220kv输电线路继电保护

220kv输电线路继电保护
220kv输电线路继电保护

银川能源学院

课程设计

课程名称:电力系统继电保护原理

设计题目:220kV输电线路继电保护设计

院(部):电力学院

专业:电气工程及其自动化

班级:1203

姓名:马祥

学号:1210240104

成绩:______________________________ 指导教师:李莉李静

日期:2015年6月8日——6月21日

目录

1、引言 (1)

2、220KV电网元件参数的计算 (1)

2.1 设计原则 (1)

2.2 220KV电网元件参数计算原则 (2)

2.3 发电机参数的计算 (2)

2.4 变压器参数的计算 (2)

2.5 输电线路参数的计算 (4)

3、中性点接地的选择 (5)

3.1 输电线路上T A、TV变比的选择 (5)

3.2变压器中性点接地方式的选择 (6)

4、短路电流的计算 (7)

4.1 运行方式确定的原则 (7)

4.2 网络等效图的化简 (7)

4.3 关于相间距离保护的短路计算 (8)

5、自动重合闸 (11)

5.1 自动重合闸的基本概述 (11)

5.1.1 概述 (11)

5.1.2 自动重合闸的配置原则 (12)

5.2 自动重合闸的基本要求 (12)

心得 (13)

参考文献 (14)

附录 (14)

1、引言

继电保护是一种电力系统的反事故自动装置,它在电力系统中的地位十分重要。继电保护伴随着电力系统而生,继电保护原理及继电保护装置的应用,是电力系统实用技术的重要环节。继电保护技术的应用繁杂广泛,伴随着现代科技的飞速发展,继电保护在更新自身技术的基础上与现代的微机、通信技术相结合,使继电保护系统日趋先进。电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的发展不断地注入新的活力,继电保护技术未来发展趋势是计算机化、网络化、智能化和数据通信一体化发展。

本次设计主要内容是220KV输电线路继电保护的配置和整定,设计内容包括:220KV电网元件参数的计算、中性点接地的选择、短路电路的计算、自动重合闸等。

由于各种继电保护适应电力系统运行变化的能力都是有限的,因而,对于继电保护整定方案的配合不同会有不同的保护效果,如何确定一个最佳的整定方案,将是从事继电保护工作的工程技术人员的研究课题。总之,继电保护既有自身的整定技巧问题,又有继电保护配置与选型的问题,还有电力系统的结构和运行问题。尤其,对于本文中220KV高压线路分相电流差动保护投运前的现场试验,一直是困扰技术人员的一个问题,由于线路两端距离的限制,现场试验不能像试验室那样方便。另外,光纤保护在长距离和超高压输电线路上的应用还有一定的局限性,在施工和管理应用上仍存在不足,但是从长远看,随着光纤网络的逐步完善、施工工艺和保护产品技术的不断提高,光纤保护将占据线路保护的主导地位。

2 、 220KV电网元件参数的计算

2.1 设计原则

电网继电保护和安全自动装置是电力系统的重要组成部分,对保证电力系统的正常运行,防止事故发生或扩大起了重要作用。应根据审定的电力系统设计(二次部分)原则或审定的系统接线及要求进行电网继电保护和安全自动装置设计,设计应满足《继电保护和安全自动装置技术规程(SDJ6-83)》、《110~220kV电网继电保护与安全自动装置运行条例》等有关专业技术规程的要求。

2.2 220KV 电网元件参数计算原则 标幺值的归算

近似计算:标幺值计算的近似归算是用平均额定电压计算。标幺值的近似计算可以就在各电压级用选定的功率基准值和各平均额定电压作为电压基准来进行。

B

B

B S U Z 2=

2.3 发电机参数的计算 发电机的电抗有名值:

N

N S U X X d

100(%)2"= (2-7)

发电机的电抗标幺值:

N

B

d S S X X 100(%)"=* (2-8)

式中: (%)

"X d —— 发电机次暂态电抗; N U —— 发电机的额定电压;

B U ——基准电压; B S —— 基准容量; N S ——发电机额定容量. 已知: P N U N ?c o s "d X 则: S N =

Φ

COS P N

*G X = N B S S 100(%) Xd" G X = N

B

S U 100(%)X 2

"d

2.4 变压器参数的计算 (1) 双绕组变压器参数计算公式:

双绕组变压器电抗有名值:

N

N K T S U U X 100(%)2

= (2-9)

双绕组变压器电抗标幺值:

N

B

k T S S U X 100(%)=

* (2-10)

式中: (%)K U ——变压器短路电压百分值;

N U ——发电机的额定电压; B U ——基准电压;

B S ——基准容量;

N S ——变压器额定容量. (2) 三绕组变压器参数的计算公式 1)各绕组短路电压百分值

U K1(%)=21

〔Ud Ⅰ—Ⅱ(%)+Ud Ⅰ—Ⅲ(%)-Ud Ⅱ—Ⅲ(%)〕 (2-11)

U K2(%)=21

〔Ud Ⅰ—Ⅱ(%)+Ud Ⅱ—Ⅲ(%)-Ud Ⅰ—Ⅲ(%)〕 (2-12)

U K3(%)=21

〔Ud Ⅰ—Ⅲ(%)+Ud Ⅱ—Ⅲ(%)-Ud Ⅰ—Ⅱ(%)〕 (2-13)

式中:Ud Ⅰ—Ⅱ(%)、Ud Ⅰ—Ⅲ(%)、 Ud Ⅱ—Ⅲ(%)分别为高压与中压,高压与低压,

中压与低压之间的短路电压百分值。 2)各绕组的电抗有名值:

X T1 = N N K S U U 100(%)2

1 (2-14)

X T2 =N N K S U U 100(%)2

2 (2-15)

X T3 =N

N K S U U 100(%)2

3 (2-16)

各绕组的电抗标幺值:

X T1* =

N B

k S S U 100(%)1 (2-17)

X T2* = N B

k S S U 100(%)2 (2-18)

X T3* = N

B

k S S U 100(%)3 (2-19)

式中: S B —— 基准容量MV A ;

S N —— 变压器额定容量;

N U —— 发电机的额定电压;

B U —— 基准电压. (3) B 变压器参数计算:

已知: S N %12K U 则: N

T B K T S S U X 111%?=* B T T Z X X ?=*

1

1 (4) C 变压器参数计算:

已知: S N %12K U %23K U %13K U 则: 各绕组的阻抗百分值为:

U K1% = 21

(%12K U +%13K U -%23K U )

U K2% = 21

(%23K U +%12K U -%13K U )

U K1% = 2

1

(%13K U +%23K U -%12K U )

X T1* = N

B

k S S U 100(%)1 X T2* = N B k S S U 100(%)2 X T3* = N B k S S U 100(%)3

对于E 变压器参数计算原则与2.4(4)相同。

2.5 输电线路参数的计算 (1) 输电线路参数计算公式

线路零序阻抗为: Z 0 = 3Z 1 (2-20)

负序阻抗为: Z 2 = Z 1 (2-21) 线路阻抗有名值的计算:

正、负序阻抗: Z 1 = Z 2 = (1r +j 1x )L (2-22)

零序阻抗: Z 0 = 3Z 1 (2-23) 线路阻抗标幺值的计算:

正、负序阻抗: Z 1* = Z 2* =(1r +j 1x )L

2

B

B U

S (2-24) 零序阻抗: Z 0* = 3Z 1* (2-25)

式中: 1r —— 每公里线路正序电阻值Ω/KM;

x——每公里线路正序电抗值Ω/KM;

1

L ——线路长度KM;

S B ——基准容量;

U B ——基准电压.

