比高阶的无穷小.证明:当时,与是等价无穷小.x x f x g x x x f x g x g x →→+00()()()()()

吗?为什么?也是等价无穷小

与无穷小。试判定:

等价

是同阶无穷小,但不是与是等价无穷小,

与时,若)()()()()()()()(110x x x x x x x x x x β-αβ-αβααα→

lim sin ()()()()x x x

A B C D →∞=∞10 不存在但不是无穷大 答( )

lim sin ()()()()x x x

A B C D →∞===∞110之值 不存在但不是无穷大 答( ) 已知 其中、、、是非常数则它们之间的关系为

答( )

lim tan (cos )ln()()()

()()()()x x A x B x C x D e A B C D A B D B B D C A C C A C

→-+--+-===-==-011211022222 )1()1)(1)(1(lim 1242n

x x x x x n ++++<∞→Λ计算极限设 设及存在,试证明:.lim lim n n n n n x x x a a →∞→∞+==≤011 求lim(sin cos )x x x x →∞+2

212 计算极限 lim ()()x a x a x a x a a →-++-≠322210 计算极限lim x x x x x x →-+---23223322 计算极限lim ln()cos x x x x

e e x x →-?+021 ??????∞→→)2cos 2cos 2(cos lim lim 20n n x x x

x Λ计算极限

{}.,试证明及满足设有数列0lim )10( lim

01

=<≤=>∞→+∞

→n n n

n n n n a r r a a a a

{},试按极限定义证明:,且满足设有数列)10( lim 0<≤=>∞

→r r a a a n n n n n .0lim =∞

→n n a

.语言证明,试用 设A x f A A x f x x x x =δ-ε>=→→)(lim

"")0()(lim 0

试问:当时,,是不是无穷小?x x x x

→=

01

2α()sin

的某去心邻域,使得

试证明:必存在,且,设0,)(lim )(lim 0

x B A B x g A x f x x x x >==→→.在该邻域为)()(x g x f >

设,试研究极限f x x x

f x x ()sin lim ()=→110 计算极限.lim ln()arcsin()x x x x →+---232312344

[]

 答( )

大无界变量,但不是无穷小有界变量,但不是无穷无穷小量

无穷大量是时,则当,

设数列的通项为)()()()()1(12

D C B A x n n

n n x n n n ∞→--+=

以下极限式正确的是

答( )

()lim()()lim()()lim()()lim()A x e B x

e C x e D x

x x x x x x x x →+→+-→∞-→∞-+=-=-=+=001

11111

1111

设, ,,,求.x x x n x n n n n 1110612==+=+→∞

()lim Λ

a

b A a D a A b a C b A b a B A b a A A b a A

x f x b x x e x f x ax ======??

?

??=≠-=→可取任意实数且可取任意实数,,可取任意实数,,可取任意实数,,之间的关系为,,则,且, 当,当设)()()(1)()(lim 001

)(0

答:( )

a

A A b a D A

b a a C b A b a B a A b a A A b a A x f x b x x

ax d x f x ln )()()()()(lim 0 0)

1ln()(0

======??

?

??=≠+=→仅取可取任意实数,而,可取任意实数且可取任意实数,,可取任意实数,,之间的关系为,,则,,且当 , ,当设

答:(

答( )

可取任意实数可取任意实数可取任意实数,可取任意实数,间正确的关系是,,则,且当, ,当设2

)(2)(2)(2)()(lim 0 0

cos 1)(2

2

2

a A

b a D a

A b a C a A b a

B a

A b a A A b a A x f x b x x ax x f x =

==

==

==??

?

??=≠-=→

[][]设有,,且在的某去心邻域

内复合函数有意义。试判定是否

成立。若判定成立请给出证明;若判定不成立,请举出例子,并指明应如何加强已知条件可使极限式成立。

lim ()lim ()()lim ()x x u a

x x x a f A x f x f x A →→→===0

0????

设,当, 当 适合则以下结果正确的是仅当,,仅当,,可取任意实数,,可取任意实数,,都可能取任意实数

答( )

f x x x b

x x a x f x A

A a b A

B a A b

C b A a

D a b A x ()lim ()()()()()=++-≠=???

