域时钟同步

域时钟同步
域时钟同步

本文介绍了如何使用 Windows 时间服务同步计算机上的时间。在 Windows XP 中,Windows 时间服务使您计算机的内部时钟可与网络中的其他时钟自...

本文介绍了如何使用 Windows 时间服务同步计算机上的时间。

在 Windows XP 中,Windows 时间服务使您计算机的内部时钟可与网络中的其他时钟自动同步。此同步的时间源取决于计算机是在 Active Directory 域中还是在工作组中。

当计算机为工作组的一部分时,您必须手动配置时间同步设置。通过配置使用一个公认精确的时间源的计算机上的 Windows 时间服务,您可以将某一台计算机确定为为本地可靠的时间源,可以使用特定的硬件也可使用 Internet 上的可用时间源。您可以手动配置工作组中的所有其他计算机以便将它们的时间与此本地时间源同步。

如果计算机属于 Active Directory 域,则 Windows 时间服务使用域控制器上可用的Windows 时间服务自动配置其自身。Windows 时间服务将其域中的一个域控制器配置为一个可靠的时间源,并周期性地让其自身与此时间源同步。根据特定的需要您可以修改或覆盖这些设置。

如何同步域中计算机的时间

1.单击开始,指向所有程序,指向附件,然后单击命令提示符。

2.键入 w32tm /resync,然后按 ENTER 键。

如何使用外部源同步内部时间服务器

1.单击开始,指向所有程序,指向附件,然后单击命令提示符。

2.键入下列行,(其中的peerlist为合适时间源的域名系统 (DNS) 名称或 IP 地址

的逗号分隔列表),然后按 ENTER 键。

w32tm /config /syncfromflags:manual /manualpeerlist:peerlist

3.键入 w32tm /config /update,然后按 ENTER 键。

注意:

?此过程最常见的用途是将内部网络的权威时间源与一个非常精确的外部时间源进行同步。不过,您可以在任何基于 Windows XP 的计算机上运行此过程。

?如果计算机不能够到达服务器,此过程将失败而且将在事件日志中写入一项记录。

?您可以使用 Internet 上的计算机来提供精确的时间信息。例如,可以使用National Institute of Standards and Technology (NIST),它提供 NIST 网络时

间服务。

如何配置服务

如何启动、停止、暂停、恢复或重新启动服务

备注:必须以管理员或 Administrators 组成员的身份登录才能完成此步骤。如果您的计算

机已联网,则网络策略设置也可能使您无法完成此过程。

1.单击开始,单击控制面板,单击“性能和维护”,单击管理工具,然后双击服

务。

2.在“详细信息”窗格中,单击该服务。

3.在操作菜单上,单击开始、停止、暂停、恢复或重新启动。

4.若要为某项服务配置启动参数,请右键单击此服务,单击属性,然后在单击开

始前,在“启动参数”框中键入参数。这些设置只能使用一次并且不能够保存。

反斜杠字符 (\) 作为转义符使用,对于参数中的每一个反斜杠字符都要键入两

个反斜杠字符。

注意:

?如果您停止、启动或重新启动一项服务,任何相关的服务也会受到影响。

?更改默认服务设置可能会使某些重要服务不能正常运行。当您为配置为自动启动的服务更改启动类型和登录身份设置时务必格外谨慎。

如何配置服务的启动方式

备注:必须以管理员或 Administrators 组成员的身份登录才能完成此步骤。如果您的计算

机已联网,则网络策略设置也可能使您无法完成此过程。

1.单击开始,单击控制面板,单击“性能和维护”,单击管理工具,然后双击服

务。

2.右键单击要配置的服务,然后单击属性。

3.单击常规选项卡,然后在“启动类型”框中,单击自动、手动或禁用。

4.若要指定此服务可用来进行登录的用户帐户,请单击登录选项卡,然后使用下

列操作方法之一:

o若要指定此服务使用LocalSystem 帐户,请单击“本地系统帐户”。

o若要指定此服务使用 LocalService 帐户,请单击“此帐户”,然后

键入 NT AUTHORITY\LocalService。

o若要指定此服务使用 NetworkService 帐户,请单击“此帐户”,然

后键入 NT AUTHORITY\NetworkService。

o若要再指定一个帐户,请单击“此帐户”,单击浏览,然后在选择

用户对话框中指定一个用户帐户。完成之后,单击确定。

5.在密码框和“确认密码”框中键入用户帐户的密码,然后单击确定。

注意:

?更改默认服务设置可能会使某些重要服务不能正常运行。当您为配置为自动启动的服务更改启动类型和登录身份设置时务必格外谨慎。

?如果您启用或禁用一项服务后在启动计算机时出现问题,您可以在安全模式下启动计算机。接着您可以更改此服务配置或恢复默认配置。

?如果您选中“允许服务与桌面交互”复选框,此服务就配置为在桌面上提供一个用户界面。只有在您单击“本地系统帐户”和此服务配置为与桌面交互时此

功能才可用。

疑难解答

如果 Windows 时间服务被手动停止,则可能会发生客户机与服务器不同步的情况。为解决此问题,请启动 Windows 时间服务。

要启动 Windows 时间服务,请:

