数字信号处理大作业汇总

数字信号处理大作业汇总
数字信号处理大作业汇总

数字信号处理大作业

题目一:

利用matlab设计模拟带通巴特沃斯滤波器,要求通带下、上截止频率分别为fhpl=4kHz,fhpu=6kHz,阻带下、上截止频率分别为fhsl=2kHz,fhsu=9kHz,通带最大衰减rp=1dB,阻带最小衰减rs=20dB。

问题分析:

(1)该题目中模拟带通滤波器指标:通带下截止频率wpl=2*pi*fhpl,通带上截止频率wpu=2*pi*fhpu通带最大衰减rp=1dB;阻带下截止频率wsl=2*pi*fhsl,阻带上截止频率wsu=2*pi*fhsu;阻带最小衰减rs=20dB。

(2)计算模拟滤波器的阶N和3dB截止频率Wc。

[N,Wc]=buttord(wp,ws,rp,rs,'s');

其中,wp=[wpl,wpu];ws=[wsl,wsu]

(3)计算模拟滤波器系统函数

[Bs,As]=butter(N,Wc,'s');

(4)画图检验所设计出模拟滤波器是否满足指标要求。

原始MATLAB程序:

fhpl=4000;fhpu=6000;fhsl=2000;fhsu=9000;

wpl=2*pi*fhpl;wpu=2*pi*fhpu;wsl=2*pi*fhsl;wsu=2*pi*fhsu;

wp=[wpl,wpu];ws=[wsl,wsu];rp=1;rs=20;

[N,Wc]=buttord(wp,ws,rp,rs,'s');

[B,A]=butter(N,Wc,'s');

f=1:20:15000;w=2*pi.*f;

[H,WH]=freqs(B,A,w);

H=20*log10(abs(H));

plot(f/1000,H),grid on

xlabel('频率(KHz)');ylabel('幅度(dB)');

结果图分析:

设计出的数字滤波器的幅频响应如上图所示。上下通带为4kHz和6kHz,上下阻带为1kHz和9kHz,通带最大衰减为1dB,阻带最大衰减为20dB。符合滤波器的设计指标。

题目二

希望通过对输入模拟信号采样后用数字带通滤波器提取所需要的信号。设系统的采样频率为8kHz,要求提取2000~2400Hz频段的信号,幅度失真小于1dB;滤除0~1600Hz频段和2800Hz以上频段的信号,要求衰减大于40dB。利用matlab 工具箱函数,设计数字带通椭圆滤波器。

问题分析:

(1)根据技术要求,提出模拟滤波器的指标。

通带下截止频率fpl=2000Hz,通带上截止频率fpu=2400Hz,通带最大衰减rp=1dB.

阻带下截止频率fsl=1600Hz,阻带上截止频率fsu=2800Hz,阻带最小衰减rs=40dB.

(2)将模拟滤波器的指标转化为数字滤波器的指标。

通带下截止频率Wpl=2πfpl/fs=2π×2000/8000=0.5π (rad)

通带上截止频率Wpu=2πfpu/fs=2π×2400/8000=0.6π (rad)

阻带下截止频率Wsl=2πfsl/fs=2π×1600/8000=0.4π (rad)

阻带上截止频率Wsu=2πfsu/fs=2π×2800/8000=0.7π (rad)

阻带最大衰减rp=1dB,阻带最小衰减rs=40dB。

Wpl=0.5;Wpu=0.6;Wsl=0.4;Wsu=0.7;

Wp=[Wpl,Wpu];Ws=[Wsl,Wsu];Rp=1;Rs=40;

(3)计算椭圆数字滤波器的阶N和阻带边界频率Wso.

[N,Wso]=ellipord(Wp,Ws,Rp,Rs);

(4)用双线性变换法设计椭圆数字带通滤波器。

[Bz,Az]=ellip(N,Rs,Wso);

原始MATLAB程序:

fpl=2000;fpu=2400;fsl=1600;fsu=2800;fs=8000;

wpl=2*fpl/fs;wpu=2*fpu/fs;wsl=2*fsl/fs;wsu=2*fsu/fs;

wp=[wpl,wpu];ws=[wsl,wsu];rp=1;rs=40;

[N,wpo]=ellipord(wp,ws,rp,rs);

[Bz,Az]=ellip(N,rp,rs,wpo,'s');

w=0:0.1:pi;[H,w]=freqz(Bz,Az,w);

H=20*log10(abs(H));

plot(w/pi,H),grid on

xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|/dB');

结果图分析:

当ω=0.5π,幅度为-41.5dB;ω=0.6π,幅度为-40.8dB;ω=0.4π,幅度为-42dB;ω=0.7π,幅度为-41.7dB。设计出的滤波器满足指标要求。

题目三

利用Matlab工具箱函数fir1,设计线性相位FIR数字低通滤波器,要求通带截止频率为20Hz,阻带截止频率为40Hz,通带最大衰减为0.1dB,阻带最小衰减为40dB,采样频率为200Hz。分别选用汉宁窗,汉明窗,布莱克曼窗和凯塞窗进行设计,显示所设计滤波器的单位脉冲响应h(n)的数据,并画出幅频响应特性曲线和相频响应特性曲线,请对每种窗函数的设计结果进行比较。

问题分析:

(1)根据技术要求,提出线性相位FIR数字低通滤波器的指标。

通带截止频率fpl=20Hz,通带最大衰减rp=0.1dB.阻带截止频率fsl=40Hz,阻带最小衰减rs=40dB.采样频率为200Hz

(2)计算过渡带宽度:wp = 2*pi*20/200; ws = 2*pi*40/200; b = ws - wp;

计算h(n)长度:n0 =ceil(t * pi / b)

确保n是奇数:n = n0 + mod(n0+1, 2);

计算理想低通滤波器通带截止频率:wc = (wp + ws )/2/pi;