??===-====-=→21

21114344434

设 当 当 且,则,,,可取任意实数,可取任意实数

答( )

f x bx x x a x f x A b a B b a C b a D b a x ()lim ()()()()()=+-≠=???

??=======→11

0033363

360

值。,试求时,且当,设a x x x e e x ax x x )(~)(0)(1)

1()(cos 3

12βα→-=β-+=α 求.lim x x x

x x

e e e e →∞---+234

.,则设____________8)2(lim ==-+∞→a a

x a x x x .____________)31(lim sin 2

0=+→x x x

当时,在下列无穷小中与不等价的是 答( )

x x A x B x C x x D e e

x

x

→-++--+--0121112

222

2

()cos ()ln ()()

当时,下列无穷小量中,最高阶的无穷小是 答( )

x A x x B x C x x D e e

x

x

→++---+--01112

22()ln()()()tan sin ()

计算极限lim

cos x x

x e x →---0

2112

_____________________4sin 3

553lim 2

=?++∞→x x x x

1

lim 211--++++-→x n x x x x n n x Λ计算极限 131)1()1()1)(1(lim -→----n n x x x x x Λ计算极限 .计算极限x

x x π

+→)(cos lim 0

讨论极限的存在性。limarctan x x →-1

1

1 的存在性。研究极限x

x 1cot arc lim 0→

研究极限.lim x x x x →∞++-223

1

 )

答( 穷大的是时,下列变量中,为无当x D x C x B x

x A x 1

cot

arc )(1arctan )(ln )(sin )

(0+→ ________________1

ln 1

lim

1

=-→x x 。

时,恒有

,使当存在一正整数,试判定下述结论,且设N n N a a n n n >=>∞

→"0lim 0是否成立?"1n n a a <+

若试讨论是否存在?lim lim n n n n a A a →∞

→∞

=

{}存在的

极限,试判定能否由此得出满足设有数列n n n n n n a a a a ∞

→+∞

→=-lim 0)(lim 1结论。

{}0lim 1001=<<≤>∞→+n n n

n n n a r r a a

a a ,试证明,;满足设有数列

是否必存在?

存在,则存在,设)(lim )(lim )

()

(lim

000

x f x g x g x f x x x x x x →→→ .

,则是否必有,若0)(lim 0)

()

(lim

0)(lim 00

=≠==→→→x g A x g x f x f x x x x x x

答( )

小量的是时,下列变量中为无穷当1

)

1)((ln 1)

()1ln()(1

sin 1)(012

2-+-+→x

x D x C x B x x A x

是常数),试证明,时,设0)()

(lim

()()(0

0=→∞→→→x f x g A A x g x f x x x x

若,且在的某去心邻域内,,则必等于,为什么?

lim ()()lim

()

()lim ()x x x x x x g x x g x f x g x A f x →→→=≠=0

0000

若,不存在,则是否必不存在?若肯定不存在,请予证明,若不能肯定,请举例说明,并指出为何加强假设条件,使可肯定的极限时必不存在。

lim ()lim ()lim ()()

()()()x x x x x x f x A g x f x g x f x g x x x →→→=??→0

lim ()()()()n n n n n

e e e

e A B e C e D e →∞

-??=

1212

1Λ 答( )

____))1(2121(lim =-+++-+++∞

→n n n ΛΛ

答( )

不存在,但不是无穷大为无穷大 等于 等于 .

)( ;)(;

2)( ; 0)(2

cos

lim 2

D C B A x x x +→

.

)(0)2(; )10()()1(sin 1)(是否成为无穷大时,当,内是否有界,在,试判断:设x f x x f x

x x f +→π

=

[

)设,试判断:在,上是否有界当时,是否成为无穷大

f x x x f x x f x ()cos ()()()()=+∞→+∞102

( )

答 高阶的无穷小是比高阶的无穷小是比是等价无穷小与等价无穷小是同阶无穷小,但不是与时( ),则当,设.