1.单击开始,指向所有程序,指向附件,然后单击命令提示符。

2.键入 net start w32time,然后按 ENTER 键。

本文出自“汜水流年”博客,请务必保留此出处https://www.360docs.net/doc/764623431.html,/3746924/690654

时间同步系统的要求

4.3.12时间同步系统的要求 4.3.12.1总的要求 4.3.12.1.1 时间同步系统的构成 1)时间同步系统由一级主时钟和时钟扩展装置组成。 2)一级主时钟用于接收卫星或上游时间基准信号,并为各时间扩展装置提供时间信号。3)一级主时钟与时钟扩展装置均配置时间保持单元,保证在输入信号中断的情况下,依然不间断地提供高精度的输出信号。 4.3.12.1.2时间同步系统的布置 根据本期工程情况,将配置1面主时钟装置屏和2面时钟扩展装置屏。主时钟本体装置屏安装在集控楼内,主时钟屏配置的2台主时钟为整个时间同步系统提供2路冗余的时间基准信号输出。机组保护室和网络继电器室各设1面时钟扩展装置屏,主时钟装置与时钟扩展装置之间采用光纤连接。时间同步系统天线安装在集控楼楼顶上。 4.3.12.1.3时间同步系统的运行条件 1)电源要求 同步时钟装置(一级主时钟和二级扩展)采用两路AC220V电源供电,投标方应配置双电源自动切换装置(美国ASCO 7000系列产品)实现双电源自动切换。 2)工作环境 工作温度: -10~+55℃ 贮存温度: -40~+55℃ 湿度: 5%~95%(不结露)。 所有设备均可放置在无屏蔽、无防静电措施的机房内。 4.3.12.1.4 时间同步系统的电磁兼容性 时间同步系统在集控楼的电磁场环境下能正常工作,符合“GB/T13926-1992 工业过程测量和控制装置的电磁兼容性”中有关规定的要求,并达到Ш级及以上标准。 4.3.12.2功能要求 4.3.12.2.1 时间同步系统配置的主时钟及时间同步信号扩展装置对厂内DCS、SIS、电气控制装置及其他需要时钟同步的设备进行时间同步,并应能提供满足这些设备需要的各种时间同步信号及接口(含接口装置、通讯电缆等设备)。 4.3.12.2.2时间同步系统两台主时钟的时间信号接收单元应能独立接收GPS卫星和我国北斗卫星发送的无线时间信号作为主外部时间基准信号。当某一主时钟的时间接收单元发生故

IEEE1588精密时钟同步协议测试技术

1引言 以太网技术由于其开放性好、价格低廉和使用方便等特点,已经广泛应用于电信级别的网络中,以太网的数据传输速度也从早期的10M提高到100M,GE,10GE。40GE,100GE正式产品也将于2009年推出。 以太网技术是“即插即用”的,也就是将以太网终端接到IP网络上就可以随时使用其提供的业务。但是,只有“同步的”的IP网络才是一个真正的电信级网络,才能够为IP网络传送各种实时业务与数据业务的多重播放业务提供保障。目前,电信级网络对时间同步要求十分严格,对于一个全国范围的IP网络来说,骨干网络时延一般要求控制在50ms之内,现行的互联网网络时间协议NTP (NetworkTimeProtocol),简单网络时间协议SNTP(SimpleNetwork Time Protocol)等不能达到所要求的同步精度或收敛速度。基于以太网的时分复用通道仿真技术(TDM over Ethernet)作为一种过渡技术,具有一定的以太网时钟同步概念,可以部分解决现有终端设备用于以太网的无缝连接问题。IEEE 1588标准则特别适合于以太网,可以在一个地域分散的IP网络中实现微秒级高精度的时钟同步。本文重点介绍IEEE 1588技术及其测试实现。 2IEEE1588PTP介绍 IEEE1588PTP协议借鉴了NTP技术,具有容易配置、快速收敛以及对网络带宽和资源消耗少等特点。IEEE1588标准的全称是“网络测量和控制系统的精密时钟同步协议标准(IEEE1588Precision Clock Synchronization Protocol)”,简称PTP(Precision Timing Protocol),它的主要原理是通过一个同步信号周期性的对网络中所有节点的时钟进行校正同步,可以使基于以太网的分布式系统达到精确同步,IEEE 1588PTP时钟同步技术也可以应用于任何组播网络中。 IEEE1588将整个网络内的时钟分为两种,即普通时钟(OrdinaryClock,OC)和边界时钟(BoundaryClock,BC),只有一个PTP通信端口的时钟是普通时钟,有一个以上PTP通信端口的时钟是边界时钟,每个PTP端口提供独立的PTP通信。其中,边界时钟通常用在确定性较差的网络设备(如交换机和路由器)上。从通信关系上又可把时钟分为主时钟和从时钟,理论上任何时钟都能实现主时钟和从时钟的功能,但一个PTP通信子网内只能有一个主时钟。整个系统中的最优时钟为最高级时钟GMC(Grandmaster Clock),有着最好的稳定性、精确性、确定性等。根据各节点上时钟的精度和级别以及UTC(通用协调时间)的可追溯性等特性,由最佳主时钟算法(Best Master Clock)来自动选择各子网内的主时钟;在只有一个子网的系统中,主时钟就是最高级时钟GMC。每个系统只有一个GMC,且每个子网内只有一个主时钟,从时钟与主时钟保持同步。图1所示的是一个典型的主时钟、从时钟关系示意。

时钟同步网教材

4 时钟同步网 4.1 一般规定 4.1.1 铁路时钟同步网(又称“频率同步网”)用于为铁路数字通信等网络提供基准频率信号。 4.1.2铁路时钟同步网由一级时钟节点、二级时钟节点、三级时钟节点、定时链路、网管系统及配套设备组成。 4.1.3铁路时钟同步网分为骨干同步网和铁路局内同步网。铁路骨干同步网由全网基准时钟(简称PRC、一级时钟节点)、区域基准时钟(简称LPR、一级时钟节点)、定时链路和网管系统组成;铁路局内同步网由LPR、二级时钟节点(SSU-T)、三级时钟节点(SSU-L)、定时链路和网管系统组成。原则上骨干同步网为一个同步区,每个铁路局为一个同步区。全路采用混合同步方式,每个同步区内采用主从同步方式。 4.1.4 时钟同步网的网络管理分为二级。一级网管设置在通信中心,负责铁路骨干同步网的管理;二级网管设置在各铁路局,负责铁路局内同步网的管理,在同步时钟设备所在地根据需要设置本地维护终端。 4.2 设备管理 4.2.1 时钟同步专业与其他专业的维护界面以同步时钟设备配线架上的连接器为界,连接器(含)至同步时钟设备由同步专业维护。 4.2.2 维护部门应根据时钟同步网维护需要,配备原子钟、时频测试仪、频率计、SDH分析仪(具备抖动、漂移测试功能)等相关仪表。 4.2.3 维护部门应具备以下技术资料: (1)相关工程竣工资料、验收测试记录; (2)时钟同步网网图; (3)机架面板图; (4)端口运用台账;