(3)使用fir1函数产生线性相位FIR数字低通滤波器 h = fir1(n-1, wc, 'low', hanning(n));t=6.2;

h = fir1(n-1, wc, 'low', hamming(n));t=6.6;

h = fir1(n-1, wc, 'low', blackman(n));t=11;

h = fir1(n, wc, 'low', kaiser(n+1, bata)); 原始MATLAB程序:

%%%汉宁窗%%%

clear;clc;

wp = 2*pi*20/200; ws = 2*pi*40/200; b = ws - wp;rs = 40;

n0 =ceil(6.2 * pi / b)

n = n0 + mod(n0+1, 2);

wc = (wp + ws )/2/pi;

h = fir1(n-1, wc, 'low', hanning(n));

x = 0:length(h)-1;

figure(1)

subplot(2, 2, 1),stem(x, h, '.');

y = fft(h, 10000);

y = y(1:5000);

y = 20 * log10(y);

n = linspace(0, pi, 5000);

subplot(2, 2, 2),plot(n/pi, y)

n0 = ceil(6.6 * pi / b)

n = n0 + mod(n0+1, 2);

wc = (wp + ws )/2/pi;

h = fir1(n-1, wc, 'low', hamming(n));

x = 0:length(h)-1;

subplot(2, 2, 3)

stem(x, h, '.');

y = fft(h, 10000);

y = y(1:5000);

y = 20 * log10(y);

n = linspace(0, pi, 5000);

subplot(2, 2, 4)

plot(n/pi, y)

%%%布莱克曼窗%%%%

n0 = ceil(11 * pi / b)

n = n0 + mod(n0+1, 2);

wc = (wp + ws )/2/pi;

h = fir1(n-1, wc, 'low', blackman(n));

x = 0:length(h)-1;

figure(2)

subplot(2, 2, 1)

stem(x, h, '.');

y = fft(h, 10000);

y = y(1:5000);

y = 20 * log10(y);

n = linspace(0, pi, 5000);

subplot(2, 2, 2)

plot(n/pi, y)

%%%凯塞窗%%%%

bata = 0.5842 * (rs - 21)^0.4 + 0.07886 * (rs - 21); n = ceil((rs - 8)/2.285/b);

wc = (wp + ws )/2/pi;

h = fir1(n, wc, 'low', kaiser(n+1, bata));

x = 0:length(h)-1;

subplot(2, 2, 3)

stem(x, h, '.');

y = fft(h, 10000);

y = y(1:5000);

y = 20 * log10(y);

n = linspace(0, pi, 5000);

subplot(2, 2, 4)

plot(n/pi, y)

结果图分析:

题目四

利用Matlab工具箱函数fir1,设计线性相位FIR数字高通滤波器,要求通带截止频率为0.6πrad,阻带截止频率为0.45πrad。通带最大衰减为0.2dB,阻带最小衰减为45dB。分别用汉宁窗、汉明窗、布莱克曼窗和凯塞窗进行设计,显示所设计滤波器的单位脉冲响应h(n)的数据,并画出幅频响应特性曲线和相频响应特性曲线,请对每种窗函数的设计结果进行比较。

问题分析:

(1)根据技术要求,提出线性相位FIR数字高通滤波器的指标。

通带截止频率wp=0.6πrad,阻带截止频率为ws=0.45πrad。通带最大衰减为rp=0.2dB,阻带最小衰减为rs=45dB

(2)计算过渡带宽度:wp = 0.6*pi; ws = 0.45*pi; b = wp - ws;

计算h(n)长度:n0 =ceil(t * pi / b)

确保n是奇数:n = n0 + mod(n0+1, 2);

计算理想高通滤波器通带截止频率:wc = (wp + ws )/2/pi;

(3)使用fir1函数产生线性相位FIR数字高通滤波器

h = fir1(n-1, wc, 'high', hanning(n));t=6.2;

h = fir1(n-1, wc, 'high', hamming(n));t=6.6;

h = fir1(n-1, wc, 'high', blackman(n));t=11;

h = fir1(n, wc, 'high', kaiser(n+1, bata));

原始MATLAB程序:

%%%%%%%%%%%%%%%汉宁窗%%%%%%%%%%%%%%%%%%%

wp = 0.6*pi; ws = 0.45*pi; b = wp - ws;rs = 45;

n0 = ceil(6.2 * pi / b)

n = n0 + mod(n0+1, 2);

wc = (wp + ws )/2/pi;

h = fir1(n-1, wc, 'high', hanning(n));

x = 0:length(h)-1;

figure(1)

subplot(2, 2, 1),stem(x, h, '.');

y = fft(h, 10000);

y = y(1:5000);

y = 20 * log10(y);

n = linspace(0, pi, 5000);

subplot(2, 2, 2),plot(n/pi, y); %%%%%%%%%%%%%%%汉明窗%%%%%%%%%%%%%%%%%%%%

n0 = ceil(6.6 * pi / b)

n = n0 + mod(n0+1, 2);

wc = (wp + ws )/2/pi;

h = fir1(n-1, wc, 'high', hamming(n));

x = 0:length(h)-1;

subplot(2, 2, 3)

stem(x, h, '.');

y = fft(h, 10000);

y = y(1:5000);

y = 20 * log10(y);

n = linspace(0, pi, 5000);

subplot(2, 2, 4)

plot(n/pi, y)