)()()(; )()()(; )()()(; )()()(133)(11)(3x x D x x C x x B x x A x x x x

x

x αββαβαβα→-=β+-=

α

答( )

, ,, ,,则必有设. 104)( ; 64)(; 104)( ; 52)(14lim 231=-=-==-=====-+--→A a D A a C A a B A a A A x x ax x x

答( 不存在但不是无穷大 为等于 等于的极限

时,当. )( ; )(;

0)( ; 2)(1

1)(11

1

2D C B A e

x x x f x x ∞--=→-

的值。.试确定满足和,设当a x x x x ax x x )(~)(cos 1)(1)

1()(02

3

2

βα-=β-+=α→

求,使a b x x ax b x lim()→∞++-+=321

12 之值。,试确定设b a b ax x x x , 0)743(lim 2=--+++∞→ n n n n x n x x x ∞

→+=+==lim )21(32111,求,,,设Λ

设, ,,,求.x x x n x n n n n 1142312==+=+→+∞

()lim ΛΛ

)(lim x x x x x --++∞

→计算极限 x

x x

x x x tan 2cos sin 1lim

-+→计算极限

计算极限lim

tan sin tan sin x x x

x x e e →+-+-0

44

研究极限的存在性。lim cos ()x ax

x a →->0220 {}.收敛,并求极限,试证数列

,,.,,设n n n n n n x x n x x x x ∞

→+=-=∈lim )21(2)20(2

11ΛΛ 设,,,,试研究极限.x x x x n x n n n n n 112

0212<=-=+→∞

()lim ΛΛ

,试研究极限,,,设n n n n n x n x x x x ∞

→+=-=>lim )21(222

11ΛΛ

n

n n n n b

n n n n

n n n n n b a b a n b a b b a a b a ∞

→∞

→→∞

→++==+==lim lim lim lim )21( 21111存在,且存在,试证明:,,,,是两个函数,令,设Λ

cos 20e e lim x x x

→-计算极限 x x x x

x x x ???

??+-+++∞→lim 计算极限 x x x x )121(lim 2

+-∞→计算极限

至少有一

及,则能否得出",,且若0lim 0lim 000lim ==≠≠=∞

→∞

→∞

→n n n n n n n n n y x y x y x 式成立"的结论。

{}{}{}反例。

,如否定结论则需举出如肯定结论请给出证明是否也必是无界数列。试判定:

都是无界数列,,设数列n n n n n n z y x z y x =

计算极限lim sinln()sinln()x x x x →∞+-+?

?

????1311

极限.; . .; .. 答( )

lim(cos )x x x A B C D e →-

=

1

12

2

01

极限的值为( )

.; .; .; .. 答( )

lim ()x x x

e e x x A B C D →--+0210123

答( )

..; .; .; .的值为( )

极限2

3

326103sin 3cos 1lim

0D C B A x

x x

x -→

下列极限中不正确的是

.; .;.;..

答( )

A x x

B x

x C x x D x

x x x x x lim tan sin lim cos

lim sin()lim arctan →→-→→∞=+=---==011232322121120π

π

极限.; .; .; .. 答( )

lim ln()ln()x x x x x x A B C D →+++-+=

0222

110123

极限.; .; .; .. 答( )

lim(cos )x x

x A B e C D e →-

=

112

12

01

答( )

.;.;.; .为等价无穷小量的是时,与当 )sin ( 11)1ln( 2sin 0x x x D x x C x B x A x x +--+-→

答( .低阶无穷小量.

.高阶无穷小量;量;

.同阶但非等价无穷小.等价无穷小量;的是无穷小量-时,无穷小量

当D C B A x x

x

x 12111-+→

为常数,则数组,等价,其中与时,无穷小量当n m mx x x x n 2sin sin 20-→的值为,)中,(n m n m

 答( )

,.; ,.; ,.; ,.)13()31()23()32(D C B A

已知,则的值为

.; .; .; .. 答( )

lim()

x x

kx e k A B C D →+=-0

1

1111

2

2

极限的值为

.; .; .; . 答( )

lim()x x

x

A e

B e

C e

D e

→∞---11

221

4

1

4

下列等式成立的是

.; .;

.;..

答( )

A x e

B x

e C x e D x

e x x x x x x x x lim()lim()lim()lim()→∞→∞→∞+→∞++=+=+=+=1211

1111

22222212

答( )

..; .; .; .极限2210

1

)

21(lim e D e C e

B e A x x

x -→=

-

极限的值为( )

.; .; .; ..