(5)应急预案; (6)设备及仪表技术资料(含说明书、维护手册、操作手册等)。 4.3 设备及网络维护 4.3.1时钟同步网维修项目与周期见表4.3.1。 表4.3.1 时钟同步网维修项目与周期 类别序号项目与内容周期备注 日常检修1 设备状态检查 日 网管或机房 2 告警等事件检查分析处理网管 3 卫星接收机运行状态检查 月 网管 4 地面输入链路的频偏统计 5 时钟设备(含卫星信号)频率偏差检查 季 网管或仪表6 设备表面清扫机房(雷雨 后天馈线及 防雷检查)7 卫星接收机天线馈线及周边环境检查 8 定时链路状态检查 网管 9 系统数据备份并转储 集中检修1 时钟设备输出口频率偏差测试 年 开通3年及 以上设备每 种类型端口 使用仪表抽 测1路 2 时钟设备输出口MTIE、TDEV测试 3 时钟设备输出口抖动测试 4 设备地线检查、天馈线防雷装置检查雨季前 5 配线及标签检查 重点整修1 承担定时链路的SDH网元SEC时钟输出口抖 动测试 根据需 要 仪表 2 承担定时链路的SDH网元SEC时钟输出 MTIE、TDEV测试 3 定时链路SDH网元数检查、调整网管 4 系统隐患整治可根据需要 检查各项质 量指标 5 系统版本升级 6 网络优化调整 4.4 质量标准 4.4.1时钟同步设备、SDH设备应具备正确标示、识别、传送同步状态信息(SSM)的功能。各级时钟同步设备、SDH网元时钟均应处于正常跟踪状态,且主备用时钟输入口的时钟质量等级均应达到一级时钟等级。

时钟同步系统施工方案

时钟同步系统施工方案

施工方案审批表 审核单位:审核意见:审核人: 日期:监理单位:监理意见:监理人: 日期:批准单位:审批意见:审批人: 日期:

目录 一、施工方案综述............................................................................................... - 3 - 二、工程概况及特点........................................................................................... - 4 - 三、施工步骤....................................................................................................... - 5 - 四、风险分析..................................................................................................... - 14 - 五、生产安全及文明施工................................................................................. - 14 - 一、施工方案综述 根据中韩(武汉)石油化工有限公司PLC系统的改造技术要求和我公司对改造要求的理解来编制施工方案。

GPS时钟同步装置K用户手册(C型D型)

一、概述 随着计算机网络的迅猛发展,网络应用已经非常普遍,如电力、金融、通信、交通、广电、安防、石化、冶金、水利、国防、医疗、教育、政府机关、IT等领域的网络系统需要在大范围保持计算机的时间同步和时间准确,因此有一个好的标准时间校时器是非常必要的。为了适应这些领域对于时间越来越精密的要求,锐呈公司精心设计、自主研发了K系列NTP网络时间服务器。该装置以美国全球定位系统(GPS)为时间基准,内嵌国际流行的NTP-SERVER服务,以NTP/SNTP协议同步网络中的所有计算机、控制器等设备,实现网络授时。 K806卫星同步时钟-C型、D型(GPS时间服务器、NTP时间服务器、时间服务器、GPS 网络同步时钟、网络时钟、GPS网络时间服务器、NTP网络时间服务器)采用SMT表面贴装技术生产,以高速芯片进行控制,无硬盘和风扇设计,精度高、稳定性好、功能强、无积累误差、不受地域气候等环境条件限制、性价比高、操作简单、全自动智能化运行,免操作维护,适合无人值守。该产品可以为计算机网络、计算机应用系统、流程控制管理系统、电子商务系统、网上B2B系统以及数据库的保存维护等系统提供精密的标准时间信号和时间戳服务。 二、安全须知 1.使用本装置之前,请您仔细阅读用户手册和装置随带的其它用户说明。 2.非专业人员请勿随意打开机箱,不能改动任何跳线设置,以免影响装置正常工作。3.避免金属线头(丝)或其它金属物落入机箱内,以防止短路或其它故障的发生。4.装置运行过程中,非专业人员不可随意按动装置前面板的按键。 5.装置使用之前,请将装置后面板上的接地端可靠接地。 6.在接电源之前,请确认装置后面板和用户手册上的电源要求,按要求接入电源。7.不同类型的对时信号输出的信号电压、电流幅值不同,在将信号接入被对时设备前请确认所接对时信号类型是否正确,以免损坏被对时设备接口。 三、装置的特点 1.精度高,同步快。

跨时钟域处理

快时钟域信号到慢时钟域有可能的情况是: 快时钟域信号宽度比慢时钟信号周期窄,导致漏采。 解决的方法有: 1.将快时钟域信号延长,至少有慢时钟周期的一到两个周期宽 2.使用反馈的方法,快时钟域信号有效直到慢时钟域有反馈信号,表示已经正确采样此信 号,然后快时钟域信号无效。

通过反馈的方式很安全,但是从上图可以看出来延时是非常大的。慢时钟采快时钟信号,然后反馈信号再由快时钟采。 以上是简单的单个信号同步器的基本方法。 多个信号跨时钟域 多个控制信号跨时钟域仅仅通过简单的同步器同步有可能是不安全的。 简单举例,b_load和b_en同步至a_clk时钟域,如果这两个信号有一个小的skew,将导致在a_clk时钟域中两个信号并不是在同一时刻起作用,与在b_clk中的逻辑关系不同。解决的方法应该比较简单,就是将b_load和b_en信号在b_clk时钟域中合并成一个信号,然后同步至a_clk中。 如果遇到不能合并的情况,如译码信号。如下图

如果Bdec[0]、bdec[1]间存在skew将导致同步至a_clk中后译码错误,出现误码。在这种情况下,建议加入另一个控制信号,确保bdec[0]、bec[1]稳定时采。例如在bdec[0]、bec[1]稳定输出后一到两个周期b_clk域输出一个en信号,通知a_clk域此时可以采bdec[0]、bec[1]信号。这样可确保正确采样。 数据路径同步 对数据进行跨时钟域处理时,如果采用控制信号同步的方式进行处理的话,将是非常浩大的工程,而且是不安全的。 简单来说,数据同步有两种常见的方式: 1.握手方式 2.FIFO 简要说下握手方式,无非就是a_clk域中首先将data_valid信号有效,同时数据保持不变,然后等待b_clk中反馈回采样结束的信号,然后data_valid信号无效,数据变化。如有数据需要同步则重复上述过程。握手方式传输效率低,比较适用于数据传输不是很频繁的,数据量不大的情况。 FIFO则适合数据量大的情况,FIFO两端可同时进行读/写操作,效率较高。而且如果控制信号比较多,也可采用fifo方式进行同步,将控制信息与数据打包,写入FIFO,在另一端读取,解码,取得数据和控制信息。