%%%%%%%%%%%%%%%%布莱克曼窗%%%%%%%%%%%%%%%%%%%

n0 = ceil(11 * pi / b)

n = n0 + mod(n0+1, 2);

wc = (wp + ws )/2/pi;

h = fir1(n-1, wc, 'high', blackman(n));

x = 0:length(h)-1;

figure(2)

subplot(2, 2, 1)

stem(x, h, '.');

y = fft(h, 10000);

y = y(1:5000);

y = 20 * log10(y);

n = linspace(0, pi, 5000);

subplot(2, 2, 2)

plot(n/pi, y),,grid on

xlabel('频率(KHz)');ylabel('幅度(dB)'); %%%%%%%%%%%%%%%凯塞窗%%%%%%%%%%%%%%%%%%%%

bata = 0.5842 * (rs - 21)^0.4 + 0.07886 * (rs - 21); n = ceil((rs - 8)/2.285/b)+1;

wc = (wp + ws )/2/pi;

h = fir1(n, wc, 'high', kaiser(n+1, bata)); x = 0:length(h)-1;

subplot(2, 2, 3)

stem(x, h, '.');

y = fft(h, 10000);

y = y(1:5000);

y = 20 * log10(y);

n = linspace(0, pi, 5000);

subplot(2, 2, 4)

plot(n/pi, y)

结果图分析:

DSP上机大作业

DSP上机实验报告

实验一: VISUAL DSP++的使用入门 1.实验一的目的 实验一的主要目的是熟悉VISUAL DSP++的开发环境。针对ADSP-21065L SHARC DSP,利用几个用C、C++和汇编语言写成的简单例子来描述VISUAL DSP+十编程环境和调试器(debugger)的主要特征和功能。 2.实验一的4个基本练习 练习一: 启动Visual DSP++,建立一个用C源代码的工程(Project),同时用调试器来评估用C语言所编写代码的性能; 练习二: 创立一个新的工程,修改源码来调用一个汇编(asm)程序,重新编译工程,用调试器来评估用汇编语言所写程序的性能; 练习三: 利用调试器的绘图(plot)功能来图形显示一个卷积算法中的多个数据的波形; 练习四: 利用调试器的性能统计功能(Statistical profile来检查练习三中卷积算法的效率。利用所收集到的性能统计数据就能看出算法中最耗时的地方。 3.实验步骤: (1)练习一实验步骤: Step l 进入Visual DSP+十并打开一个工程(Project) 进入Visual DSP++,显示Visual DSP++的集成开发和调试环境窗口(Integrated Development and Debugger Environment,简称IDDE)。 选择菜单File 中Open 打开文件: …DSP_exp\unit_1\dot_product_c \dotprodc.dpj。 Dotprodc工程由定义数组和计算数组点积和的两个C语言源文件dotprod_main.c(主程序)和dotprod.c(子程序)以及一个描述程序和数据存储位置的链接描述文件dotprodc.ldf。 Step 2 编译dotprodc工程 在菜单Project中选择Build Project来对工程进行编译。此时,输出窗口显示程序编译时的各种状态信息(包括出错和编译进程信息)。当编译检测到错误时,将在输出窗口出现相应的出错信息,用鼠标双击它,编译器将自行打开源文件。这时可对源文件编辑、修改错误,再次进行编译。当编译不再有错时,输出窗口将显示“Build completed successfully”。

数字信号处理实验作业

实验6 数字滤波器的网络结构 一、实验目的: 1、加深对数字滤波器分类与结构的了解。 2、明确数字滤波器的基本结构及其相互间的转换方法。 3、掌握用MA TLAB 语言进行数字滤波器结构间相互转换的子函数及程序编写方法。 二、实验原理: 1、数字滤波器的分类 离散LSI 系统对信号的响应过程实际上就是对信号进行滤波的过程。因此,离散LSI 系统又称为数字滤波器。 数字滤波器从滤波功能上可以分为低通、高通、带通、带阻以及全通滤波器;根据单位脉冲响应的特性,又可以分为有限长单位脉冲响应滤波器(FIR )和无限长单位脉冲响应滤波器(IIR )。 一个离散LSI 系统可以用系统函数来表示: M -m -1-2-m m m=0 012m N -1-2-k -k 12k k k=1 b z b +b z +b z ++b z Y(z)b(z)H(z)=== =X(z)a(z) 1+a z +a z ++a z 1+a z ∑∑ 也可以用差分方程来表示: N M k m k=1 m=0 y(n)+a y(n-k)=b x(n-m)∑∑ 以上两个公式中,当a k 至少有一个不为0时,则在有限Z 平面上存在极点,表达的是以一个IIR 数字滤波器;当a k 全都为0时,系统不存在极点,表达的是一个FIR 数字滤波器。FIR 数字滤波器可以看成是IIR 数字滤波器的a k 全都为0时的一个特例。 IIR 数字滤波器的基本结构分为直接Ⅰ型、直接Ⅱ型、直接Ⅲ型、级联型和并联型。 FIR 数字滤波器的基本结构分为横截型(又称直接型或卷积型)、级联型、线性相位型及频率采样型等。本实验对线性相位型及频率采样型不做讨论,见实验10、12。 另外,滤波器的一种新型结构——格型结构也逐步投入应用,有全零点FIR 系统格型结构、全极点IIR 系统格型结构以及全零极点IIR 系统格型结构。 2、IIR 数字滤波器的基本结构与实现 (1)直接型与级联型、并联型的转换 例6-1 已知一个系统的传递函数为 -1-2-3 -1-2-3 8-4z +11z -2z H(z)=1-1.25z +0.75z -0.125z 将其从直接型(其信号流图如图6-1所示)转换为级联型和并联型。

数字信号处理期末重点复习资料

1、对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字信号。 2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。 3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。 4、)()(5241n R x n R x ==,只有当循环卷积长度L ≥8 时,二者的循环卷积等于线性 卷积。 5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是 ()n h n ∞ =-∞ <∞∑ 6、用来计算N =16点DFT ,直接计算需要(N 2)16*16=256_次复乘法,采用基2FFT 算法,需要__(N/2 )×log 2N =8×4=32 次复乘法。 7、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型_和 并联型_四种。 8、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中 并联型的运算速度最高。 9、数字信号处理的三种基本运算是:延时、乘法、加法 10、两个有限长序列 和 长度分别是 和 ,在做线性卷积后结果长度是 __N 1+N 2-1_。 11、N=2M 点基2FFT ,共有 M 列蝶形,每列有N/2 个蝶形。 12、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对 13、数字信号处理的三种基本运算是: 延时、乘法、加法 14、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。 16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。 17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。 18、单位脉冲响应分别为 和 的两线性系统相串联,其等效系统函数时域及频域表 达式分别是h(n)=h1(n)*h2(n), =H1(ej ω)×H2(ej ω)。 19、稳定系统的系统函数H(z)的收敛域包括 单位圆 。 20、对于M 点的有限长序列x(n),频域采样不失真的条件是 频域采样点数N 要大于时域采样点数M 。

数字信号处理期末试卷(含答案)全..