答( )

lim(

)x x x x A e B e C e D e →∞+---+11

4

2244

极限的值是

.; .; .; .. 答( )

lim x x x x A B e C e D e →∞----+?? ?

?

?2121121

1

2

2

下列极限中存在的是

.; .;.; . 答( )

A x x

B e

C x x

D x x x x x x lim lim lim sin lim →∞→→∞→++-201011111

21

极限的值为.;. . .. 答( )lim

tan sin x x x

x

A B b C D →-∞03011

2

极限.; .; .; ..

答( )

lim

sin x x

x A B C D →-=

-∞ππ

101

已知,则的值为

.; .; .; ..

答( )

lim

cos sin x a x x x a A B C D →-=-01

2

0121

已知,则的值为

.; .; .; .. 答( )lim

sin ()

x kx

x x k A B C D →+=----02333

2

66

答( )

.,.; ,.; ,.; ,.为,的值所组成的数组,,则常数设)11()11()10()01()(0)11

(lim 2-=--++∞→D C B A b a b a b ax x x x

答( )

,.; ,.; ,.; ,.)可表示为

,的值,用数组(,,则

,若设)

44()44()44()44(0)(lim 1

34)(2----=++-+=∞→D C B A b a b a x f b ax x x x f x

高等数学求极限的常用方法附例题和详解完整版

高等数学求极限的常用 方法附例题和详解 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→? =→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了 无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 )(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=,这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; cos=221242)! 22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ

高数中求极限的16种方法

高数中求极限的16种方法——好东西 首先对极限的总结如下: 极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致 一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种) 二、求极限的方法如下: 1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小) 2.罗比达法则(大题目有时候会有暗示,要你使用这个方法) 首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0 注意:罗比达法则分为3种情况 0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0) 3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!) E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助 4.面对无穷大比上无穷大形式的解决办法 取大头原则,最大项除分子分母!!!!!!!!!!! 5.无穷小于有界函数的处理办法 面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。 面对非常复杂的函数可能只需要知道它的范围结果就出来了!!! 6.夹逼定理(主要对付数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。 7.等比等差数列公式应用(对付数列极限,q绝对值符号要小于1) 8.各项的拆分相加(来消掉中间的大多数,对付的还是数列极限) 可以使用待定系数法来拆分化简函数 9.求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn 的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化 10.两个重要极限的应用。第一个是X趋近0时候的sinx与x比值。第二个是趋近无穷大无穷小都有对有对应的形式(第2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用第2 个重要极限) 11.还有个方法,非常方便的方法,就是当趋近于无穷大,不同函数趋近于无穷的

高等数学求极限的常用方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii )A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (iii) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 ) (lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候)

高数求极限的16种方法(超经典)高彦辉总结

L .+'''+.+'''+. + 天天快乐+ '+. .+' "+.+" 爱 爱爱 爱祝爱 爱愿爱 爱你爱 爱永爱 爱远爱 爱被爱 爱爱爱 爱包爱 爱围爱 爱爱 爱爱 爱爱 爱 漂亮吧!送给你,希望你会幸福一生,梦想成真! 高数中求极限的16种方法 假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面。首先,对极限的总结如下: 极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。 1 .极限分为一般极限,数列极限(区别在于数列极限时发散的,是一般极限的一种) 2.解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???) 1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小) 2 LHopital 法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是X趋近而不是N 趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0LHopital 法则分为3中情况 1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开sina 展开cos 展开ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。这两个很重要!!!!!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大无穷小都有对有对应的形式(地2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法,非常方便的方法 就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方快于x!快于指数函数快于幂数函数 快于对数函数(画图也能看出速率的快慢)!!!!!!当x趋近无穷的时候他们的比值的极限一眼就能看出来了12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换

高等数学求极限的14种方法(完整资料).doc

【最新整理,下载后即可编辑】 高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件。是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“0 0”“∞ ∞”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成

高等数学求极限的16种方法

高等数学求极限的16种方法 首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。 为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记 (x趋近无穷的时候还原成无穷小) 2落笔他法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提!!!!!! 必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!) 必须是 0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0 落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方 对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0) 3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)