同步网时钟及等级

同步网时钟及等级 基准时钟 同步网由各节点时钟和传递同步定时信号的同步链路构成.同步网的功能是准确地将同步定时信号从基准时钟传送给同步网的各节点,从而调整网中的各时钟以建立并保持信号同步,满足通信网传递各种通信业务信息所需的传输性的需要,因此基准时钟在同步网中至关重要. 基准时钟源由网络中心基准时钟(NPRC)提供.它由两个铯原子钟或二套接收 GPS/GLONASS的同步时钟设备或二套接收双GPS的同步时钟设备组成.本地基准时钟(LPRC)设置在大区或重要的汇接节点上,配置一套接收GPS/GLONASS双星或双GPS的同步时钟设备,具有双备份铷钟,并可通过地面同步链路接收邻近区域内的基准定时信号.由于铯原子钟价格较高,维护管理不方便,作为备用;双星接收机同步时钟设备(包括双GPS)作为主用,它可以提供频率稳定度优于1×10-11长期精度(实际可达1×10-12/ 天,N×10-13/周),时间精度小于300 ns(实际可达100ns),同时还可利用中国电信国际局基准信号同步本站时钟设备作为备用基准输入. 在各大区中心和重要汇接中心,配置本地基准时钟(LPRC),具有同时接收GPS和GLONASS卫星的同步时钟设备,同时通过PDH 2Mb/s传输链路或SDH的STM-N线路信号接收来自邻近的基准定时信号. 基准时钟信号的传送与分配 在数字同步网中,高稳定度的基准时钟是同步网的最高基准源,通过等级分配结构提供同步信息.例如根据光缆干线网络示意图,设置于一级节点(NPRC)网络中心基准时钟通过PDH 或SDH传输系统向二级节点和三级节点传递定时信号.这些数字延伸和基准时钟一起称为基准分配网络.基准分配网络应当设置主用和备用,如果某个二级时钟失去了与基准时钟的同步,它将以保持方式工作,并且在必要时使用备用传输路由满足滑动率指标.因此,在基准分配网络内短时间的中断对同步影响很小,甚至没有影响. 局内综合定时供给 局内综合定时供给发生器,受来自同步链路的至少两个2048Kb/s信号同步,定时供给发生器向楼内的所有被同步的时钟提供2048Kb/s,2048KHZ等多种定时信号. 楼内同步链路选择: (1)为安全可靠起见,楼内同步链路尽可能分散.例如,主备用定时尽可能来自不同路由; (2)为防止基准发生故障性中断,应保证同步链路能适时倒换和识别;

FPGA与SoC芯片设计中五步法CDC跨时钟域检查方法学

Advanced Verification White Paper Five Steps to Quality CDC Verification Ping Yeung Ph.D. Mentor Graphics

CDC synchronizers are used to reduce the probability of metastable signals. Taking unpredictable metastable sig- nals and creating predictable behavior, they prevent metastable values from reaching the receiving clock domain.Metastability Effects Even when proper CDC synchronizers are used for all clock-domain crossings and all CDC protocols are cor-rectly implemented, metastability inevitably leads to unpredictable cycle-level timing [4, 5]. Traditional RTL simulation does not model metastability, therefore, it cannot be used to find functional problems that may arise when metastability manifests in hardware. We are going to show two scenarios in which the cycle-level timing of RTL simulation differs from the cycle-level timing of the actual hardware in the presence of metastability.In Figure 3, the incoming CDC signal, cdc_d , violates the register setup time. Although it is sampled correctly in RTL simulation, the register is metastable and the output settles to 0. As a result, the hardware transition is delayed by one cycle. Figure 2: A two-register CDC synchronizer. Figure 4: Hold time violation: hardware transition is advanced by one cycle. Figure 3: Setup time violation: hardware transition is delayed by one cycle.

电力时钟同步系统解决方案

电力GPS时钟同步系统解决方案 北京创想京典科技发展有限公司 科 技 领先铸就最佳

什么是时间? 时间是一个较为抽象的概念,爱因斯坦在相对论中提出:不能把时间、空间、物质三者分开解释,"时"是对物质运动过程的描述,"间"是指人为的划分。时间是思维对物质运动过程的分割、划分。 在相对论中,时间与空间一起组成四维时空,构成宇宙的基本结构。时间与空间都不是绝对的,观察者在不同的相对速度或不同时空结构的测量点,所测量到时间的流逝是不同的。广义相对论预测质量产生的重力场将造成扭曲的时空结构,并且在大质量(例如:黑洞)附近的时钟之时间流逝比在距离大质量较远的地方的时钟之时间流逝要慢。现有的仪器已经证实了这些相对论关于时间所做精确的预测,并且其成果已经应用于全球定位系统。另外,狭义相对论中有“时间膨胀”效应:在观察者看来,一个具有相对运动的时钟之时间流逝比自己参考系的(静止的)时钟之时间流逝慢。 就今天的物理理论来说时间是连续的,不间断的,也没有量子特性。但一些至今还没有被证实的,试图将相对论与量子力学结合起来的理论,如量子重力理论,弦理论,M理论,预言时间是间断的,有量子特性的。一些理论猜测普朗克时间可能是时间的最小单位。

什么是时间? 根据斯蒂芬·威廉·霍金(Stephen William Hawking)所解出广义相对论中的爱因斯坦方程式,显示宇宙的时间是有一个起始点,由大霹雳(或称大爆炸)开始的,在此之前的时间是毫无意义的。而物质与时空必须一起并存,没有物质存在,时间也无意义。

卫星时钟系统为什么含有精确的时间信息? 地球本身是一个不规则的圆,加上地球自转和公转的误差,如果仅仅依靠经度、纬度、海拔高度三个参数来定位的偏差会很大,所以 引入了一个时间参数,每个卫星都内置了一个高稳定度的原子钟!