数字信号处理期末试卷(含答案) 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。 1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。 A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( ) A.y(n)=x 3(n) B.y(n)=x(n)x(n+2) C.y(n)=x(n)+2 D.y(n)=x(n 2) 3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。 A .M+N B.M+N-1 C.M+N+1 D.2(M+N) 4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混 叠现象,则频域抽样点数N 需满足的条件是( )。 A.N ≥M B.N ≤M C.N ≤2M D.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。 A.N B.N 2 C.N 3 D.Nlog 2N 6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。 A.直接型 B.级联型 C.并联型 D.频率抽样型 7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称 C 关于0=w 、π2偶对称 关于=w π奇对称 D 关于0=w 、π2奇对称 关于=w π偶对称 8.适合带阻滤波器设计的是: ( ) A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数 C )n N (h )n (h --=1 N 为偶数

dsp大作业

一、简答题:(要求:手写,须写出各题必要的知识点,本大题共30分,每小题5分。) 1、可编程DSP芯片有那九大特点? 2、TMS320C54x芯片的流水线操作共有多少个操作阶段,每个阶段执行什么任务,完成一条指令需要那些操作周期? 3、DSP系统硬件设计过程都有那些步骤?

4、TMS320C54x的数据寻址方式各有什么特点,应该应用在什么场合场所? 5、链接器能完成什么工作?链接器命令文件中,MEMORY命令和SECTION命令的任务是什么? 6、什么是“自举”? 二、分析题:(要求:手写,结果需要有一定的分析计算过程,本大题共55分,每小题5分。)

1、已知:(80H)= 20H,(81H)= 30H。 LD #0, DP LD 80H, 16,B ADD 81H, B 运行以上程序后,DP、B分别等于多少? 2、回答标准串行口数据的发送和接收过程。 3、已知:A = FFFD876624, T = 0000,则运行EXP A指令后,A和T各为多少? 4、已知:B = 420D0D0D0D, T = FFF9,则运行NORM B指令后,B和T各为多少? 5、在不含循环的程序中,RPTZ #9语句和其前一句、后一句以及后第二句各运行几次? 6、说明语句: STM #0080H, IMR的功能?

7、已知中断向量TINT = 014H,中断向量地址指针IPTR = 0111H,求中断向量地址是多少? 8、已知(30H)=50H,AR2=40H,AR3=60H,AR4=80H MVKD 30H, *AR2 MVDD *AR2, *AR3 MVDM *AR3, *AR4 运行以上程序后,(30H),(40H)、*AR3,AR4的值分别是多少? 9、在堆栈操作中,PC当前地址为4020h,SP当前地址为0013h,运行PSHM AR7后,PC和SP的值分别是多少? 10、请仔细分析下列程序代码,并说明每句程序代码的作用。 sample.out -m sample.map -stack 100 sample.obj meminit.obj -l rts.lib MEMORY { PAGE 0: VECT: origin = 0xff80, length 0x80 PAGE 0: PROG: origin = 0x2000, length 0x400 PAGE 1: DATA: origin = 0x800, length 0x400 } SECTIONS {

数字信号处理作业答案

数字信号处理作业

DFT 习题 1. 如果)(~n x 是一个周期为N 的周期序列,那么它也是周期为N 2的周期序列。把)(~ n x 看作周期为N 的周期序列,令)(~1k X 表示)(~n x 的离散傅里叶级数之系数,再把)(~ n x 看作周期为N 2的周期序列,再令)(~2k X 表示)(~n x 的离散傅里叶级数之系数。当然,)(~1k X 是周期性的,周期为N ,而)(~2k X 也是周期性的,周期为N 2。试利用)(~1k X 确定)(~2k X 。(76-4)

2. 研究两个周期序列)(~n x 和)(~n y 。)(~n x 具有周期N ,而)(~ n y 具有周期M 。序列)(~n w 定义为)()()(~ ~~n y n x n w +=。 a. 证明)(~n w 是周期性的,周期为MN 。 b. 由于)(~n x 的周期为N ,其离散傅里叶级数之系数)(~k X 的周期也是N 。类似地, 由于)(~n y 的周期为M ,其离散傅里叶级数之系数)(~k Y 的周期也是M 。)(~n w 的离散傅里叶级数之系数)(~k W 的周期为MN 。试利用)(~k X 和)(~k Y 求)(~k W 。(76-5)

3. 计算下列各有限长度序列DFT (假设长度为N ): a. )()(n n x δ= b .N n n n n x <<-=000) ()(δ c .10)(-≤≤=N n a n x n (78-7) 4. 欲作频谱分析的模拟数据以10千赫速率被取样,且计算了1024个取样的离散傅里叶变换。试求频谱取样之间的频率间隔,并证明你的回答。(79 -10)

数字信号处理期末试卷!