高等数学-求极限的各种方法

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x

例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim , 第一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分。 【解】22 212 12112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =??? ??-++∞→x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有: 当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x -, ()abx ax x x b ~11,2 1~ cos 12-+-; (2) 等价无穷小量代换,只能代换极限式中的因式.. ;

高等数学极限总结

【摘要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘。本文立足教材的基本概念阐述,着重介绍极限运算过程中极具技巧的解决思路。希望以此文能对学习者有所帮助。 【关键词】高等数学极限技巧 《高等数学》极限运算技巧 《高等数学》的极限与连续是前几章的内容,对于刚入高校的学生而言是入门部分的重要环节。是“初等数学”向“高等数学”的起步阶段。 一,极限的概念 从概念上来讲的话,我们首先要掌握逼近的思想,所谓极限就是当函数的变量具有某种变化趋势(这种变化趋势是具有唯一性),那么函数的应变量同时具有一种趋势,而且这种趋势是与自变量的变化具有对应性。通俗的来讲,函数值因为函数变量的变化而无限逼近某一定值,我们就将这一定值称为该函数在变量产生这种变化时的极限! 从数学式子上来讲,逼近是指函数的变化,表示为。这个问题不再赘述,大家可以参考教科书上的介绍。 二,极限的运算技巧 我在上课时,为了让学生好好参照我的结论,我夸过这样一个海口,我说,只要你认真的记住这些内容,高数部分所要求的极限内容基本可以全部解决。现在想来这不是什么海口,数学再难也是基本的内容,基本的方法,关键是技巧性。我记得blog中我做过一道极限题,当时有网友惊呼说太讨巧了!其实不是讨巧,是有规律可循的!今天我写的内容希望可以对大家的学习有帮助! 我们看到一道数学题的时候,首先是审题,做极限题,首先是看它的基本形式,是属于什么形式采用什么方法。这基本上时可以直接套用的。

1,连续函数的极限 这个我不细说,两句话,首先看是不是连续函数,是连续函数的直接带入自变量。 2,不定型 我相信所有学习者都很清楚不定型的重要性,确实。那么下面详细说明一些注意点以及技巧。 第一,所有的含有无穷小的,首先要想到等价无穷小代换,因为这是最能简化运算的。等价代换的公式主要有六个: 需要注意的是等价物穷小代换是有适用条件的,即:在含有加减运算的式子中不能直接代换,在部分式子的乘除因子也不能直接代换,那么如果一般方法解决不了问题的话,必须要等价代换的时候,必须拆项运算,不过,需要说明,拆项的时候要小心,必须要保证拆开的每一项极限都存在。 此外等价无穷小代换的使用,可以变通一些其他形式,比如: 等等。特别强调在运算的之前,检验形式,是无穷小的形式才能等价代换。 当然在一些无穷大的式子中也可以去转化代换,即无穷大的倒数是无穷小。这需要变通的看问题。 在无穷小的运算中,洛必答法则也是一种很重要的方法,但是洛必答法则适用条件比较单一,就是无穷小比无穷小。比较常见的采用洛必答法则的是无穷小乘无穷大的情况。(特别说明无穷小乘无穷大可以改写为无穷小比无穷小或者无穷大比无穷大的形式,这根据做题的需要来进行)。

高数求极限方法总结

第一章极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义: 数列极限、函数极限, 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:0)1(1 lim 2=+-∞→n n ;5)13(lim 2=-→x x ;1,0lim <=∞ →q q n n 当等。 定义证明按着总结的四个步骤来,缺一不可!(2)在后面求极限时,(1)中提到的简单极限 作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在, 且(1)B A x g x f ±=±)]()(lim[(2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 0)1(lim ; e x x x =+∞→)11(lim 说明:(1)不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式。 (2)一定注意两个重要极限成立的条件。 例如: 133sin lim 0=→x x x ,e x x x =--→210)21(lim ,e x x x =+∞→3)31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数 )(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f , )(x g ~)(1x g ,则当)()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)()(lim 1 10x g x f x x →。 5.连续性 定理5 一切连续函数在其定义去间内的点处都连续,即如果0x 是函数)(x f 的定义去间内