时钟同步技术概述

作为数字通信网的基础支撑技术,时钟同步技术的发展演进始终受到通信网技术发展的驱动。在网络方面,通信网从模拟发展到数字,从TDM网络为主发展到以分组网络为主;在业务方面,从以TDM话音业务为主发展到以分组业务为主的多业务模式,从固定话音业务为主发展到以固定和移动话音业务并重,从窄带业务发展到宽带业务等等。在与同步网相关性非常紧密的传输技术方面,从同轴传输发展到PDH,SDH,WDM和DWDM,以及最新的OTN和PTN技术。随着通信新业务和新技术的不断发展,其同步要求越来越高,包括钟源、锁相环等基本时钟技术经历了多次更新换代,同步技术也在不断地推陈出新,时间同步技术更是当前业界关注的焦点。 2、时钟技术发展历程 时钟同步涉及的最基本技术包括钟源技术和锁相环技术,随着应 用需求的不断提高,技术、工艺的不断改进,钟源技术和锁相环 技术也得到了快速的演进和发展。 (1) 钟源技术

时钟振荡器是所有数字通信设备的基本部件,按照应用时间的先后,钟源技术可分为普通晶体钟、具有恒温槽的高稳晶振、原子钟、芯片级原子钟。 一般晶体振荡器精度在nE-5~nE-7之间,由于具有价格便宜、尺寸小、功耗低等诸多优点,晶体振荡器在各个行业和领域中得到广泛应用。然而,普通晶体钟一般受环境温度影响非常大,因此,后来出现了具有恒温槽的晶体钟,甚至具有双恒温槽的高稳晶体钟,其性能得到很大改善。随着通信技术的不断发展,对时钟精度和稳定性提出了更高的要求,晶体钟源已经难以满足要求,原子钟技术开始得到应用,铷钟和铯钟是其中最有代表性的原子钟。一般来说,铷钟的精度能达到或优于nE-10的量级,而铯钟则能达到或优于1E-12的量级。 然而,由于尺寸大、功耗高、寿命短,限制了原子钟在一些领域的应用,芯片级原子钟有望解决这个难题。目前民用的芯片级原子钟基本上处于试验阶段,其尺寸只有立方厘米量级,耗电只有百毫瓦量级,不消耗原子,延长了使用寿命,时钟精度在nE-10量级以上,具有很好的稳定性。芯片级原子钟将在通信、交通、电力、金融、国防、航空航天以及精密测量等领域有着广泛的应用前景。 (2) 锁相环技术 锁相环技术是一种使输出信号在频率和相位上与输入信号同步的电路技术,即当系统利用锁相环技术进入锁定状态或同步状态后,系统的震荡器输出信号与输入信号之间相差为零,或者保持为常数。锁相环路技术是时钟同步的核心技术,它经历了模拟锁相环

GPS时钟系统(GPS同步时钟)技术方案(1)

GPS 时钟系统(GPS 同步时钟技术方案 技术分类:通信 | 2010-11-08 维库 在电力系统、 CDMA2000、 DVB 、 DMB 等系统中 , 高精度的 GPS 时钟系统(GPS 同步时钟对维持系统正常运转有至关重要的意义。 那如何利用 GPS OEM来进行二次开发 , 产生高精度时钟发生器是一个研究的热点问题。如在 DVB-T 单频网 (SFN中 , 对于时间同步的要求 , 同步精度达到几十个 ns, 对于这样高精度高稳定性的系统 , 如何进行商业级设计 ? 一、引言 在电力系统的许多领域,诸如时间顺序记录、继电保护、故障测距、电能计费、实时信息采集等等都需要有一个统一的、高精度的时间基准。利用 GPS 卫星信号进行对时是常用的方法之一。 目前, 市场上各种类型的 GPS-OEM 板很多, 价格适中, 具有实用化的条件。利用 GPS-OEM 板进行二次开发,可以精确获得 GPS 时间信息的 GPS时钟系统 (GPS 同步时钟。本文就是以加拿大马可尼公司生产的 SUPERSTAR GPS OEM板为例介绍如何开发应用于电力系统的的 GPS 时钟系统(GPS 同步时钟。 二、 GPS 授时模块 GPS 时钟系统 (GPS 同步时钟采用 SUPERSTAR GPS OEM 板作为 GPS 接受模块, SUPERSTAR GPS OEM 板为并行 12跟踪通道,全视野 GPS 接受模块。 OEM 板具有可充电锂电池。 L1频率为 1575.42MHz ,提供伪距及载波相位观测值的输出和 1PPS (1 PULSE PER SECOND脉冲输出。 OEM 板提供两个输入输出串行口,一个用作主通信口,可通过此串行口对 OEM 板进行设置,也可从此串口读取国际标准时间、日期、所处方位等信息。另一个串行口用于 RTCM 格式的差分数据的输出,当无差分信号或仅用于 GPS 授时,此串行口可不用。 1PPS 脉冲是标准的 TTL 逻辑