(2) AB段

有名值:Z AB1= R AB1+ jX AB1= (R1+ jX1 ) ×L AB

Z AB2 =Z AB1

Z AB0= R AB0+ jX AB0=3 Z AB1

标幺值:Z AB1*= Z AB1/ Z B

Z AB2* =Z AB1*

Z AB0*= R AB0*+ jX AB0*=3 Z AB1*

对于其它线路:BC段,AC段,AD段,DE段,EF段,FG段的计算原则与2.5(2)相同。

3、中性点接地的选择

3.1 输电线路上T A、TV变比的选择

(1) TA的配置原则

①型号:电流互感器的型号应根据作用环境条件与产品情况选择。

②一次电压:Ug=Un

Ug—电流互感器安装处一次回路工作电压;

Un—电流互感器的额定电压.

③一次回路电流:I1n≥Igmax

Igmax—电流互感器安装处一次回路最大电流;

I1n—电流互感器一次侧额定电流.

④准确等级:用于保护装置为0.5级,用于仪表可适当提高。

⑤二次负荷:S2≤Sn

S2—电流互感器二次负荷;

Sn—电流互感器额定负荷ф.

⑥输电线路上CT的选择:根据最大极限电流来选择。

(2) TV的配置原则

①型式:电压互感器的型式应根据使用条件选择,在需要检查与监视一次回

路单相接地时,应选用三相五柱式电压互感器或具有三绕组的单相

互感器组。

②一次电压的波动范围:1.1Un>U 1>0.9Un ③二次电压:100V

④准确等级:电压互感器应在哪一准确度等级下工作,需根据接入的测量仪 表。继电器与自动装置及设备对准确等级的要求来确定。 ⑤二次负荷:S 2≤Sn

(4)TV 变比及型号的选择

线路电压均为220KV ,由《发电厂电气部分课设参考资料》查得变比为

100/3

100

/3220000 , 型号为YDR —220; Y —电压互感器;D —单相; R —电容式。

3.2变压器中性点接地方式的选择

通常,变压器中性接地位置和数目按如下两个原则考虑:一是使零序电流保护装置在系统的各种运行方式下保护范围基本保持不变,且具有足够的灵敏度和可靠性;二是不使变压器承受危险的过电压。为此,应使变压器中性点接地数目和位置尽可能保持不变。

(1) 变压器中性点接地的位置和数目的具体选择原则

1)对单电源系统,线路末端变电站的变压器一般不应接地,以提高保护的灵敏度和简化保护线路;对多电源系统,要求每个电源点都有一个中性点接地,以防止接地短路的过电压对变压器产生危害。

2)电源端的变电所只有一台变压器时,其变压器的中性点应直接接地;变电所有两台及以上变压器时,应只将一台变压器中性点直接接地运行,当该变压器停运时,再将另一台中性点不接地的变压器改为中性点直接接地运行。若由于某些原因,变电所正常情况下必须有二台变压器中性点直接接地运行,则当其中一台中性点直接接地变压器停运时,应将第三台变压器改为中性点直接接地运行。

3)双母线运行的变电所有三台及以上变压器时,应按两台变压器中性点直接接地的方式运行,并把他们分别接于不同的母线上。当其中一台中性点直接接地的变压器停运时,应将另一台中性点不接地的变压器改为中性点直接接地运行;低电压侧无电源的变压器中性点应不接地运行,以提高保护的灵敏度和简化保护接线。

4)对于其他由于特殊原因不满足上述规定者,应按特殊情况临时处理。例如,可采用改变保护定值、停运保护或增加变压器接地运行台数等方法进行处理,以保证保

护和系统的正常运行。

根据变压器的台数和接地点的分布原则,结合该系统的具体情况,中性点接地的选择结果如下:A的两台为T1

、T2;C端的一台为T3;E端的两台为T4、T5。

T1—接地;T2—不接地;T3—接地;T4—接地;T5—不接地。

4、短路电流的计算

4.1 运行方式确定的原则

保护的运行方式是以通过保护装置的短路电流的大小来区分的。

(1)最大运行方式

根据系统最大负荷的需要,电力系统中的发电设备都投入运行(或大部分投入运行)以及选定的接地中性点全部接地的系统运行方式称为最大运行方式。对继电保护来说,是短路时通过保护的短路电流最大的运行方式。

(2)最小运行方式

根据系统最小负荷,投入与之相适应的发电设备且系统中性点只有少部分接地的运行方式称为最小运行方式。对继电保护来说,是短路时通过保护的短路电流最小的运行方式。

表4-1 系统运行方式的结果

4.2 网络等效图的化简

(1)正序等效图

图4-1 正序等效网络图

(2)零序等效图

图4-2 零序等效网络图

4.3 关于相间距离保护的短路计算

(1)对1QF而言:

1) 最小分支系数K b,min的计算

运行方式:开机容量最小,AC 断线,系统1-6最大运行方式,双回线. 网络等效图如下所示:

调整上图位置

!

图4-3 关于最小分支系数K b,min 等效网络图

化简得:

图4-3 关于最小分支系数K b,min 等效网络化简图

33

2m i n ,16X X X I I K b +==

2) 最大分支系数K b,max 的计算

运行方式:开机容量最大,闭环,系统1-6最小运行方式,单回线. 网络等效图如下所示:

b,max

图4-7 关于最大分支系数K b,max 等效网络化简图(2)

4

X

图4-5 关于最大分支系数K b,max 等效网络图

3212

112X X X X X X ++=

3213

113X X X X X X ++=

3

213

223X X X X X X ++=

413'13X X X += 23'13'12//X X X X C +=

∴ C

X I 1

23=

13

'12'13

'23

12X X X I I +=

122313I I I -=

∴ ()1131312121/X X I X I I +=

()3232313133/X X I X I I +=

∴ 1

3

m a x b, K I I =

对2QF ,7QF 和8QF 最大和最小分支系数的计算原理同4.4(1)相同。

5、 自动重合闸

5.1 自动重合闸的基本概述 5.1.1 概述

在110KV 级以上电压的大接地电流系统中,由于架空线路的线间距离较大,相间故障的机会比较少,而单相接地短路的机会比较多。在高压输电线路上,若不允许采用快速非同期三相重合闸,而采用检同期重合闸,又因恢复供电的时间太长,满足不了稳定运行的要求时,就采用单相重合闸方式。

单相重合闸是指只把发生故障的一相断开,然后再进行单相重合,而未发生故障的两相仍然继续运行,这样就可大大提高供电的可靠性和系统并列运行的稳定性。

如果线路发生的是瞬时性故障,则单相重合闸成功即恢复三相的正常运行。如果是永久性故障,单相重合不成功,则根据系统的具体情况,如不允许长期非全相运行时,则应再次切除单相并不再进行自动重合。目前一般都是采用重合不成功时跳开三相的方式。当采用单相重合闸时,如线路发生相间短路时,一般都跳开三相断路器,不进行三相重合;如有其它原因断开三相断路器时,也不进行重合。

5.1.2 自动重合闸的配置原则

自动重合闸的配置原则根据电力系统的结构形状、电压等级、系统稳定要求、负荷状况、线路上装设的继电保护装置及断路器性能,以及其它技术经济指标等因素决定。其配置原则:

(1)1KV及以上架空线路及电缆与架空混合线路,在具有断路器的条件下,当用电设备允许且无备用电源自动投入时,应装设自动重合闸装置;

(2)旁路断路器和兼作旁路的母联断路器或分段断路器,应装设自动重合闸装置;(3)低压侧不带电源的降压变压器,可装设自动重合闸装置;

(4)必要时,母线故障也可采用自动重合闸装置。

总结多年来自动重合闸运行的经验可知,线路自动重合闸的配置和选择应根据不同系统结构、实际运行条件和规程要求具体确定。在本此所设计的220kv中性点直接接地电网中,采用综合自动重合闸装置。

5.2 自动重合闸的基本要求

(1) 自动重合闸装置不应动作的情况有:

①由值班人员手动操作或通过遥控装置将断路器断开时。

②手动投入断路器,由于线路上存在故障,随即由保护动作将其断开.因为在这种情况下,故障大多都是属于永久性的。它可能是由于检修质量不合格、隐患未能消除或者是保安地线没有拆除等原因造成的。因此,即使再重合一次也不可能成功。 .