高数数学极限总结

函数极限总结 一.极限的产生 极限理论是研究关于极限的严格定义、基本性质和判别准则等问题的基础理论。 极限思想的萌芽可以追溯到古希腊时期和中国战国时期,但极限概念真正意义上的首次出现于沃利斯的《无穷算数》中,牛顿在其《自然哲学的数学原理》一书中明确使用了极限这个词并作了阐述。但迟至18世纪下半叶,达朗贝尔等人才认识到,把微积分建立在极限概念的基础之上,微积分才是完善的,柯西最先给出了极限的描述性定义,之后,魏尔斯特拉斯给出了极限的严格定义(ε-δ和ε-N 定义)。 从此,各种极限问题才有了切实可行的判别准则,使极限理论成为了微积分的工具和基础。[1] 二.极限知识点总结 1. 极限定义 函数极限:设函数f(x)在点的x 0某一去心邻域内有定义,如果存在常数A ,对于任意给定的正数ε(无论它多么小),总存在正数 ,使得当x 满足不等式 时,对应的函数值 都满足不等式: 那么常数A 就叫做函数f(x)?当x →x 0时的极限,记作。[2] 单侧极限:?.左极限:或 ?.右极限:或 定理: 函数当时极限存在的充分必要条件是左、右极限各自存在且相 δ<<|x -x |00ε <-|)(|A x f A x f x x =→)(lim 0 A x f x x =- →)(lim )()(左→→x A x f A x f x x =+ →)(lim )()(右→→x A x f A x f x f A x f x x ==? =+-→)()()(lim 0 )(x f 0x x →

等 即。 2. 极限概念 函数极限可以分成以的极限为例,f(x) 在点x 0以A 为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x 满足不等式 时,对应的函数值f(x)都满足不 等式:|f(x)-A|<ε,那么常数A 就叫做函数f(x)当 x →x 。时的极限。 函数极限具有唯一性、局部有限性、局部保号性[2] 3. 存在准则 有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。 准则Ⅰ.如果数列,及满足以下条件: (1)从某项起,即,当时,有; (2);, 那么数列的极限存在,且 准则Ⅰ'如果(1)当(或)时, (2) ,, 那么存在,且等于。 夹逼定理:(1)当时,有??成立 (2) ?,那么,极限存在,且等于A 【准则Ⅰ,准则Ⅰ′合称夹逼定理】 )()()(lim 0 00x f x f x f x x →+-==0,,,x x x x x →-∞→+∞→∞→0x x →{}n x {}n y {}n z +∈?N n 00n n >n n n z x y ≤≤a y n x =∞→lim a z n x =∞ →lim {}n x a x n x =∞ →lim ),(0r x U x ο ∈M x >||)()()(x h x f x g ≤≤A x g x x x =∞→→)(lim ) (0 A x h x x x o =∞→→)(lim ) ()(lim ) (0 x f x x x ∞→→A ),(x 0r x U ο ?()0x f

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

高等数学极限习题100道

设,求证:.lim ()lim ()x x x x f x A f x A →→==00 求极限lim sin sin x x x x →021 []求极限lim cosln()cosln x x x →+∞ +-1 求极限.lim sin x x x →+011 求极限.lim arctan x x x x →∞+2112 求极限lim ()x x x e →∞+11 求极限limarctan arcsin x x x →∞?1 求极限.lim x x x →-+0121 22 )sin 1(sin lim n n n -+∞→求数列的极限 []A x f A u f u x u x x x u u x x =?=≠?=?→→→)(lim )(lim )()(lim 0 00试证:,又,且设 设试确定实数,之值,使得:当时,为无穷小; 当时,为无穷大。 f x x x a b x a f x x b f x ()ln ()()= -→→1 设,问:当趋于何值时,为无穷小。f x x x x f x ()tan ()=2 . 该邻域内 的某去心邻域,使得在证明:存在点,且,若)()()(lim )(lim 00 x f x g x A B B x g A x f x x x x >>==→→ 设,试证明: 对任意给定的,必存在正数,使得对适含不等式;的一切、,都有成立。lim ()()()x x f x A x x x x x x f x f x →=><-<<-<-<0 00010201221εδδδε .,试用极限定义证明:已知:A x f A x f x x x x =>=→→)(lim 0)(lim 0 {}{}{}是否也必发散?同发散,试问数列与若数列n n n n y x y x + 求的表达式f x x x x n n n ()lim =-+→∞+2121

极限的常用求法及技巧.