传输系统中的时钟同步技术

传输系统中的时钟同步技术同步模块是每个系统的心脏,它为系统中的其他每个模块馈送正确的时钟信号。因此需要对同步模块的设计和实现给予特别关注。本文对影响系统设计的时钟特性进行了考察,并对信号恶化的原因进行了评估。本文还分析了同步恶化的影响,并对标准化组织为确保传输质量和各种传输设备的互操作性而制定的标准要求进行了探讨。摘要:网络同步和时钟产生是高速传输系统设计的重要方面。为了通过降低发射和接收错误来提高网络效率,必须使系统的各个阶段都要使用的时钟的质量保持特定的等级。网络标准定义同步网络的体系结构及其在标准接口上的预期性能,以保证传输质量和传输设备的无缝集成。有大量的同步问题,系统设计人员在建立系统体系结构时必须十分清楚。本文论述了时钟恶化的各种来源,如抖动和漂移。本文还讨论了传输系统中时钟恶化的原因和影响,并分析了标准要求,提出了各种实现技巧。基本概念:抖动和漂移抖动的一般定义可以是“一个事件对其理想出现的短暂偏离”。在数字传输系统中,抖动被定义为数字信号的重要时刻在时间上偏离其理想位置的短暂变动。重要时刻可以是一个周期为 T1 的位流的最佳采样时刻。虽然希望各个位在 T 的整数倍位置出现,但实际上会有所不同。这种脉冲位置调制被认为是一种抖动。这也被称为数字信号的相位噪声。在下图中,实际信号边沿在理想信号边沿附近作周期性移动,演示了周期性抖动的概念。图 1.抖动示意抖动,不同于相位噪声,它以单位间隔 (UI) 为单位来表示。一个单位间隔相当于一个信号周期 (T),等于 360 度。假设事件为 E,第 n 次出现表示为 tE[n] 。则瞬时抖动可以表示为:一组包括 N 个抖动测量的峰到峰抖动值使用最小和最大瞬时抖动测量计算如下:漂移是低频抖动。两者之间的典型划分点为 10 Hz。抖动和漂移所导致的影响会显现在传输系统的不同但特定的区域。抖动类型根据产生原因,抖动可分成两种主要类型:随机抖动和确定性抖动。随机抖动,正如其名,是不可预测的,由随机的噪声影响如热噪声等引起。随机抖动通常发生在数字信号的边沿转换期间,造成随机的区间交叉。毫无疑问,随机抖动具有高斯概率密度函数 (PDF),由其均值 (μ) 和均方根值 (rms) (σ) 决定。由于高斯函数的尾在均值的两侧无限延伸,瞬时抖动和峰到峰抖动可以是无限值。因此随机抖动通常采用其均方根值来表示和测量。图 2.以高斯概率密度函数表示的随机抖动对抖动余量来讲,峰到峰抖动比均方根抖动更为有用,因此需要把随机抖动的均方根值转换成峰到峰值。为将均方根抖动转换成峰到峰抖动,定义了随机抖动高斯函数的任意极限 (arbitrary limit)。误码率 (BER) 是这种转换中的一个有用参数,其假设高斯函数中的瞬时抖动一旦落在其强制极限之外即出现误码。通过下面两个公式,就可以得到均方根抖动到峰到峰抖动的换算。 3[!--empirenews.page--] 由公式可得到下表,表中峰到峰抖动对应不同的 BER 值。确定性抖动是有界的,因此可以预测,且具有确定的幅度极限。考虑集成电路 (IC) 系统,有大量的工艺、器件和系统级因素将会影响确定性抖动。占空比失真 (DCD) 和脉冲宽度失真(PWD) 会造成数字信号的失真,使过零区间偏离理想位置,向上或向下移动。这些失真通常是由信号的上升沿和下降沿之间时序不同而造成。如果非平衡系统中存在地电位漂移、差分输入之间存在电压偏移、信号的上升和下降时间出现变化等,也可能造成这种失真。图 3,总抖动的双模表示数据相关抖动 (DDJ) 和符号间干扰 (ISI) 致使信号具有不同的过零区间电平,导致每种唯一的位型出现不同的信号转换。这也称为模式相关抖动 (PDJ)。信号路径的低频截止点和高频带宽将影响 DDJ。当信号路径的带宽可与信号的带宽进行比较时,位就会延伸到相邻位时间内,造成符号间干扰 (ISI)。低频截止点会使低频器件的信号出现失真,而系统的高频带宽限制将使高频器件性能下降。7 正弦抖动以正弦模式调制信号边沿。这可能是由于供给整个系统的电源或者甚至系统中的其他振荡造成。接地反弹和其他电源变动也可能造成正弦抖动。正弦抖动广泛用于抖动环境的测试和仿真。不相关抖动可能由电源噪声或串扰和其他电磁干扰造成。考虑抖动对数字信号的影响时,需要将整个确定性抖动和随机抖动考虑在内。确定性抖动和随机抖动的总计结果将产生另外一种概率分布

Xilinx FPGA 设计中的跨时钟域问题

浅谈XLINX FPGA设计中跨时钟域的同步设计问题 摘要 本文介绍了FPGA设计中的同步设计原则并对FPG A设计中的触发器亚稳态问题进行了阐述本文通过具体的设计实例论证了跨时钟域同步处理的必要性并介绍了一种实现跨时 钟域同步处理的方法和其具体电路 关键字 同步设计异步设计触发器亚稳态时序稳定 一同步设计的原则 尽量使用同步电路避免使用异步电路这句话是电路设计的几个原则之一同异步设计相比同步设计设计出来的电路更稳定可靠在XILINX FPGA设计中时常 有设计人员遇到如下类似的问题 设计的电路升级困难可移植性差也就是说一些原本工作正常的电路移植到高端的FPGA中就根本工作不起来了 设计的电路一致性差同一电路设计每次布线后工作的结果不同 设计的电路时序仿真正常但实际电路上却工作不起来 设计的电路极易受毛刺的干扰 通常这些类似的问题都于电路的异步设计有关 二亚稳态 图1 触发器的亚稳态示意图 对于触发器当时钟沿到来时其输入要求是稳定的这时其输出也是稳定的但假如时钟沿到来时其输入也正在变化即翻转这时触发器会瞬时进入亚稳态通 常触发器对输入信号都有一个建立时间的要求也即setup时间当这一建立时间得 不到满足时触发器也会进入瞬时亚稳态如图1 通常触发器即使进入亚稳态也会很快进入稳态但其输出值是不定的这有可能对使我们设计的FPGA模块尤其是哪些有复杂状态机的模块产生错误的逻辑对于亚稳态问题我们还应明白亚稳态问题并非指输出结果数据的不确定性而是指输出变化的时序不确定性 遵循同步设计的原则有助于解决亚稳态问题使我们设计出稳定可靠的电路模块对于单时钟系统我们可以很方便地设计出稳定易于设计及仿真的同步单一时钟系统但在电信和数据通讯领域中我们设计的系统中往往具有多个时钟往往需要将数据或时序由一个时钟域传到另一个时钟域这类设计的难点在于实现不同时钟域之间数据和时序变化的稳定可靠地传递采用经验证的设计技术可以实现跨时钟域的同步设计进而设计出可靠工作的电路 三跨时钟域的异步设计案例 本人曾经设计过如下几个模块这些模块中的几个子模块分别工作在各自的时钟域

时间同步系统在线监测可行性研究报告

衡水电网智能调度技术支持系统时间同步系统在线监测 技术改造(设备大修)项目 可行性研究报告模板 项目名称: 项目单位: 编制: 审核: 批准: 编制单位: 设计、勘测证书号: 年月日