③在某些不允许重合的情况下例如,断路器处于不正常状态(如气压、液压降低等)以及变压器内部故障,差动或瓦斯保护动作使断路器跳闸时,均应使闭锁装置不进行重合闸。

(2)除上述条件外,当断路器由继电保护动作或其他原因而跳闸后,重合闸都应该动作,使断路器重新合闸。在某些情况下(如使用单相重合闸时),也允许只在保护动作于跳闸后进行重合闸。

(3)基于以上的要求,应优先采用断路器操作把手与断路器位置不对应启动方式,即当断路器操作把手在合闸位置而断路器处在跳闸位置时启动重合闸。这种方式可以保证无论什么原因使断路器跳间后(包括偷跳和误跳),都能进行一次重合闸。当手动操作断路器跳闸,由于两者的位置是对应的,因此,不会启动重合闸。

当利用保护来启动重合闸时,由于保护动作很快,可能使重合闸来不及启动。因此,必须采取措施(如设置自保持回路或记忆回路等)来保证装置可靠动作。

(4)自动重合闸装置的动作次数应符合预先的规定。如一次重合闸就只应该动作一次。当重合于永久性故障而再次跳间后,就不应该再动作。

装置本身也不允许出现元件损坏或异常时,使断路器多次重合的现象,以免损坏断路器设备和扩大事故范围。

(5)自动重合闸在动作以后,应能够自动复归。

对于10kV及以下的线路,当经常有值班人员时,也可采用手动复归方式。

(6)自动重合间时间应尽可能短,以缩短停电的时间.因为电源中断后,电动机的转速急剧下降,停电时间越长,电动机转速越低,重合闸后自起动就越困难,会拖延恢复正常工作的时间。但重合闸的时间也不能太短,因为:

①要使故障点的绝缘强度来得及恢复。

②要使断路器的操作机构来得及恢复到能够重新合闸的状态。重合闸的动作时间一般采用0.5~1.5s。

(7)自动重合闸装置应有与继电保护配合加速切除系统故障的回路。加速方式可分为前加速和后加速。

前加速方式就是在重合闸前保护以瞬时或缩短ΔT时间,快速切除故障。重合于永久性故障时保护将延时切除故障。

后加速方式就是在重合闸前保护瞬时或后备时间切除故障,重合于永久性故障时,保护将瞬时或后备缩短△T时间,快速切除故障。

(8)在两侧电源的线路上采用重合闸时应考虑同步问题。

心得

本次课程设计主要是针对220kV输电线路,要求我们设计一个220kV输电线路继电保护方案。在做这次继电保护课程设计的时候,我通过查找有关于这方面的资料,对此次的设计题目先进行了分析,而且进行了如下的具体设计,其内容为:计算系统中各元件参数;确定输电线路上TA,TV变比的选择及变压器中性点接地的选择;绘

制电力系统等值阻抗图,确定系统运行方式并进行短路计算;确定电力系统继电保护的主保护和后备保护的选择及整定计算。然后我就开始着手准备所需要的各种资料,并且进行了整理。

由于对所学的内容都没有掌握的很透彻,在做设计的过程中遇到了很多问题,我通过网络资料和有关书籍解决了一部分问题,后来我又向老师和同学虚心请教,解决了问题,其实,我遇到的最大的问题就是画电路图,因为对专业的画图软件不了解,不能运用专业的画图软件,所以在画图的时候耗费的时间比较长,我认为现在熟悉这些画图软件是非常有用的,对我们将来的毕业设计会有很大的帮助。

通过本次设计,我对电力系统继电保护这门课程有了更深刻的理解,对所学到的内容也有了进一步的掌握,熟悉了电力系统继电保护的设计步骤和设计技能并掌握了运用各种整定原则,提高了设计电力系统继电保护整定的计算能力。

对于各种继电保护适应电力系统变化的能力都是有限的,因此继电保护整定方案也不是唯一的,而且本次设计的时间比较紧,我的能力也很有限,难免会有一些不足之处,希望各位老师指出错误,我将虚心地接受并加以改进。

参考文献

1、崔家佩.等《电力系统继电保护与安全自动装置整定计算》[M].北京:水利电

力出版社,1993

2、李骏年.《电力系统继电保护》[M].北京:中国电力出版社,1993

3、王维俭.《电气主设备继电保护原理与应用》[M].北京:中国电力出版社,1996

4、吕继绍.《继电保护整定计算与实验》[M].湖北华中理工大学出版社,1983

5、韩笑.《电力系统继电保护》[M].机械工业出版社.2011

附录

电力网主接线图

220KV电网继电保护设计毕业设计说明书

毕业设计(论文)220KV电网继电保护设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

引言 本文研究的是关于220KV电网继电保护。通过本次设计掌握和巩固电力系统继电保护的相关专业理论知识,熟悉电力系统继电保护的设计步骤和设计技能,根据技术规范,选择和论证继电保护的配置选型的正确性并培养自己在实践工程中的应用能力、创新能力和独立工作能力。 本次设计是根据内蒙古工业大学电力学院本科生毕业要求而进行的毕业设计。此次设计的主要内容是220KV电网继电保护的配置和整定,设计内容包括:计算系统中各元件参数;确定输电线路上TA,TV变比的选择及变压器中性点接地的选择;绘制电力系统等值阻抗图,确定系统运行方式并进行短路计算;确定电力系统继电保护的主保护和后备保护的选择及整定计算:主保护采用两套独立的、厂家不同的、能保护线路全长的保护装置(第一套CSC-103B光纤纵差保护;第二套PSL-603(G)分相电流差动保护),后备保护采用相间距离保护和接地零序电流保护;输电线路的自动重合闸采用单相自动重合闸方式。 由于各种继电保护适应电力系统运行变化的能力都是有限的,因而,对于继电保护整定方案的配合不同会有不同的保护效果,如何确定一个最佳的整定方案,将是从事继电保护工作的工程技术人员的研究课题。总之,继电保护既有自身的整定技巧问题,又有继电保护配置与选型的问题,还有电力系统的结构和运行问题。尤其,对于本文中220KV高压线路分相电流差动保护投运前的现场试验,一直是困扰技术人员的一个问题,由于线路两端距离的限制,现场试验不能像试验室那样方便。另外,光纤保护在长距离和超高压输电线路上的应用还有一定的局限性,在施工和管理应用上仍存在不足,但是从长远看,随着光纤网络的逐步完善、施工工艺和保护产品技术的不断提高,光纤保护将占据线路保护的主导地位。

220KV电网线路继电保护设计及整定计算

1.1 220KV 系统介绍 KV 220系统由水电站1W ,2W 和两个等值的KV 220系统1S 、2S 通过六条 KV 220线路构成一个整体。整个系统最大开机容量为MVA 29.1509,此时1W 、2W 水电厂所有机组、变压器均投入,1S 、2S 两个等值系统按最大容量发电,变压器均投入;最小开机容量位MVA 77,1007,此时1W 厂停MVA 302 机组,2W 厂停 MVA 5.77机组一台,1S 系统发电容量为MVA 300,2S 系统发电容量为MVA 240。 KV 220系统示意图如图1.1所示。 1.2 系统各元件主要参数 (1) 发电机参数如表1.1所示: 表1.1 发电机参数 电源 总容量(MVA ) 每台机额定功率 额定电压 额定功率 正序 图1.1 220kV 系统示意图