数字信号处理模拟试题一 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样角频率Ωs与信号最高截止频率Ωc应满足关系(A ) A.Ωs>2Ωc B.Ωs>Ωc C.Ωs<Ωc D.Ωs<2Ωc 2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?(D) A.y(n)=y(n-1)x(n) B.y(n)=x(n)/x(n+1) C.y(n)=x(n)+1 D.y(n)=x(n)-x(n-1) 3.已知某序列Z变换的收敛域为5>|z|>3,则该序列为(D ) A.有限长序列 B.右边序列 C.左边序列 D.双边序列 4.实偶序列傅里叶变换是(A ) A.实偶序列 B.实奇序列 C.虚偶序列 D.虚奇序列 5.已知x(n)=δ(n),其N点的DFT[x(n)]=X(k),则X(N-1)=(B) A.N-1 B.1 C.0 D.-N+1 6.设两有限长序列的长度分别是M与N,欲通过计算两者的圆周卷积来得到两者的线性卷积,则圆周卷积的点数至少应取(B ) A.M+N B.M+N-1 C.M+N+1 D.2(M+N) 7.下面说法中正确的是(C) A.连续非周期信号的频谱为周期连续函数 B.连续周期信号的频谱为周期连续函数 C.离散非周期信号的频谱为周期连续函数 D.离散周期信号的频谱为周期连续函数 8.下列各种滤波器的结构中哪种不是IIR滤波器的基本结构?(C ) A.直接型 B.级联型 C.频率抽样型 D.并联型 9.下列关于FIR滤波器的说法中正确的是(C) A.FIR滤波器容易设计成线性相位特性

数字信号处理期末试题及答案汇总

数字信号处理期末试题及答案汇总

数字信号处理卷一 一、填空题(每空1分, 共10分) 1.序列()sin(3/5)x n n π=的周期为 。 2.线性时不变系统的性质有 律、 律、 律。 3.对4 ()()x n R n =的Z 变换为 ,其收敛域为 。 4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。 5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。 6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。 7.因果序列x(n),在Z →∞时,X(Z)= 。 二、单项选择题(每题2分, 共20分) 1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( ) A. 3 B. 4 C. 6 D. 7 3.LTI 系统,输入x (n )时,输出y (n );输入 为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n ) 4.下面描述中最适合离散傅立叶变换DFT 的是 ( ) A.时域为离散序列,频域为连续信号 B.时域为离散周期序列,频域也为离散周期序列

C.时域为离散无限长序列,频域为连续周期信号 D.时域为离散有限长序列,频域也为离散有限长序列 5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过即可完全不失真恢复原信号()A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统()A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n) 7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括()A. 实轴 B.原点C.单位圆 D.虚轴 8.已知序列Z变换的收敛域为|z|>2,则该序列为()A.有限长序列 B.无限长序列C.反因果序列 D.因果序列 9.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是( ) A.N≥M B.N≤M C.N≤2M D.N≥2M 10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( )

DSP大作业快速傅立叶变换实验与设计

DSP 原理及应用 大作业 ——快速傅立叶变换 专业:XXXX 姓名:XXX 学 号:08201081XX 指导老师: XX 时间:2XXXX 快速傅立叶变换(FFT )实验 一、设计目的 1.在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉FFT子程序。 2.熟悉应用FFT对典型信号进行频谱分析的方法 3?了解应用FFT进行信号频谱分析过程中可能出现的问题以便在实际中正确应用FFT。 4.掌握用窗函数法设计FFT快速傅里叶的原理和方法; 5 ?熟悉FFT快速傅里叶特性; 二、所需设备

PC 兼容机一台,操作系统为Windows2000(或Windows98 , WindowsXP,以下 默认为Windows2000),安装Code Composer Studio 2.0 软件。 三、设计内容 本试验要求使用FFT变换求一个时域信号的频域特性,并从这个频域特性求出该信号的频 率值。使用c语言实现对FFT算法的仿真,然后使用DSP汇编语言实现对FFT 的DSP 编程。本实验采用软件仿真,不需设置硬件。 四、设计原理 在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我 们可以使用离散Fouier变换(DFT)。这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N时,它的DFT N 1 1 N-1 X(k)=》x(nW,n⑷x(n)=石送X(kW「n 定义为:心,W N =e反换为:N心有限长序 列的DFT是其Z变换在单位圆上的等距采样,或者是序列Fourier变换的等距采样,因此可以用于序列的谱分析。 FFT并不是与DFT不同的另一种变换,而是为了减少DFT运算次数的一种快速算法。它是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。常用的FFT是以2为基数的,其长度N=2L,它的效率高,程序简单使用非常方便,当要变换的序列长度不等于2的整数次方时,为了使用以2为基数的FFT,可以用末位补零的方法,使其长度延长至2的整数次方。 在运用DFT进行频谱分析的过程中可能产生几种问题:⑴混叠 序列的频谱时被采样信号的周期延拓,当采样速率不满足Nyquist定理时, 就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。 避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。 ⑵泄漏 实际中我们往往用截短的序列来近似很长的甚至是无限长的序列,这样可以使用较短的DFT来对信号进行频谱分析,这种截短等价于给原信号序列乘以一个矩形窗函数,也相当于在频域将信号的频谱和矩形窗函数的频谱卷积,所得的频谱是原序列频谱的扩展。 泄漏不能与混叠完全分开,因为泄漏导致频谱的扩展,从而造成混叠。为了减少泄漏的影响,可以选择适当的窗函数使频谱的扩散减至最小。 DFT是对单位圆上Z变换的均匀采样,所以它不可能将频谱视为一个连续函数,就一定意义上看,用DFT来观察频谱就好像通过一个栅栏来观看一个图景一样,只能在离散点上看到真实的频谱,这样就有可能发生一些频谱的峰点或谷点被尖桩的栅栏”所拦住,不能别我们观察到。 减小栅栏效应的一个方法就是借助于在原序列的末端填补一些零值,从而 变动DFT的点数,这一方法实际上是人为地改变了对真实频谱采样的点数和位置,相当于搬动了每一根尖桩栅栏”的位置,从而使得频谱的峰点或谷点暴露出来。