极限的常用求法及技巧 引言 极限是描述数列和函数在无限过程中的变化趋势的重要概念。极限的方法是微积分中的基本方法,它是人们从有限认识无限,从近似认识精确,从量变认识质变的一种数学方法,极限理论的出现是微积分史上的里程碑,它使微积分理论更加蓬勃地发展起来。 极限如此重要,但是运算题目多,而且技巧性强,灵活多变。极限被称为微积分学习的第一个难关,为此,本文对极限的求法做了一些归纳总结, 我们学过的极限有许多种类型:数列极限、函数极限、积分和的极限(定积分),其中函数极限又分为自变量趋近于有限值的和自变量趋近于无穷的两大类,如果再详细分下去,还有自变量从定点的某一侧趋于这一点的所谓单边极限和双边极限,x 趋于正无穷,x 趋于负无穷。函数的极限等等。本文只对有关数列的极限以及函数的极限进行了比较全面和深入的介绍.我们在解决极限及相关问题时,可以根据题目的不同选择一种或多种方法综合求解,尤其是要发现数列极限与函数极限在求解方法上的区别与联系,以做到能够举一反三,触类旁通 。 1数列极限的常用求法及技巧 数列极限理论是微积分的基础,它贯穿于微积分学的始终,是微积分学的重要研究方法。数列极限是极限理论的重要组成部分,而数列极限的求法可以通过定义法,两边夹方法,单调有界法,施笃兹公式法,等方法进行求解.本章节就着重介绍数列极限的一些求法。 1.1利用定义求数列极限 利用定义法即利用数列极限的定义 设{}n a 为数列。若对任给的正数N ,使得n 大于N 时有 ε<-a a n 则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限,并记作,lim n a n a =∞ →或 )(,∞→∞→n a n

求极限的常用方法(精髓版)考试必备

求极限的常用方法(精髓版) 初等数学的研究对象基本上是不变的量,而高等数学的研究对象则是变动的量。极限方法就是研究变量的一种基本方法。极限分为数列的极限和函数的极限,下文研究的是函数的极限,这些方法对于数列的极限同样适用。 1.直接代入数值求极限 例1 求极限1lim(21)x x →- 解 1lim(21)2111 x x →-=?-= 2.约去不能代入的零因子求极限 例2 求极限11lim 41--→x x x 解 4221111(1)(1)(1) lim lim lim(1)(1)4 11x x x x x x x x x x x →→→--++==++=-- 3.分子分母同除最高次幂求极限 例3 求极限13lim 3 2 3+-∞→x x x x 解 3131lim 13lim 11323=+-=+-∞→∞→x x x x x x x 注:一般地,分子分母同除x 的最高次幂有如下规律 ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 4.分子(母)有理化求极限 例4 求极限) 13(lim 22+-++∞ →x x x 解 1 3) 13)(13(lim )13(lim 2222222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x 例5 求极限 x →解 01)2x x x →→→=== 5.应用两个重要极限的公式求极限 两个重要极限是1sin lim 0=→x x x 和1lim(1)x x e x →∞+=,下面只介绍第二个公式的例子。 例6 求极限 x x x x ??? ??-++∞→11lim

高数-极限求解方法与技巧总结

第一章 极限论 极限可以说是整个高等数学的核心,贯穿高等数学学习的始终。因为有关函数的可积、连续。可导等性质都是用极限来定义的。毫不夸张地说,所谓高数,就是极限。衡量一个人高等数学的水平只需看他对极限的认识水平,对极限认识深刻,有利于高等数学的学习,本章将介绍数列的极限、函数的极限以及极限的求解。重点是求极限。 ??????? ?? ?? ?? 极限的定义数列极限极限的性质 函数极限的定义函数极限函数极限的性质 一、求极限的方法 1.利用单调有界原理 单调有界原理:若数列具有单调性、且有有界性,也即单调递增有上界、单调递减有下界,则该数列的极限一定存在。可以说,整个高等数学是从该结论出发来建立体系的。 利用该定理一般分两步:1、证明极限存在。2、求极限。 说明:对于这类问题,题中均给出了数列的第n 项和第1n +项的关系式,首先用归纳法或作差法或作商法等证明单调性,再证明其有界性(或先证有界、再证单调性),由单调有界得出极限的存在性,在最终取极限。 例1设0110,0,()0,1,2n n n a a x x x n x +>>=+=,…证{}n x 的极限存在,并求其极限。 分析:本题给出的是数列前后两项的关系,所以应该用单调有界原理求解。 解:由基本不等式,11()2n n n a x x x +=+≥n x 有下界;下面证单 调性,可知当2n ≥时,有2 111 ()()22n n n n n n n x a x x x x x x +=+≤+=,则n x 单调递减。综 合可得,则n x 单调递减有下界,所以lim n n x →∞ 存在;令lim n n x A →∞ = ,带入等式解得 A 评注:对于该题,再证明有界性的过程中用到基本不等式;特别是在证明单调性