最大 最小 (MVA ) (kV ) 因数cos φ 电抗 W 1厂 295.29 235.29 235.29 15 0.85 0.35 2*30 11 0.83 0.25 W 2厂 310 232.5 4*77.5 13.8 0.84 0.3 S 1系统 476 300 115 0.5 S 2系统 428 240 115 0.5 对水电厂12 1.45X X =,对于等值系统12 1.22X X = (2) 变压器参数如表1.2所示: 表1.2 变压器参数 变电站 变压器容量(MVA ) 变比 短路电压(%) Ⅰ-Ⅱ Ⅰ-Ⅲ Ⅱ-Ⅲ A 变 20 220/35 10.5 B 变-1 240 220/15 12 B 变-2 60 220/11 12 C 变 3*120 220/115/35 17 10.5 6 D 变 4*90 220/11 12 E 变 2*120 220/115/35 17 10.5 6 (3) 输电线路参数 KM AB 60=,上端KM BC 250=,下端KM BC 230=,KM CD 185=, KM CE 30=,KM DE 170=;KM X X /41.021Ω==,103X X =,080=ΦL 。 (4) 互感器参数 所有电流互感器的变比为5/600,电压互感器的变比为100/220000。由动稳定计算结果,最大允许切除故障时间为S 2.0。 2 整定计算 2.1 发电机保护整定计算 2.1.1 纵联差动保护整定计算 (1)发电机一次额定电流的计算 式中 n P ——发电机额定容量; θ c o s ——发电机功率因数; n f U 1——发电机机端额定电压; (2)发电机二次额定电流的计算 式中 f L H n ——发电机机电流互感器变比; (3)差动电流启动定值cdqd I 的整定:

220kV输电线路工程设计毕业设计论文

220kV 双分裂双回路输电线路设计 学 生:阳文闯 指导教师:孟遂民 (三峡大学科技学院) 摘要:本设计讲述了某平丘区段架空输电线路设计的全部内容,主要设计步骤是按《架空输电线路设计》书中的设计步骤,和现实中的设计步骤是不一样的。本设计包括导线、地线的比载计算、临界档距、最大弧垂的判断,力学特性的计算,金具的选取,定位排杆,代表档距的计算,各种校验,杆塔荷载的计算,接地装置的设计以及基础设计等。在本次设计中,重点是线路设计,杆塔定位和基础设计。 关键词: 导线 避雷线 比载 应力 弧垂 杆塔定位 Abstract :In this text, it includes all the steps in of overhead power transmission line design, which is Accordance with 《the design of overhead power transmission line 》, but it is not the same with the reality .this article discussed the conductor and the ground wire's coMParing load critical span .the maximum arc-perpendiculer judgement .mechanics property's fixed position of shaft-tower. various checking .representative span's calculating. load ppplied on iron tower calculating. equipment used in the ground connection design. metal appliance choose .In this paper, it is the focal point of line design. iron tower design and fundament design ,at last ,it is simply introduced the iron tower erecting's design and fundament design followed with fundament construction. Key words :conductor overhead ground wire coMParing load stress arc-perpendiculer fixed position of shaft-tower (此文档为word 格式,下载后您可任意编辑修改!) 优秀论文 审核通过 未经允许 切勿外传

输电线路继电保护原理及方法研究

输电线路继电保护原理及方法研究 发表时间:2018-10-17T10:37:09.870Z 来源:《电力设备》2018年第17期作者:章松[导读] 摘要:输电线路是电力系统构成中不可或缺的组成部分,承担着为用户传送电能的重任。 (国网江苏省电力有限公司连云港供电分公司江苏连云港 222004)摘要:输电线路是电力系统构成中不可或缺的组成部分,承担着为用户传送电能的重任。由于其所处的复杂运行环境条件,其相对容易发生事故的概率,所以强化输电线路继电保护是一项非常关键而重要的举措。本文先对输电线路继电保护的基本原理进行了阐述,然后重点对常见的继电保护方法及应用进行了探讨。 关键词:输电线路;继电保护;原理;方法在输电线路运行维护中,继电保护是一种非常关键的保护装置,其是确保输电线路可以持久稳定输送电能的重要保障。一旦输电线路发生故障时,继电保护系统无法及时切除故障线路或电力设备,那么就无法起到保护输电线路乃至整个电力系统的作用,所以必须要强化输电线路继电保护。因此,选择科学、合理的继电保护装置设备对于保护输电线路运行稳定性具有重要意义。 一、输电线路继电保护的基本原理 输电线路继电保护实际上就是在输电线路上安装相应的继电保护装置,在输电线路中的电气设备出现不正常运行状态或者发生短路、断路等事故后可以使断路器产生跳闸动作或发送异常信号,可以及时切除输电线路中的异常电力设备,保证其他非故障电力设备可以保持正常运行,尽可能地缩小输电线路故障的范围。常见的继电保护装置的组成简图如图1所示,通过对输入信号进行处理,即可实现自动判断后续需要执行的保护动作。 图1 继电保护装置组成简图 二、输电线路继电保护的常用方法 2.1 电流保护法 考虑到电流速断无法对输电线路全长进行保护,无法将限时电流速断当作相邻电力设备的后备保护,所以为了可以对故障进行准确、快速切除,常常采用三段式电流保护的方式,即将过电流保护、限时电流速断以及常规电流速断这三种电流保护形式组合在一起。如图2所示的为一个单电源输电线路,其中的保护1,2,3,4互相配合实际上就组成了三段式电流保护。其中每段输电线路的Ⅱ段电流保护都可以配合后一段输电线路的Ⅰ断电流保护,且会有0.5s左右的延时时间。Ⅲ段电流保护配合下一段输电线路的Ⅲ段电流进行保护,相应的动作延时时间控制在0.5~1s。 图2 三段式电流保护示意图继电保护在保护输电线路可以采用有时限和无时限两种动作方式,在最短时间内结合输电线路所反馈出的输电信号做出跳闸选择,如此来确保输电线路的安全性。例如,在图2中,假定输电线路中的CD段出现了故障,那么由继电保护2执行相应动作,一旦其无法进行动作,那么在延时0.5s~1s时继电保护3执行相应动作,这样可以确保继电保护2保持正常工作状态,继电保护3不会出现误动情况。三段式电流保护这种继电保护装置的接线比较简单,可靠性相对较高,实际应用过程中需要靠动作电流进行无限时点波速断保护的选择性,同时由动作时限确保过电流保护和带时限电流速断保护。然而,在单电源环网或多电源网络状态下,常常很难满足三段式电流保护实际应用过程中的选择性要求。此外,由于无时限电流速断无法对输电线路全长进行有效保护,相应的保护范围以及灵敏度均会受到电力系统运行方式的影响。又或者在输电线路长度比较大且负荷量比较大的时候,输电线路末尾部位处的最小短路电流基本上和最大负荷电流之间比较接近,这时候继续应用三段式电流保护会无法确保其灵敏度满足规定要求。 2.2 差动保护法 为了确保输电线路运行的可靠性与稳定性,需要确保在无延时状态下将所保护输电线路上的各个故障点切除,如果采用电流保护法则无法满足相应的要求,但是可以采用差动保护法这种机电保护法确保输电线路运行的可靠性。差动保护法实际上就是借助基尔霍夫电流定理,当输电线路处于正常工作状态下或在区外故障条件下,如果输电线路流出和流入的数值保持一致,那么所设置的输电线路差动继电器不会发生动作。但是当本级输电线路内部出现故障后,两侧或三侧向输电线路故障点需要提供短路电流,差动保护感受到的二次电流和的正比于故障点电流,这时差动继电保护器则会发生动作。如图3,如果输电线路中出现异常问题,那么流入所设置的差动保护继电器中的电流就会和短路部位处的总电流值保持一致,即:,当流入所设置的差动保护继电器中的电流比动作电流值大的时候,就是使线路中所设置断路器出现跳闸。如果在输电线路外部出现异常情况的时候,,那么这时候流入所设置的差动保护继电器中的电流值为零,不会发生差动保护动作。