DSP大作业修改过后

题目温度采集分析系统设计 学生姓名 学号 专业电子信息工程 指导教师 时间 2018.1.1

摘要:本课题设计基于TMS320F28335型号DSP的高速度、宽范围、高精度的温度采集系统方案。系统以TMS320F28335为控制核心,通过测温电路采集温度数据,经AD转换后给DSP 控制器,通过FIR滤波器计算出温度值,DSP通过RS232接口上传温度值到电脑上位机显示温度,通过LCD12864显示温度及时间,重点介绍AD转换接口电路以及系统控制软件的设计过程。 一、功能设计要求 设计一个电池供电野外温度采集分析系统,功能包括: 1.每小时采集环境温度10次,进行FIR滤波 2.每天通过串口发送单天平均气温 3.有三个按键:K1切换温度/时间显示。K2、K3修改时间,K2=time+,K3=time- 4.当电池电压低于安全值时,发送报警信息 二、硬件设计 1.系统方案: 该系统包括温度采集电路模块、TMS320F28335芯片、A/D转换部分和LCD液晶显示,首先要初始化A/D转换模块,然后等待中断,当产生中断后对采集到的模拟信号进行处理,并通过低频率的FIR滤波后得到一天的温度输出,为确保转换精度要进行多次取值求平均,转换结果放在结果寄存器的高12位上,通过编程将处理后的温度值送到LCD上进行显示。设计采用热敏电阻PT100组成的温度采集电路,利用热敏电阻输出电压值与温度间的函数关系式,检测温度的变化;然后将采集的温度送入TMS320F28335的片上A/D,将电压转换为数字信号,并通过低频率的FIR滤波后得到一天的温度输出;最后通过LCD12864显示结果。 图1 系统方案 2.主控方案:TMS320F28335主控芯片 控制芯片32位TMS320F28335芯片,该DSP芯片专门用于控制领域,最高可在150 MHz主频下工作,可进行双16 ×16乘加和32 ×32乘加操作,运算与控制速度快,并带有18 K×16位片上SRAM和128 K×16位片上FLASH;并带有两个事件管理模块,可以同

数字信号处理上机作业

数字信号处理上机作业 学院:电子工程学院 班级:021215 组员:

实验一:信号、系统及系统响应 1、实验目的 (1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。 (2) 熟悉时域离散系统的时域特性。 (3) 利用卷积方法观察分析系统的时域特性。 (4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。 2、实验原理与方法 (1) 时域采样。 (2) LTI系统的输入输出关系。 3、实验内容及步骤 (1) 认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。 (2) 编制实验用主程序及相应子程序。 ①信号产生子程序,用于产生实验中要用到的下列信号序列: a. xa(t)=A*e^-at *sin(Ω0t)u(t) b. 单位脉冲序列:xb(n)=δ(n) c. 矩形序列: xc(n)=RN(n), N=10 ②系统单位脉冲响应序列产生子程序。本实验要用到两种FIR系统。 a. ha(n)=R10(n); b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3) ③有限长序列线性卷积子程序 用于完成两个给定长度的序列的卷积。可以直接调用MATLAB语言中的卷积函数conv。 conv 用于两个有限长度序列的卷积,它假定两个序列都从n=0 开始。调用格式如下: y=conv (x, h) 4、实验结果分析 ①分析采样序列的特性。 a. 取采样频率fs=1 kHz,,即T=1 ms。 b. 改变采样频率,fs=300 Hz,观察|X(e^jω)|的变化,并做记录(打印曲线);进一步降低采样频率,fs=200 Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(e^j ω)|曲线。 程序代码如下: close all;clear all;clc; A=50; a=50*sqrt(2)*pi; m=50*sqrt(2)*pi; fs1=1000; fs2=300; fs3=200; T1=1/fs1; T2=1/fs2; T3=1/fs3; N=100;

数字信号处理期末复习题

一、选择题 2、对于x(n)=n 21??? ??u(n)的Z 变换,( )。 A. 零点为z=21,极点为z=0 B. 零点为z=2 1 ,极点为z=2 C. 零点为z=21,极点为z=1 D. 零点为z=0,极点为z=21 3、()?? ? ??=n A n x π513sin 是一个以( )为周期的序列。 A. 16 B. 10 C. 14 D. 以上都不对,是一个非周期序列 6、序列()1+n δ的波形图为( )。 C B A 7、s 平面的虚轴对应z 平面的( )。 A. 单位圆内 B. 单位圆外 C. 正实轴 D. 单位圆上 8、关于快速傅里叶变换,下述叙述中错误的是( )。 A.相对离散傅里叶变换来说,它不是一种全新的算法 B.nk N W 具有对称、周期和可约性 C.每个蝶形运算的两个输出值仍放回到两个输入所在的存储器中,能够节 省存储单元 D.就运算量来说,FFT 相对DFT 并没有任何减少 9、下列关于FIR 滤波器的说法中正确的是( )。 A. FIR 滤波器不能设计成线性相位 B. 线性相位FIR 滤波器的约束条件是针对()h n C. FIR 滤波器的单位冲激响应是无限长的