1.总论 时间同步系统在线监测功能,将时钟、被授时设备构成闭环,使对时状态可监测,且监测结果可上送,从而将时间同步系统纳入自动化监控系统管理。时间同步系统在线监测的数据来源分为两大类:设备状态自检数据和对时状态测量数据。设备状态自检主要是被监测设备自身基于可预见故障设置的策略,快速侦测自身的故障点。对时状态测量则是从被监测设备外部对其自身不可预见的故障产生的结果进行侦测,这两种方法较为完整的保证了时间同步系统监测的性能和可靠性。 1.1设计依据 2013年4月,国调中心专门下发了〔2013〕82号文《国调中心关于加强电力系统时间同步运行管理工作的通知》 1.2主要设计原则 通过在原系统上建立一套通讯技术及软件来实现系统级的时间同步状态在线监测功能。采用低建设成本、低管理成本、低技术风险的手段,解决当前自动化系统时间同步体系处于开环状态,缺乏反馈,无法获知工作状态紧迫现状,使时钟和被对时设备形成闭环监测,减少因对时错误引起的事件顺序记录无效,甚至导致设备死机等运行事故,并在此前提下尽可能的提高监测性能,减少复杂度。

1.3设计水平年 系统模块使用年限10年。 1.4设计范围及建设规模 智能调度技术支持系统(主站)针对时钟同步检测功能修改主要涉及前置应用,前置应用以104 或476 规约与变电站自动化系进行过乒乓原理对时,根据对时结果来检测各变电站时钟对时的准确性,从而保证全网时钟同步的准确性。同时,以告警直传方式接收变电站时间同步监测结果,包含设备状态自检数据和对时状态测量数据。 1.5经济分析 时间同步系统在线监测功能将时间同步装置、时间源服务器和被授时设备构成闭环,使对时状态可监测,且监测结果可上送,从而将时间同步系统纳入自动化监控系统管理。提高电力系统时间同步的准确性,保障电力系统运行控制和故障分析的重要基础。后期经济效益明显 2.项目必要性 2.1工程概况 智能电网调度技术支持系统及各变电站都以天文时钟作为自己的时间源,正常情况下实现了全网时间的一致。 2.2存在主要问题

跨时钟域问题(Clock Domain Crossing)

跨时钟域问题(Clock Domain Crossing) –同两个时钟域打交道! 引言:设计者有时候需要将处于两个不同时钟域的系统对接,由于接口处是异步(会产生setuptime 和holdtime violation,亚稳态以及不可靠的数据传输)的,因此处理起来较同步逻辑更棘手,需要寻求特殊处理来进行接口界面的设计。 任意的两个系统如果满足以下条件之一,就可称其为异步的: (1)工作在不同的时钟频率上; (2)工作频率相同,但是相位不相同; 处理跨时钟域的数据传输,有两种实现方案: (1)采用握手信号来交互 (2)以异步FIFO来实现 1.1、以握手信号交互: 假设系统A以这种方式向系统B传递数据,握手信号分别为req和ack。 握手协议: Transmitter asserts the req (request) signal, asking the receiver to accept the data on the data bus.

Receiver asserts the ack (acknowledge) signal, asserting that it has accepted the data. 这种处理跨时钟域的方式很直接,但是也最容易产生亚稳态,由于系统A发送的req信号需要系统B中的时钟去sample,而系统B发出的ack信号又需要系统A中的时钟去sample,这样两边都存在着setup time和hold time violation的问题。为了避免由于setup time和hold time vilation所造成的亚稳态,通常我们可以将异步时钟域交互的信号用local system的时钟打两级甚至三级寄存器,以此来消除亚稳态的影响。下图以系统A发送到系统B的req信号示例消除亚稳态的方法: 当然,这种处理方式是以损失传输速率为代价的,加入两到三级寄存器同步异步时钟域的信号,会有许多时钟周期浪费在了系统的“握手”。 有时候,我们也会对数据多打两拍reg来同步,但通常情况下,我们并不会采取这种方式,它不仅需要较多逻辑,而且收效甚微。通常对数据的同步是以异步FIFO来实现的。下图给出了1bit数据传输打两拍reg所做的同步,从中可以发现,与前面的握手信号处理完全一致。 1.2 结合实际工作谈谈以握手信号处理的跨时钟域问题 由于所在项目的逻辑设计相当庞大,超出了最初的预估,同时也鉴于产品化方向考虑可以单独流片,因此对整个逻辑结构进行了划分,在做FPGA原型验证的时候,将这两块逻辑分别映射到不同的器件单元中,这里暂且称它们为wrapper0和wrapper1。实践结果表明,wrapper0和wrapper1的相位需要存在180度的反相,弥补板级走线的延迟影响。

同步时钟系统

同步时钟系统 1.公司简介 南瑞集团公司是国家电网公司直属单位,是中国最大的电力系统自动化、水利水电自动化、轨道交通监控技术、设备和服务供应商。主要从事电力系统二次设备、信息通信、智能化中低压电气设备、发电及水利自动化设备、工业自动化设备、非晶合金变压器及电线电缆的研发、设计、制造、销售、工程服务与工程总承包业务。 南瑞集团通信与用电技术分公司(以下简称“通信用电分公司”)成立于2010年1月,是南瑞集团公司信息通信产业板块的核心单位、国内领先的高端智能用电产品及整体解决方案提供商,为国家电网公司提供各类智能芯片产品。 通信用电分公司充分把握智能用电产业发展的重大历史机遇,以服务坚强智能电网建设为主旨,以做专做精做大做强“智能用电产业”为目标,积极贯彻落实国家电网公司直属产业规划部署,确立了“1+5”发展战略,打造“1”个产业支撑平台,支撑“智能芯片、智能终端、智能传感、电力通信和智能服务”5项业务协同发展,形成从应用系统层、终端设备层和芯片器件层相互支撑的业务发展格局,致力于成为以芯片为核心支撑的高端综合解决方案提供商,已形成了信息管理、通信系统及通信设备、智能芯片、用电自动化及终端设备、电力物联网等5个产品线,拥有17个子产品线。随着生产业务的拓展,通信用电分公司已经取得一批具有自主知识产权的产品及成果,包括:“国网芯”系列芯片及与之配套的芯片发行系统、密钥管理系统;基于“国网芯”技术的智能用电产品及终端模块、电力线载波通信及配用电专用光通信产品;基于智能量测技术的智能防窃电系统、省级计量中心计量生产调度平台、智能感知互动综合服务平台等,并积极拓展节能服务、能效及智能传感等新型营销业务。 通信用电分公司成立3年来,各项经营业绩指标均保持迅猛增长,已承担多项重点科研和产业化项目,申请专利及软件著作权145项(其中发明专利66项),申请国际专利4项,截至2013年6月底,人员规模已从成立之初的83人