(完整版)110kV变电站输电线路的继电保护设计毕业设计

毕业设计(论文) 题目:平湖六店110kV变电站输电线路的继电保护设计 系(部):电气工程系 专业班级:电力10-2 姓名:黄婷 指导教师:张国琴

2013年5 月19 日

摘要 继电保护可以保证电力系统正常运行,当系统中的电气设备发生短路故障时,能自动,迅速,有选择的将故障元件从系统中切除,以免故障元件继续遭到破坏,保证其他无故障部分正常运行;有能在排除故障的同时,也保证了人们生命财产安全。本次毕业设计以平湖六店110KV变电站的输电线路和电气接线方式作为主要原始数据,本设计围绕110KV变电站的输电线路进行的继电保护设计,根据平湖六店原始资料所提供的变电站一次系统图,重点介绍线路的无时限电流速断保护和定时限过流保护保护的作用原理,保护的范围,动作时限的特性,整定原则等,又相对平湖六店的输电线路进行了短路计算及其速断保护和定时限过电流保护的整定计算,灵敏度校验和动作时间整定,通过计算和比较从而确定了输电线路保护的选型。相辅也介绍了输电线路的其他几种保护,如接地保护,距离保护,纵差保护和高频保护,简单介绍了这几种保护的工作原理组成部件,整定计算,影响因素等方面。通过对输电线路继电保护的设计使得输电线路在电网中能更加安全的运行。 关键词:继电保护;短路计算;整定计算

Abstract Can ensure the normal operation of power system relay protection, short circuit fault occurs when the electrical equipment in the system, can automatically, rapidly and selectively to fault components removed from the system, so as to avoid fault components continue to damage, ensure the normal operation of other trouble-free part; Can design in pinghu six stores 110 kv substation of power lines and electrical connection mode as the main raw data, the design around the transmission lines of 110 kv substation relay protection design, according to pinghu six stores the original data provided by the substation system diagram at a time, focus on line without time limit current instantaneous fault protection and protection principle of fixed time limit over current protection, the scope of the protection action time limit characteristics, principle, etc., and relative pinghu six shop transmission lines for the calculation of short circuit and quick break protection and fixed time limit over current

110_220kV架空输电线路设计要点分析

TECHNOLOGY AND MARKET Vol.19No.5,2012 0引言 在国民经济飞速发展的大背景下,国家用于建设电力电网,尤其是高压输电线路的资金日益增多。输电线路的设计是输电线路建设工程的灵魂,它的好坏直接影响着整个电网的运行,如何对输电线路进行合理设计是保证电网可靠安全运行的一大关键问题。然而,由于我国幅员辽阔,各地环境气候、地质条件相差甚多,因此,所使用的输电线路也不尽相同,这种差异性使得目前的输电线路设计存在很多问题。本文结合多年的工作经验,对输电线路的设计,分析了其应注意的地方,以供相关从业人员参考。 1输电线路概述 电力系统由发电厂、输电线路、变电站和配电设备以及用电设备所构成。电厂发出的电能由输电线路输送到负荷中心,其主要任务就是输送电能,并联络各个发电厂与变电站,使之并列运行,从而实现电力系统联网。具体说来,高压输电线路是为了实现跨地区、跨流域,错开高峰,减少系统的备用容量以及增强整个系统的稳定性而存在的。 电力线路有低压、高压、超高压以及特高压线路之分。一般输送电能容量越大,线路采用的电压等级越高。目前,我国的输电线路的主要电压等级有10kV、20kV、35kV、60kV、110kV、220kV、330kV、500kV等。20kV及以下电压等级习惯上称为配电线路,35kV~220kV称为高压线路,330kV及以上电压等级称为特高压输电线路。而其中110kV~220kV输电线路是最常用的高压输电线路之一。按结构特点,输电线路可分为电缆线路和架空线路。电缆线路对电力电缆的要求高、费用昂贵,需较高的施工及检修技术,但因其受外界环境小,且对周边环境影响较小,因此,目前常用于城市稠密区及跨海输电等特殊场所。架空线路具有结构相对比较简单、施工方便、建造费用低、散热性能好、检修维护较容易以及技术要求不高等优点,从而得到广泛使用。鉴于这两点,将重点对110kV~220kV架空输电线路的设计要点提出一些看法与建议。 2110kV~220kV架空输电线路设计要点 架空输电线路是将多股裸导线用绝缘子和其他金具悬空架设在支持杆塔上。每个事物有利必有弊,架空输电线路的特点除了以上提到的几个优点,也包含以下几个缺陷:①由于其所处环境,因而容易受自然因素的影响与外力的破坏,发生事故的几率较大;②由于导线裸露在外,因此,对地面与建筑物以及其他设施都需要保持一定的安全距离,导致占地面积与空间大,影响土地的充分利用。针对架空输电线路的特点,其设计包括:选择所要使用的导线种类;设计输电线路的线路路径;杆塔设计;其他相关注意点。 2.1导线选择 导线是用于传导电流、输送电能的设施,是线路的关键部分之一。导线通常被架设于电杆上,需承受自身重量以及雨、风、日照、冰雪、以及温度的变化,因而需要导线有足够的机械强度和良好的电气性能。导线的种类多种多样,但钢芯铝绞线被应用得最多,钢芯铝绞线外部由多股铝线绞制而成,传输大部分电流,内部几股是钢线,机械强度较好。 在高压电网中,电压等级较高,输送容量大,为提高输送质量,减少电晕和对高频通讯的干扰,220kV及以上输电线路一般采用每两根或多跟导线组成的分裂导线。导线的截面选择由经济电流密度、容许电压的损耗量、发热条件以及电晕损耗来决定。对导线的一般要求有:①导线产品必须符合GB/T1179-2008的规定;②导线绞合的紧密度应满足机械张力的放线要求,绞合紧密应均匀一致;③导线表面应平滑圆整,不得有腐蚀斑点与夹杂物等。 对于110kV~220kV输电线路,如若采用400m2导线,建议设计覆冰小于10mm的地区采用LGJ-400/35钢芯铝绞线,覆冰小于15mm地区建议采用LGJ-400/50钢芯铝绞线。 2.2线路路径设计 输电线路的路径设计是整个设计的基础,该阶段设计的恰当与否直接关系着整个设计的质量,包括该工程的可行性、经济性、技术性以及系统运行的可靠性。路径设计的目的就是在保证运行的可靠性与稳定性的前提下,应尽可能地降低整个工程的造价。线路路径的设计包括两个方面,图上选线和现场选线。 1)图上选线。该部分的工作主要是收集输电线路所在地区的地形图、航测图。根据经验,将起点、终点与其中的必经点标出,并根据收集的资料(包括交通、民航、水文、地质、通信、气象以及林业等)避开一些大的设施与影响区域,同时考虑当地的交通条件等相关因素,依据线路路径最短原则,得出几个方案,将这几个方案进行技术上与经济上的比较,选出一个相对合理 110~220kV架空输电线路设计要点分析 刘鹏飞 (广西广晟电力设计有限公司,广西南宁530031) 摘要:输电线路承担着输送和分配电能的任务,是电力系统的一个重要组成部分,其设计的恰当与否直接影响整个电网运行的安全性和可靠性。文章结合多年的工程设计经验,在考虑设计方便可行、降低造价以及利于运行的角度,提出了110kV~220kV输电线路在导线选择、线路路径设计、杆塔设计等阶段的一些设计要点。 关键词:输电线路;线路路径;杆塔;施工技术 doi:10.3969/j.issn.1006-8554.2012.05.050 技术研发 92