D.不管加哪一种窗,对于FIR 滤波器的性能都是一样的 10、幅度量化、时间离散的的信号是( )。 A. 连续时间信号 B. 离散时间信号 C. 数字信号 D. 模拟信号 11、幅值连续、时间为离散变量的信号是( )。 A. 连续时间信号 B. 离散时间信号 C. 数字信号 D. 模拟信号 12、右面的波形图代表序列( )。 A. ()34-n R B. ()25+n R C. ()25-n R D. ()24-n R 13、序列()??? ??-=ππ6183cos n A n x 的周期为( )。 A. 16 B. 10 C. 14 D. 以上都不对,是一个非周期序列 14、从奈奎斯特采样定理得出,要使信号采样后能够不失真还原,采样频率f 与信号最高频率 f h 关系为:( )。 A. f ≤2f h B. f ≥2f h C. f ≥f h D. f ≤f h 16、无限长单位冲激响应(IIR )滤波器的结构是( )型的。 A. 非递归 B. 无反馈 C. 递归 D. 不确定 17、已知序列Z 变换的收敛域为|z |<1,则该序列为( )。 A.有限长序列 B. 左边序列 C. 右边序列 D.双边序列 18、下面说法中正确的是( )。 A. 连续非周期信号的频谱为周期连续函数 B. 连续周期信号的频谱为周期连续函数 C. 离散周期信号的频谱为周期连续函数 D. 离散非周期信号的频谱为周期连续函数 19、利用矩形窗函数法设计FIR 滤波器时,在理想频率特性的不连续点附近形 成的过滤带的宽度近似等于( )。

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念。 0.1信号、系统与信号处理 1.信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号 能量信号/功率信号 连续时间信号/离散时间信号/数字信号 按自变量与函数值的取值形式不同分类: 2.系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3.信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2 数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理,而且

也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 (1)前置滤波器 将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3 数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4 数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。 0.5 课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessing)。信号对象主要是随机信号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1.按自变量与函数值的取值形式是否连续信号可以分成哪四种类型? 2.相对模拟信号处理,数字信号处理主要有哪些优点? 3.数字信号处理系统的基本组成有哪些?

DSP大作业

无限冲激响应滤波器(IIR)算法及实现 姓名:徐旭日 学号:20130700332 专业班级:电子信息工程(2)班 指导老师:王忠勇 日期:2016/6/2

摘要:21世纪是数字化的时代,随着信息处理技术的飞速发展,数字信号处理技术逐渐发 展成为一门主流技术。相对于模拟滤波器,数字滤波器没有漂移,能够处理低频信号,频率特性可做成非常接近于理想的特性,且精度可以达到很高,容易集成等。这些优势决定数字滤波器的应用越来越广泛。数字滤波器是数字信号处理中最重要的组成部分之一,被广泛应用于语音图像处理、数字通信、谱分析、模式识别、自动控制等领域。本课题通过软件设计IIR数字滤波器,并对所设计的滤波器进行仿真:应用DSP集成开发环境—CCS调试程序,用TMS320F2812实现IIR数字滤波。具体工作包括:对IIR数字滤波器的基本理论进行分析和探讨。应用DSP集成开发环境调试程序,用TMS320F2812来实现IIR数字滤波。通过硬件液晶显示模块验证试验结果,并对相关问题进行分析。 关键词:数字滤波器;DSP;TMS320F2812;无限冲激响应滤波器(IIR)。 引言:随着数字化飞速发展,数字信号处理技术受到了人们的广泛关注,其理论及算法 随着计算机技术和微电子技术的发展得到飞速发展,被广泛应用于语音图像处理、数字通信、谱分析、模式识别、自动控制等领域。数字信号处理由于运算速度快,具有可编程的特性和接口灵活的特点,使得它在许多电子产品的研制、开发和应用中,发挥着重要的作用。采用DSP芯片来实现数字信号处理系统是当前发展的趋势。 在数字信号处理中,数字滤波占有极其重要的地位。滤波是信号处理中的一个重要概念。滤波分经典滤波和现代滤波。经典滤波的概念,是根据傅里叶分析和变换提出的一个工程概念。根据高等数学理论,任何一个满足一定条件的信号,都可以被看成是由无限个正弦波叠加而成。换句话说,就是工程信号是不同频率的正弦波线性叠加而成的,组成信号的不同频率的正弦波叫做信号的频率成分或叫做谐波成分。只允许一定频率范围内的信号成分正常通过,而阻止另一部分频率成分通过的电路,叫做经典滤波器或滤波电路。数字滤波是语音和图像处理、模式识别、谱分析等应用中的一个基本处理算法。在许多信号处理应用中用数字滤波器替代模拟滤波器具有许多优势。数字滤波器容易实现不同幅度和相位频率特性指标。用DSP芯片实现数字滤波除具有稳定性好、精度高、不受环境影响外,还具有灵活性好的特点。用可编程DSP芯片实现数字滤波可通过修改滤波器的参数十分方便的改变滤波器的特性。 原理: 1.无限冲激响应数字滤波器的基础理论。 利用模拟滤波器成熟的理论及其设计方法来设计IIR数字低通滤波器是常用的方法。 H s,再按照一 设计过程是:按照数字滤波器技术指标要求一个过渡模拟低通滤波器() a H s转换成数字低通滤波器函数H(z)。由此可见,设计的关键问题就 定的转换关系将() a H s转换成z平面上的H(z)。 是要找到这种关系,将s平面的() a H s从s平面转换到z平面的方法有多种,但工程上常用的是脉冲响 将系统函数() a 应不变法和双线性变换法。在课题中我们采用双线性变换法设计IIR数字低通滤波器。 通过采用非线性频率压缩的方法,将整个模拟频率轴压缩到±π/T之间,再用

数字信号处理作业+答案讲解

数字信号处理作业 哈尔滨工业大学 2006.10

DFT 习题 1. 如果)(~n x 是一个周期为N 的周期序列,那么它也是周期为N 2的周期序列。把)(~ n x 看作周期为N 的周期序列,令)(~ 1k X 表示)(~n x 的离散傅里叶级数之系数,再把)(~ n x 看作周期为N 2的周期序列,再令)(~ 2k X 表示)(~n x 的离散傅里叶级数之系数。当然,)(~ 1k X 是周期性的,周期为N ,而)(~ 2k X 也是周期性的,周期为N 2。试利用)(~ 1k X 确定)(~ 2k X 。(76-4)