时间同步设备技术规范

时间同步设备技术规范 The Technical Specification for Time Synchronization Equipments 版本号:1.0.0 2004-06-10 发布 2004-06-10 实施 中国移动通信集团公司 发布 中国移动通信企业标准 QB-B-002-2004

目录 1 范围 (1) 2 引用标准 (1) 3 缩略语 (1) 4时间同步设备和其它业务网的关系 (1) 51级时间同步设备的功能要求 (2) 5.1 1级时间同步设备的构成 (2) 5.2 卫星接收机功能 (3) 5.3 时间输入功能 (3) 5.4 时钟功能 (3) 5.5 时间输出功能 (3) 5.6 时间调控功能 (4) 5.7 监控管理功能 (4) 61级时间同步设备的性能要求 (6) 6.1 绝对跟踪精度 (6) 6.2 相对守时精度 (6) 6.3 1PPS接口跟踪精度 (6) 6.4 时钟频率准确度 (6) 6.5 时钟保持特性 (6) 72级时间同步设备的功能要求 (6) 7.1 2级时间同步设备的构成 (6) 7.2 卫星接收机功能 (7) 7.3 时间输入功能 (7) 7.4 时钟功能 (7) 7.5 时间输出功能 (8) 7.6 时间调控功能 (8) 7.7 监控管理功能 (8) 82级时间同步设备的性能要求 (10)

8.1 绝对跟踪精度 (10) 8.2 相对守时精度 (10) 8.3 1PPS接口跟踪精度 (10) 8.4 时钟频率准确度 (10) 8.5 时钟保持特性 (10) 9可靠性要求 (11) 10环境要求 (11) 10.1 电源要求 (11) 10.2 温度要求 (11) 10.3 湿度要求 (11) 11编制历史 (11)

跨时钟域信同步方法种

跨时钟域信号同步方法6种 ASIC中心 1 引言 基于FPGA的数字系统设计中大都推荐采用同步时序的设计,也就是单时钟系统。但是实际的工程中,纯粹单时钟系统设计的情况很少,特别是设计模块与外围芯片的通信中,跨时钟域的情况经常不可避免。如果对跨时钟域带来的亚稳态、采样丢失、潜在逻辑错误等等一系列问题处理不当,将导致系统无法运行。本文总结出了几种同步策略来解决跨时钟域问题。 2 异步设计中的亚稳态 触发器是FPGA设计中最常用的基本器件。触发器工作过程中存在数据的建立(setup)和保持(hold)时间。对于使用上升沿触发的触发器来说,建立时间就是在时钟上升沿到来之前,触发器数据端数据保持稳定的最小时间。而保持时间是时钟上升沿到来之后,触发器数据端数据还应该继续保持稳定的最小时间。我们把这段时间成为setup-hold时间(如图1所示)。在这个时间参数内,输入信号在时钟的上升沿是不允许发生变化的。如果输入信号在这段时间内发生了变化,输出结果将是不可知的,即亚稳态 (Metastability) 图1 一个信号在过渡到另一个时钟域时,如果仅仅用一个触发器将其锁存,那么采样的结果将可能是亚稳态。这也就是信号在跨时钟域时应该注意的问题。如图2所示。 信号dat经过一个锁存器的输出数据为a_dat。用时钟b_clk进行采样的时候,如果a_dat正好在b_clk的setup-hold时间内发生变化,此时b_ dat就既不是逻辑"1",也不是逻辑"0",而是处于中间状态。经过一段时间之后,有可能回升到高电平,也有可能降低到低电平。输出信号处于中间状态到恢复为逻辑"1"或逻辑"0"的这段时间,我们

同步时钟系统设计方案

2.2时钟系统 2.2.1系统功能 地铁时钟系统为地铁工作人员和乘客提供统一的标准时间,并为其它各有关系统提供统一的标准时间信号,使各系统的定时设备与本系统同步,实现地铁全线统一的时间标准,从而达到保证地铁行车安全、提高运输效率和管理水平、改善服务质量的目的。 地铁1号线一期工程时钟子系统按中心一级母钟和车站二级母钟两级方式设置,系统基本功能如下: 1)同步校对 中心一级母钟设备接收外部GPS或∕和北斗卫星标准时间信号进行自动校时,保持同步。同时产生精确的同步时间码,通过传输通道向1号线一期工程的各车站、车辆段的二级母钟传送,统一校准二级母钟。 二级母钟系统接收中心母钟发出的标准时间码信号,与中心母钟随时保持同步,并产生输出时间驱动信号,用于驱动本站所有的子钟,并能向中心设备回馈车站子系统的工作信息。 二级母钟在传输通道中断的情况下,应能独立正常工作。 2)时间显示 中心一级母钟和二级母钟均按“时:分:秒”格式显示时间,具备12和24小时两种显示方式的转换功能;数字子钟为“时:分:秒”显示(或可选用带日期显示)。 3)日期显示 中心一级母钟应产生全时标信息,格式为:年,月,日,星期,时,分,秒,毫秒,并能在设备上显示。 4)为其它系统提供标准时间信号 中心一级母钟设备设有多路标准时间码输出接口,能够在整秒时刻给地铁其它各相关系统及专业提供标准时间信号。这些系统主要包括: ◆传输系统 ◆无线通信系统

◆公务及站内通信系统 ◆调度电话系统 ◆广播系统 ◆导乘信息系统 ◆电视监视系统 ◆UPS电源系统 ◆网络管理系统 ◆地铁信息管理系统 ◆综合监控系统 ◆信号系统 ◆自动售检票系统 ◆门禁系统 ◆屏蔽门系统 5)热备份功能 一级母钟、二级母钟均有主、备母钟组成,具有热备份功能,主母钟故障出现故障立即自动切换到备母钟,备母钟全面代替主母钟工作。主母钟恢复正常后,备母钟立即切换回主母钟。 6)系统扩容 由于控制中心为1、2、3号线共用,因此1号线一期工程时钟系统应具备系统扩容功能,通过增加适当的接口板,为1号线南北延长线各车站及2、3号线设备提供统一的时钟信号,同时预留接口对接入该中心的其它线路提供统一的时钟信号,最大限度地实现线路间的资源共享,以节省投资和设备的维护成本、提高运营服务质量。 7)系统监控功能 在控制中心设置时钟系统监控管理终端,具备自诊断功能,可进行故障管理、性能管理、配置管理、安全管理、文档管理。

相关文档
最新文档