继电保护课程设计

目录 电力系统继电保护课程设计任务书 (1) 一、设计目的 (1) 二、课题选择 (1) 三、设计任务 (1) 四、整定计算 (1) 五、参考文献 (2) 输电线路三段式电流保护设计 (3) 一、摘要 (3) 二、继电保护基本任务 (3) 三、继电保护装置构成 (4) 四、继电保护装置的基本要求 (4) 五、三段式电流保护原理及接线图 (6) 六、继电保护设计 (7) 1.确定保护3在最大、最小运行方式下的等值电抗 (7) 2.相间短路的最大、最小短路电流的计算 (8) 3.整定保护1、2、3的最小保护范围计算 (8) 4.整定保护2、3的限时电流速断保护定值,并校验灵敏度 (9) 5.保护1、2、3的动作时限计算 (11) 参考文献: (12)

电力系统继电保护课程设计任务书 一、设计目的 1、巩固和加深对电力系统继电保护课程基础理论的理解。 2、对课程中某些章节的内容进行深入研究。 3、学习工程设计的基本方法。 4、学习设计型论文的写作方法。 二、课题选择 输电线路三段式电流保护设计 三、设计任务 1、设计要求 熟悉电力系统继电保护、电力系统分析等相关课程知识。 2、原理接线图 四、整定计算 ,20,3/1151Ω==G X kV E φ

,10,1032Ω=Ω=G G X X L1=L2=60km ,L3=40km, LB-C=30km,LC-D=30km, LD-E=20km,线路阻抗0.4Ω/km, 2.1=I rel K ,=∏rel K 15.1=I ∏rel K , 最大负荷电流IB-C.Lmax=300A, IC-D.Lmax=200A, ID-E.Lmax=150A, 电动机自启动系数Kss=1.5,电流继电器返回系数Kre=0.85。 最大运行方式:三台发电机及线路L1、L2、L3同时投入运行;最小运行方式:G2、L2退出运行。 五、参考文献 [1] 谷水清.电力系统继电保护(第二版)[M].北京:中国电力出版社,2013 [2] 贺家礼.电力系统继电保护[M].北京:中国电力出版社,2004 [3] 能源部西北电力设计院.电力工程电气设计手册(电气二次部分).北京: 中国电力出版社,1982 [4] 方大千.实用继电保护技术[M].北京:人民邮电出版社,2003 [5] 崔家佩等.电力系统继电保护及安全自动装置整定计算[M].北京:水利电 力出版社,1993 [6] 卓有乐.电力工程电气设计200例[M].北京:中国电力出版社,2002 [7] 陈德树.计算机继电保护原理与技术[M].北京:水利电力出版社,1992

220kV输电线路工程防雷措施分析

220kV输电线路工程防雷措施分析 摘要:雷击灾害对输电线路的稳定运行存在巨大威胁,如果前期建设阶段未采 取可靠的防雷措施,一旦遭受雷击,产生的过大雷电流会直接对输电线路以及电 气设备造成损坏,出现跳闸停电故障,影响正常供电。因此必须要加强对输电线 路工程的防雷措施研究,争取通过多项防雷措施的应用,来避免雷击带来的影响,为输电线路的稳定可靠运行提供保障。 关键词:220kV;输电线路;防雷措施 雷击跳闸是影响输电线路运行状态的关键因素,并且因为大气雷电活动具有 非常强的随机性与复杂性,想要提高对其的防治效果,还需要不断对实践经验进 行总结。确定目前输电线路建设存在的不足,并在此基础上来采取措施进行调整 优化,争取为输电线路的可靠运行提供更大保障,为用户提供高质量供电服务。 一、雷击跳闸原因分析 雷击跳闸是输电线路比较常见的故障之一,对正常供电有重要影响。输电线 路雷击跳闸包括绕击跳闸、感应跳闸、反击跳闸等多种类型,其以后两种类型居多。第一,反击类跳闸。输电线路故障点接地电阻不达标,为一基多相或多基多相,在跳闸故障时故障点附近雷电流幅值比较大,故障相多为水平排列的中相或 垂直排列的中、下相。第二,感应雷跳闸。故障点为线路未架设架空避雷线,且 故障点的接地电阻与设计标准相符。故障点多为一基多相或单相,发生跳闸故障 时故障点附近存在较大的雷电流,故障相多为水平排列的边相或垂直排列的上相[1]。为减少雷击灾害对输电线路运行产生的影响,必须要在前期做好充分考察, 根据当地地貌、地形以及雷电灾害特点确定最为合适的防雷方案,通过各种防雷 装置的安装,来将雷击产生的过大雷电流导入地下,避免对输电线路产生损坏, 且减少跳闸事故的发生,维持输电线路的正常运行。 二、220kV输电线线路防雷措施 1.增强线路耐雷能力 想要增强输电线路的耐雷能力,就必须要选择性能优良的绝缘子,其性能如 何直接关系着线路的耐雷水平。电力企业需要提高对此方面的重视,对线路绝缘 子进行全过程管理,应用科学方法来对绝缘子进行检测,做好质量检验,保证所 有投入使用的绝缘子性能达到专业标准,对于验收不合格的绝缘子,要严禁应用 到线路中。而对于已经投入使用的绝缘子,则需要安排专人遵循相关规定,定期 对其状态进行检测,对于损坏或异常的绝缘子要及时更换,且做好劣化情况的统计,经过分析编制科学可行的管理计划,将此方面带来的干扰降到最低。尤其是 雷击灾害发生频繁的地区,需要适当的加强线路绝缘配合,使得线路耐雷能力保 持最高。220kV输电线路单串悬垂绝缘子串共有13片绝缘子,单串耐张绝缘子串共有14片绝缘子,基本上可以满足线路防雷需求。实际建设中可以提高绝缘子 串50%的冲积闪络电压值,对每串绝缘子至少增加2片,能够有效减少雷击跳闸 事故的发生,确保输电线路维持良好的运行状态[2]。 2.降低杆塔接地电阻 降低杆塔接地电阻能够有效提高输电线路防雷效果,减少雷击跳闸事故的发生。接地电阻高低对杆塔顶电位有直接影响,如果设计的电阻较大,雷击时杆顶 电位就会大幅度升高,并对线路造成反击产生跳闸故障,影响线路正常输电。合

220kv电网继电保护设计

220kv电网继电保护设计

目录 一、题目 (1) 二、系统中各元件的主要参数 (2) 三、正序、负序、零序等值阻抗图 (4) 四、继电保护方式的选择与整定计算 (6) (A)单电源辐射线路(AB)的整定计算 (6) (B)双回线路BC和环网线路主保护的整定计算 11 (C)双回线路CE、ED、CD主保护的整定计算(选做)12 (D)双回线路和环网线路后备保护的整定计算(选做) 14 五、220kV电网中输电线路继电保护配置图 (22)

一、题目 选择图1所示电力系统220kV线路的继电保护方式并进行整定计算。图1所示系统由水电站W、R和两个等值的110kV系统S、N,通过六条220kV线路构成一个整体。整个系统的最大开机总容量为1509.29MVA,最小开机总容量为1007.79 MVA,两种情况下各电源的开机容量如表1所示。各发电机、变压器容量和连接方式已在图1中示出。 表1 系统各电源的开机情况