微积分求极限的方法(完整版)

专题一 求极限的方法 【考点】求极限 1、 近几年来的考试必然会涉及求极限的大题目,一般为2-3题12-18分左右,而用极限的 概念求极限的题目已不会出现。一般来说涉及到的方法主要涉及等价量代换、洛必达法则和利用定积分的概念求极限,使用这些方法时要注意条件,如等价量代换是在几块式子乘积时才可使用,洛必达法则是在0比0,无穷比无穷的情况下才可使用,运用极限的四则运算时要各部分极限存在时才可使用等。 2、 极限收敛的几个准则:归结准则(联系数列和函数)、夹逼准则(常用于数列的连加)、 单调有界准则、子数列收敛定理(可用于讨论某数列极限不存在) 3、 要注意除等价量代换和洛必达法则之外其他辅助方法的运用,比如因式分解,分子有理 化,变量代换等等。 4、 两个重要极限0sin lim 1x x x →= 1 01lim(1)lim(1)x x x x x e x →∞→+=+=,注意变形,如将第二个式 子1 lim(1)x x x e →+=中的x 变成某趋向于0的函数()f x 以构造“1∞ ”的形式的典型求极 限题目。 5、 一些有助于解题的结论或注意事项需要注意总结,如: (1) 利用归结原则将数列极限转化为函数极限 (2) 函数在某点极限存在的充要条件是左右极限存在且相等。有时可以利用这点进行解 题,如 11 1 lim x x e -→因左右极限不相等而在这点极限不存在。(当式子中出现绝对值和e 的无穷次方的结构时可以考虑从这个角度出发) (3) 遇到无限项和式求极限时想三种方法: ①看是否能直接求出这个和式(如等比数列求和)再求极限 ②夹逼定理 ③用定积分的概念求解。 (4)如果f(x)/g(x)当x →x0时的极限存在,而当x →x0时g(x)→0,则当x →x0时f(x)也 →0 (5)一个重要的不等式:sin x x ≤(0x >) *其中方法②③考到的可能性较大。 6、 有关求极限时能不能直接代入数据的问题。 7、 闭区间上连续函数的性质(最值定理、根的存在性定理、介值定理) 8、 此部分题目属于基本题型的题目,需要尽量拿到大部分的分数。 【例题精解·求极限的方法】 方法一:直接通过化简,运用极限的四则运算进行运算。 【例1】求极限 11 lim 1 m n x x x →--

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

高数:总结求极限的常用方法

总结求极限的常用方法,详细列举,至少4种 极限定义法 泰勒展开法。 洛必达法则。 等价无穷小和等价无穷大。 极限的求法 1. 直接代入法 适用于分子、分母的极限不同时为零或不同时为 例 1. 求 1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下 1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。 (x趋近无穷的时候还原成无穷小) 2落笔他法则 首先他的使用有严格的使用前提!!!!!! 必须是X趋近而不是N趋近!!!!! 必须是函数的导数要存在!!!!!!!! 必须是0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0

落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方 对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0) 3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!) E的x展开sina 展开cos 展开ln1+x展开 对题目简化有很好帮助 4面对无穷大比上无穷大形式的解决办法 取大头原则最大项除分子分母!!!!!!!!!!! 看上去复杂处理很简单!!!!!!!!!! 5无穷小于有界函数的处理办法 面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。 面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!

相关文档
最新文档