2. 研究两个周期序列)(~ n x 和)(~ n y 。)(~ n x 具有周期N ,而)(~ n y 具有周期M 。序列 )(~n w 定义为)()()(~ ~~n y n x n w +=。 a. 证明)(~ n w 是周期性的,周期为MN 。 b. 由于)(~n x 的周期为N ,其离散傅里叶级数之系数)(~ k X 的周期也是N 。类似地, 由于)(~n y 的周期为M ,其离散傅里叶级数之系数)(~k Y 的周期也是M 。)(~ n w 的离散傅里叶级数之系数)(~ k W 的周期为MN 。试利用)(~ k X 和)(~ k Y 求)(~ k W 。(76-5)

3. 计算下列各有限长度序列DFT (假设长度为N ): a. )()(n n x δ= b .N n n n n x <<-=000)()(δ c .10)(-≤≤=N n a n x n (78-7) 4. 欲作频谱分析的模拟数据以10千赫速率被取样,且计算了1024个取样的离散傅里叶变换。试求频谱取样之间的频率间隔,并证明你的回答。(79 -10)

数字信号处理期末试卷(含答案)

一、 填空题(每题2分,共10题) 1、 1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再 进行幅度量化后就是 信号。 2、 2、 )()]([ω j e X n x FT =,用)(n x 求出)](Re[ω j e X 对应的序列 为 。 3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 的N 点等间隔采样。 4、)()(5241n R x n R x ==,只有当循环卷积长度L 时,二者的循环卷积等于线性卷积。 5、用来计算N =16点DFT ,直接计算需要_________ 次复乘法,采用基2FFT 算法,需要________ 次复乘法,运算效率为__ _ 。 6、FFT 利用 来减少运算量。 7、数字信号处理的三种基本运算是: 。 8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2 )4()1(5.1)5()0(======h h h h h h ,其幅度特性有什么特性? ,相位有何特性? 。 9、数字滤波网络系统函数为 ∑=--= N K k k z a z H 111)(,该网络中共有 条反馈支路。 10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=)。 二、 选择题(每题3分,共6题) 1、 1、 )6 3()(π-=n j e n x ,该序列是 。 A.非周期序列 B.周期 6π = N C.周期π6=N D. 周期π2=N 2、 2、 序列 )1()(---=n u a n x n ,则)(Z X 的收敛域为 。 A. a Z < B. a Z ≤ C. a Z > D. a Z ≥ 3、 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y , 19,1,0),()()(Λ=?=k k Y k X k F ,19,1,0)],([)(Λ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。 A.70≤≤n B.197≤≤n C.1912≤≤n D.190≤≤n 4、 4、 )()(101n R n x =,) ()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可 能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.16

数字信号处理期末试卷及答案

A 一、选择题(每题3分,共5题) 1、 )6 3()(π-=n j e n x ,该序列是 。 A.非周期序列 B.周期6 π = N C.周期π6=N D. 周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。 A.a Z < B.a Z ≤ C.a Z > D.a Z ≥ 3、 对)70() (≤≤n n x 和)190()(≤≤n n y 分别作20 点 DFT ,得 )(k X 和)(k Y , 19,1,0),()()( =?=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。 A.70≤≤n B.197≤≤n C.1912≤≤n D.190≤≤n 4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.16

西工大DSP大作业

西工大DSRt作业

实验1基于CCS的简单的定点DSF程序 一、实验要求 1、自行安装CCS3.3版本,配置和运行CCS 2、熟悉CCS开发环境,访问读写DSP勺寄存器AC0-AC3 AR0-AR7, PC, T0-T3 3、结合C5510的存储器空间分配,访问DSR的内部RAM 4、编写一个最简单的定点DSP程序,计算下面式子 y=0.1*1.2+35*20+15*1.6 5、采用定点DSP进行计算,确定每个操作数的定点表示方法,最后结果的定点表示方法,并验证结果 6、对编写的程序进行编译、链接、运行、断点执行、单步抽并给出map映射文件 二、实验原理 DSP芯片的定点运算---Q格式(转)2008-09-03 15:47 DSP 芯片的 定点运算 1. 数据的溢出: 1>溢出分类:上溢(oveflow ): 下溢(underflow ) 2>溢出的结果:Max Min Min Max un sig ned char 0 255 sig ned char -128 127 un sig ned int 0 65535 signed int -32768 32767

上溢在圆圈上按数据逆时针移动;下溢在圆圈上顺时钟移动。 例:signed int : 32767+1 = —32768 ; -32768-1 = 32767 unsigned char : 255+1 = 0; 0-1 = 255 3>为了避免溢出的发生,一般在DSP中可以设置溢出保护功能。当 发生溢出时,自动将结果设置为最大值或最小值。 2. 定点处理器对浮点数的处理: 1>定义变量为浮点型(float , double ),用C语言抹平定点处理器和浮点处理器 2>放大若干倍表示小数。比如要表示精度为0.01的变量,放大100倍去运算,3>定标法:Q格式:通过假定小数点位于哪一位的右侧,从而确定小 数的精度。Q0 :小数点在第0位的后面,即我们一般采用的方法Q15 小数点在第15位的后面,0~ 14位都是小数位。转化公式:Q= (int ) (F X pow(2, q)) F =(float ) (Qx pow (2,—q)) 3. Q格式的运算 1>定点加减法:须转换成相同的Q格式才能加减 2>定点乘法:不同Q格式的数据相乘,相当于Q值相加 3>定点除法:不同Q格式的数据相除,相当于Q值相减 4>定点左移:左移相当于Q值增加 5>定点右移:右移相当于Q减少 4. Q格式的应用格式 实际应用中,浮点运算大都时候都是既有整数部分,也有小数部分的。 所以要选择一个适当的定标格式才能更好的处理运算。一般用如下两 种方法:

相关文档
最新文档