图1 220kV系统接线图 二、系统中各元件的主要参数 计算系统各元件的参数标么值时,取基准功率S b=60MVA,基准电压U b=220kV,基准电流I b=3 b b S U=0.157kA,基准电抗x b = 806.67。 (一)发电机及等值系统的参数 用基准值计算所得的发电机及等值系统元件的标么值参数见表2所列。 表2 发电机及等值系统的参数 发电机或系统发电机及系统的总 容量MVA 每台机额定 功率MVA 每台机额 定电压 额定功 率因数 正序电抗负序电抗

cos 注:系统需要计算最大、最小方式下的电抗值;水电厂发电机2 1.45d x x '=,系统2 1.22d x x '=。 (二) 变压器的参数 变压器的参数如表3所列。 表3 变压器参数

220kV输电线路工程施工组织设计最终版

(此文档为word格式,下载后您可任意编辑修改!) 220kV萧牌2310线(牌头变侧)开口后接入 诸西变输电线路工程 项目管理实施规划 1

绍兴市大兴电气承装有限公司 2011年11月14日 批准:年月日审核:年月日编写:年月日

目录 一、编制依据 (5) 1编制依据 (5) 二、工程概况与工程实施条件分析 (5) 1工程概述 (5) 2工程设计特点、工程量 (6) 3施工实施条件及自然环境分析 (7) 三、项目施工管理组织结构 (9) 1项目管理组织结构 (9) 2项目管理职责 (9) 3工程主要负责人简介 (13) 四、工期目标和施工进度计划 (13) 1工期目标及分解 (13) 2施工进度计划及编制说明 (14) 3进度计划图表 (16) 4进度计划风险分析及控制措施 (16) 五、质量管理体系 (18) 1质量目标及分解 (18) 2质量管理组织机构 (19) 3质量管理主要职责 (19) 4质量控制措施 (20) 5质量薄弱环节及预防措施 (22) 六、安全管理体系 (23) 1安全目标及分解 (23) 2安全管理组织机构 (24) 3安全管理主要职责 (24) 4安全控制措施 (25) 5危险点、薄弱环节分析预测及预防措施 (26) 七、环境保护与文明施工体系 (27)

1施工引起的环保问题及保护措施 (27) 2文明施工的目标、组织结构和实施方案 (28) 八、工地管理和施工平面布置 (29) 1施工平面布置 (29) 2工地管理方案与制度 (29) 九、施工方法与资源需求计划 (32) 1劳动力需求计划及计划投入的施工队伍 (32) 2施工方法及主施工机具选择 (33) 3施工机具需求计划 (36) 4材料、消耗材料需求计划 (37) 5资金需求计划 (38) 十、施工管理与协调 (38) 1技术管理及要求 (38) 2物资管理及要求 (39) 3资金管理及要求 (40) 4作业队伍及管理人员管理及要求 (41) 5协调工作(参建方、外部) (43) 6分包计划与分包管理 (43) 7计划、统计和信息管理 (44) 8资料管理 (47) 十一、施工科技创新 (49) 十二、主要技术经济指标 (49) 1项目技术经济指标 (49) 2降低成本计划与措施 (50) 十三、附录 (52)

继电保护课程设计---输电线路继电保护设计

继电保护课程设计 设计题目:输电线路继电保护设计班级: 姓名: 学号:0803402 指导老师:

目录 供电课程设计任务书 (2) 摘要 (3) 绪论 (3) 1.电力系统继电保护的原理和任务 (3) 2.对继电保护的基本要求 (3) 3.概述所作题目的意义、本人所做的工作及系统的主要功能 (4) 一、系统方案设计 (5) 二、短路电流和继电保护的整定计算 (6) (一)、AB段的继电保护进行整定计算及灵敏度校验 (6) (二)、BC段的继电保护进行整定计算及灵敏度校验 (8) (三)、CD段的继电保护进行整定计算及灵敏度校验 (10) 三、保护接线原理图 (11) 四、电流继电器型号的选择 (12) 五、课程设计体会 (13) 六、结束语 (13) 参考文献 (14)

供电课程设计任务书 一、设计题目 输电线路继电保护设计 二、设计需求 1,AB段和BC段均设两段式(速断,过流),CD段只设过流保护; 2,计算出各保护的整定值,并选择继电器的型号,而且校验其保护范围和灵敏度是否符合要求; 3,画出A站和B站的保护接线原理图。 三、原始参数 某企业供电系统图 ①速断可靠系数取1.2 ②限时速断可靠系数取1.1 ③过流可靠系数取1.2 ④接线系数取1 ⑤返回系数取0.85 ⑥自起动系数取1

摘要 供电系统中大量的不同类型的电气设备通过线路联结在一起。受线路运行环境复杂,线路分布广阔等因素的制约,故障在电力系统中的发生几乎是无法避免的,而各个环节之间又是相辅相成缺一不可的关系,因此无论哪一个环节出现故障,都会对整个系统的正常运行造成影响。输电线路是连接供电部门与用电部门的纽带,是整个店里系统的网络支撑,针对现有电力系统容量的扩大,电压等级的提高,线路输电容量的增加,为了保证电力系统运行的稳定性,本文对输电线路继电保护的任务及基本要求做简要说明,在对短路电流和继电保护动作电流进行了计算的基础上,对输电线路中继电保护配置进行了分析。 绪论 1、电力系统继电保护的原理和任务 继电保护原理是利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化构成继电保护动作的原理,还有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。大多数情况下,不管反应哪种物理量,继电保护装置都包括测量部分(和定值调整部分)、逻辑部分、执行部分。 继电保护的基本任务:(1)自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,并保证其他无故障部分迅速恢复正常运行。(2)反应电气设备的不正常工作情况,并根据运行维护的条件(例如有无经常值班人员),而动作于发出信号、减负荷或跳闸。此时一般不要求保护迅速动作,而是根据对电力系统及其元件的危害程度规定一定的延时,以免不必要的动作和由于干扰而引起的误动作。 2、对继电保护的基本要求 继电保护装置应满足可靠性、选择性、灵敏性和速动性的要求:这四“性”之间紧密联系,既矛盾又统一。 (1)可靠性是指保护该动作时应可靠动作。不该动作时应可靠不动作。可靠性是对继电保护装置性能的最根本的要求。

KV电网线路继电保护设计及整定计算

220KV 系统介绍 KV 220系统由水电站1W ,2W 和两个等值的KV 220系统1S 、2S 通过六条KV 220线 路构成一个整体。整个系统最大开机容量为MVA 29.1509,此时1W 、2W 水电厂所有机组、变压器均投入,1S 、2S 两个等值系统按最大容量发电,变压器均投入;最小开机容量位MVA 77,1007,此时1W 厂停MVA 302 机组,2W 厂停MVA 5.77机组一台,1S 系统发电容量为MVA 300,2S 系统发电容量为MVA 240。KV 220系统示意图如图1.1所示。 1.2 系统各元件主要参数 (1) 发电机参数如表1.1所示: 表1.1 发电机参数 图1.1 220kV 系统示意图

电源 总容量(MVA ) 每台机额定 功率(MVA ) 额定电压 (kV ) 额定功 率因数 cos φ 正序 电抗 最大 最小 W 1厂 295.29 235.29 235.29 15 0.85 0.35 2*30 11 0.83 0.25 W 2厂 310 232.5 4*77.5 13.8 0.84 0.3 S 1系统 476 300 115 0.5 S 2系统 428 240 115 0.5 对水电厂12 1.45X X =,对于等值系统12 1.22X X = (2) 变压器参数如表1.2所示: 表1.2 变压器参数 变电站 变压器容 量(MVA ) 变比 短路电压(%) Ⅰ-Ⅱ Ⅰ-Ⅲ Ⅱ-Ⅲ

A 变 20 220/35 10.5 B 变-1 240 220/15 12 B 变-2 60 220/11 12 C 变 3*120 220/115/3 5 17 10.5 6 D 变 4*90 220/11 12 E 变 2*120 220/115/3 5 17 10.5 6 (3) 输电线路参数 KM AB 60=,上端KM BC 250=,下端KM BC 230=,KM CD 185=,KM CE 30=, KM DE 170=;KM X X /41.021Ω==,103X X =,080=ΦL 。 (4) 互感器参数 所有电流互感器的变比为5/600,电压互感器的变比为100/220000。由动稳定计算结果,最大允许切除故障时间为S 2.0。 2 整定计算 2.1 发电机保护整定计算

35kV输电线路继电保护设计

本科课程设计 课程名称:电力系统继电保护原理 设计题目:35kV输电线路继电保护设计

摘要 力是当今世界使用最为广泛、地位最为重要的能源之一,电力系统的安全稳定运行对国民经济、人民生活乃至社会稳定都有着极为重大的影响。 电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。电力系统继电保护的基本作用是:全系统范围内,按指定分区实时地检测各种故障和不正常运行状态,快速及时地采取故障隔离或告警信号等措施,以求最大限度地维持系统的稳定、保持供电的连续性、保障人身的安全、防止或减轻设备的损坏。随着电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。 随着电力系统的迅速发展。大量机组、超高压输变变电的投入运行,对继电保护不断提出新的更高要求。继电保护是电力系统的重要组成部分,被称为电力系统的安全屏障,同时又是电力系统事故扩大的根源,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段,电力系统事故具有连锁反应、速度快、涉及面广、影响大的特点,往往会给国民经济和人民生活造成社会性的灾难。 本次毕业设计的题目是35kv线路继电保护的设计。主要任务是为保证电网的安全运行,需要对电网配置完善的继电保护装置.根据该电网的结构、电压等级、线路长度、运行方式以及负荷性质的要求,给35KV的输电线路设计合适的继电保护。 关键词:35kv继电保护、整定计算、故障分析、设计原理

目录 1.1继电保护的作用 (3) 1.1.1继电保护的概念及任务 (3) 1.2继电保护的基本原理和保护装置的组成 (3) 1.2.1反应系统正常运行与故障时电器元件(设备)一端所测基本参数的变化而构 成的原理(单端测量原理,也称阶段式原理) (3) 1.2.2反应电气元件内部故障与外部故障(及正常运行)时两端所测电流相位和功 率方向的差别而构成的原理(双端测量原理,也称差动式原理) (3) 1.2.3保护装置的组成部分 (4) 1.3对电力系统继电保护的基本要求 (4) 1.3.1选择性 (4) 1.3.2速动性 (5) 1.3.3灵敏性 (5) 1.3.4可靠性 (5) 1.4继电保护技术发展简史 (5) 2.35KV线路故障分析 (6) 2.1常见故障分析 (6) 2.1.1相间短路 (6) 2.1.2接地短路 (7) 3、35KV线路继电保护的配置 (7) 4.电网相间短路的电流保护 (7) 4.1瞬时电流速断保护 (8) 4.1.1 瞬时电流速断保护的工作原理 (8) 4.1.2原理接线 (9) 4.1.3瞬时电流速断保护的整定计算 (9) 4.2限时电流速断电流保护 (13) 4.2.1限时电流速断保护的工作原理 (13) 4.2.2 限时电流速断保护的整定计算 (14) 4.2.3 限时电流速断保护的单相原理接线 (16) 4.3定时限过电流保护 (16) 4.3.1定时限过电流保护的工作原理 (16) 4.3.2定时限时电流保护的整定计算 (18) 4.3.3 定时限过电流保护的灵敏度校验和保护动作时间 (18) 5:致谢 (20) 6:参考文献 (21)

35kv的输电线路继电保护设计(参考模板)

毕业设计(论文)题目35KV输电线路继电保护设计 学生姓名 学号 20093096 51 专业发电厂及电力系统 班级 20093096 指导教师 评阅教师 完成日期二零一一年十一月十一日 目录

摘要………………………………………………………………………………前言………………………………………………………………………………1.继电保护概论………………………………………………………………… 1.1继电保护的作用…………………………………………………………… 1.2电保护的基本原理和保护装置的组成…………………………………… 1.3对电力系统继电保护的基本要求………………………………………… 1.4 继电保护技术的发展简史………………………………………………… 2.35KV线路故障分析………………………………………………………… 2.1常见故障原因分析………………………………………………………… 2.2 35KV线路继电保护的配置…………………………………………… 4.电网相间短路的电流保护…………………………………………………… 4.1瞬时电流速断保护…………………………………………………………………… 4.2限时电流速断电流保护……………………………………………………… 4.3定时限过电流保护…………………………………………………………… 4.4电流三段保护小结…………………………………………………………… 5.输电线路三段式电流保护的构成及动作过程…………………………… 5.1零序电流保护………………………………………………………………… 6.中性点非直接接地电网中的接地保护…………………………………… 6.1、中性点不接地系统单相接地时的电流和电压 6.2中性点不接地电网的保护…………………………………………………… 6.3绝缘监视装置………………………………………………………………… 6.4零序电流保护……………………………………………………………… 6.5零序功率方向保护…………………………………………………………… 7.电流三段保护小结 结论………………………………………………………………………………致谢………………………………………………………………………………参考文献…………………………………………………………………………… 35KV线路继电保护设计

《220KV-750KV电网继电保护装置运行整定规程》试题及答案

《220KV-750KV电网继电保护装置运行整定规程》试题及答案一、选择题(题目序号后标有***的为多选题) 1、零序电流保护逐级配合是指:()C A.电流定值要配合,不出现交错点 B.时间必须首先配合,不出现交错点 C.电流定值灵敏度和时间都要相互配合 2、为保证接地后备最后一段保护可靠地有选择性地切除故障,500KV线路接地电阻最大按300Ω,220KV 线路接地电阻最大按()Ω考虑。C A.150 B.180 C.100 3、110KV及以上系统的零序电流保护最末一段,为保证在高阻接地时,对接地故障有足够灵敏度,因此, 其定值不应大于():B A.200A B.300A C.360A 4、220KV变压器的中性点经间隙接地的零序过电压保护定值一般可整定为:()B A.120V B.180V C.70V D.220V 5、在没有实际测量值的情况下,除大区间的弱联系联络线外,系统最长振荡周期一般可按()考虑。C A.1.0s B.1.2s C.1.5s 6、在220KV电力系统中,校验变压器零序差动保护灵敏系数所采用的系统运行方式应为:()B A.最大运行方式 B.正常运行方式 C.最小运行方式 7、***继电保护短路电流计算可以忽略()等阻抗参数中的电阻部分。A、B、C、D A.发电机 B.变压器 C.架空线路 D.电缆 8、对大型发电厂的配出线路,必要时应校核在线路发生单相接地故障情况下,线路接地故障后备保护与 发电机()保护之间的选择性配合关系。B A.过流 B.负序电流 C.复合电压启动的过流 9、对正常设置母线差动保护的双母线主接线方式,如果因检修或其他原因,引起母线差动保护被迫全部 停用且危及电网稳定运行时,在本母线配出线路全线速动保护投运的前提下,在允许的母线差动保护停运期限内,可临时将本母线配出线路()相间和接地故障后备保护灵敏段的动作时间缩短。A A.对侧 B.本侧 C.两侧 10、变压器()保护的出口不宜启动断路器失灵保护。C A.差动 B.后备 C.非电量 11、母差保护的负序、零序电压闭锁元件按躲过正常运行最大不平衡电压整定,负序电压(U2相电压)可 整定为()V,零序电压(3U0)可整定为()V。C A.4~8,2~6 B.6~18,4~8 C.2~6,4~8 12、分相电流差动保护的差流高定值应可靠躲过线路()电容电流。A A.稳态 B.暂态 C.稳态和暂态

相关文档
最新文档